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Abstract

We consider the problem of estimating an unknown coordinate-wise monotone
function given noisy measurements, known as the isotonic regression problem.
Often, only a small subset of the features affects the output. This motivates the
sparse isotonic regression setting, which we consider here. We provide an upper
bound on the expected VC entropy of the space of sparse coordinate-wise mono-
tone functions, and identify the regime of statistical consistency of our estimator.
We also propose a linear program to recover the active coordinates, and provide
theoretical recovery guarantees. We close with experiments on cancer classification,
and show that our method significantly outperforms several standard methods.

1 Introduction

Given a partial order � on Rd, we say that a function f : Rd → R is monotone if for all x1, x2 ∈ Rd
such that x1 � x2, it holds that f(x1) ≤ f(x2). In this paper, we study the univariate isotonic
regression problem under the standard Euclidean partial order. Namely, we define the partial order �
on Rd as follows: x1 � x2 if x1,i ≤ x2,i for all i ∈ {1, . . . , d}. If f is monotone according to the
Euclidean partial order, we say f is coordinate-wise monotone.

This paper introduces the sparse isotonic regression problem, defined as follows. Write x1 �A x2 if
x1,i ≤ x2,i for all i ∈ A. We say that a function f on Rd is s-sparse coordinate-wise monotone if for
some set A ⊆ [d] with |A| = s, it holds that x1 �A x2 =⇒ f(x1) ≤ f(x2). We call A the set of
active coordinates. The sparse isotonic regression problem is to estimate the s-sparse coordinate-wise
monotone function f from samples, knowing the sparsity level s but not the set A. Observe that if x
and y are such that xi = yi for all i ∈ A, then x �A y and y �A x, so that f(x) = f(y). In other
words, the value of f is determined by the active coordinates.

We consider two different noise models. In the Noisy Output Model, the input X is a random
variable supported on [0, 1]d, and W is zero-mean noise that is independent from X . The model is
Y = f(X) + W . Let R be the range of f and let supp(W ) be the support of W . We assume that
bothR and supp(W ) are bounded. Without loss of generality, letR+ supp(W ) ⊆ [0, 1], where +
is the Cartesian sum. In the Noisy Input Model, Y = f(X +W ), and we exclusively consider the
classification problem, namely f : Rd → {0, 1}. In either noise model, we assume that n independent
samples (X1, Y1), . . . , (Xn, Yn) are given.

The goal of our paper is to produce an estimator f̂n and give statistical guarantees for it. To our
knowledge, the only work that provides statistical guarantees on isotonic regression estimators in
the Euclidean partial order setting with d ≥ 3 is the paper of Han et al ([13]). The authors give
∗http://web.mit.edu/gamarnik/www/home.html
†http://web.mit.edu/jgaudio/www/index.html
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guarantees of the empirical L2 loss, defined asR(f̂n, f) = E
[

1
n

∑n
i=1

(
f̂n(Xi)− f(Xi)

)2
]

, where

the expectation is over the samples X1, . . . Xn. In this paper, we instead expand on the approach in
Gamarnik ([11]), to the high-dimensional sparse setting. It is shown in [11] that the expected Vapnik-
Chervonenkis entropy of the class of coordinate-wise monotone functions grows subexponentially.
The main result of [11] is a guarantee on the tail of ‖f̂n − f‖2. When X ∈ [0, 1]2 and Y ∈ [0, 1]
almost surely, it is claimed that

P
(
‖f̂n − f‖2 > ε

)
≤ ed

4
ε2
e√n− ε4n256 ,

where f̂n is a coordinate-wise monotone function, estimated based on empirical mean squared error.
However, the constants of the result are incorrect due to a calculation error, which we correct. This
result shows that the estimated function converges to the true function in L2, almost surely ([11]).
In this paper, we extend the work of [11] to the sparse high-dimensional setting, where the problem
dimension d and the sparsity s may diverge to infinity as the sample size n goes to infinity.

We propose two algorithms for the estimation of the unknown s-sparse coordinate-wise monotone
function f . The simultaneous algorithm determines the active coordinates and the estimated function
values in a single optimization formulation based on integer programming. The two-stage algorithm
first determines the active coordinates via a linear program, and then estimates function values.
The sparsity level is treated as constant or moderately growing. We give statistical consistency
and support recovery guarantees for the Noisy Output Model, analyzing both the simultaneous and
two-stage algorithms. We show that when n = max

{
eω(s2), ω (s log d)

}
, the estimator f̂n from the

simultaneous procedure is statistically consistent. In particular, when the sparsity s level is of constant
order, the dimension d is allowed to be much larger than the sample size. We note that, remarkably,
when the maximum is dominated by ω(s log d), our sample performance nearly matches the one of
high-dimensional linear regression [2, 10]. For the two-stage approach, we show that if a certain
signal strength condition holds and n = max

{
seω(s2), ω(s3 log d))

}
, the estimator is consistent.

We also give statistical consistency guarantees for the simultaneous and two-stage algorithms in the
Noisy Input Model, assuming that the components of W are independent. We show that in the regime
where a signal strength condition holds, s is of constant order, and n = ω(log d), the estimators from
both algorithms are consistent.

The isotonic regression problem has a long history in the statistics literature; see for example the
books [19] and [20]. The emphasis of most research in the area of isotonic regression has been the
design of algorithms: for example, the Pool Adjacent Violators algorithm ([15]), active set methods
([1], [5]), and the Isotonic Recursive Partitioning algorithm ([16]). In addition to the univariate setting
(f : Rd → R), the multivariate setting (f : Rd → Rq , q ≥ 2) has also been considered; see e.g. [21]
and [22]. In the multivariate setting, whenever x1 � x2 according to some defined partial order �, it
holds that f(x1)�̃f(x2), where �̃ is some other defined partial order. There are many applications
for the coordinate-wise isotonic regression problem. For example, Dykstra and Robertson (1982)
showed that isotonic regression could be used to predict college GPA from standardized test scores
and high school GPA. Luss et al (2012) applied isotonic regression to the prediction of baseball
players’ salaries, from the number of runs batted in and the number of hits. Isotonic regression has
found rich applications in biology and medicine, particularly to build disease models ([16], [23]).

The rest of the paper is structured as follows. Section 2 gives the simultaneous and two-stage
algorithms for sparse isotonic regression. Section 3 and Section A of the supplementary material
provide statistical consistency and recovery guarantees for the Noisy Output and Noisy Input models.
All proofs can be found in the supplementary material. In Section 4, we provide experimental
evidence for the applicability of our algorithms. We test our algorithm on a cancer classification
task, using gene expression data. Our algorithm achieves a success rate of about 96% on this task,
significantly outperforming the k-Nearest Neighbors classifier and the Support Vector Machine.

2 Algorithms for sparse isotonic regression

In this section, we present our two algorithmic approaches for sparse isotonic regression: the
simultaneous and two-stage algorithms. Recall thatR is the range of f . In the Noisy Output Model,
R ⊆ [0, 1], and in the Noisy Input Model,R = {0, 1}. We assume the following throughout.
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Assumption 1. For each i ∈ A, the function f(x) is not constant with respect to xi, i.e.∫
x∈X

∣∣∣∣f(x)−
∫
z∈X

f(z)dz

∣∣∣∣ dx > 0.

2.1 The Simultaneous Algorithm

The simultaneous algorithm solves the following problem.

min
A,F

n∑
i=1

(Yi − Fi)2 (1)

s.t. |A| = s (2)
Fi ≤ Fj if Xi �A Xj (3)
Fi ∈ R ∀i (4)

The estimated function f̂n is determined by interpolating from the pairs (X1, F1), . . . , (Xn, Fn) in
a straightforward way. In particular, f̂n(x) = max{Fi : Xi � x}. In other words, we identify all
points Xi such that Xi � x and select the smallest consistent function value. We call this the “min”
interpolation rule because it selects the smallest interpolation values. The “max” interpolation rule is
f̂n(x) = min{Fi : Xi � x}.
Definition 1. For inputs X1, . . . , Xn, let q(i, j, k) = 1 if Xi,k > Xj,k, and q(i, j, k) = 0 otherwise.

Problem (1)-(4) can be encoded as a single mixed-integer convex minimization. We refer to the
resulting Algorithm 1 as Integer Programming Isotonic Regression (IPIR) and provide its formulation
below. Binary variables vk indicate the estimated active coordinates; vk = 1 means that the
optimization program has determined that coordinate k is active. The variables Fi represent the
estimated function values at data points Xi.

Algorithm 1 Integer Programming Isotonic Regression (IPIR)

Input: Values (X1, Y1), . . . , (Xn, Yn); sparsity level s
Output: An estimated function f̂n

1: Solve the following optimization problem.

min
v,F

n∑
i=1

(Yi − Fi)2 (5)

s.t.
d∑
k=1

vk = s (6)

d∑
k=1

q(i, j, k)vk ≥ Fi − Fj ∀i, j ∈ {1, . . . , n} (7)

vk ∈ {0, 1} ∀k ∈ {1, . . . , d} (8)
Fi ∈ R ∀i ∈ {1, . . . , n} (9)

2: Return the function f̂n(x) = max{Fi : Xi � x}.

We claim that Problem (5)-(9) is equivalent to Problem (1)-(4). Indeed, the monotonicity requirement
is Xi �A Xj =⇒ f(Xi) ≤ f(Xj). The contrapositive of this statement is f(Xi) > f(Xj) =⇒
Xi 6�A Xj ; alternatively, f(Xi) > f(Xj) =⇒ ∃k ∈ A s.t. Xik > Xjk. The contrapositive is
expressed by Constraints (7).

Recall that in the Noisy Input Model, the function f is binary-valued, i.e. R = {0, 1}. Let
S+ = {i : Yi = 1} and S− = {i : Yi = 0}. When {Fi}ni=1 are binary-valued, it holds that∑n
i=1 (Yi − Fi)2

=
∑
i∈S+ (1− Fi) +

∑
i∈S− Fi. Therefore, if we replace the objective function

(5) by
∑
i∈S+ (1− Fi) +

∑
i∈S− Fi, we obtain an equivalent linear integer program.

Algorithm 1 when applied to the Noisy Output Model is a mixed-integer convex optimization program.
When applied to the Noisy Input Model, it s a mixed integer linear optimization program. While both
are formally NP-hard in general, moderately-sized instances are solvable in practice.
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2.2 The Two-Stage Algorithm

Algorithm 1 is slow, both in theory and in practice. Motivated by this, we propose an alternative
two-stage algorithm. The two-stage algorithm estimates the active coordinates through a linear
program, using these to then estimate the function values. The process of estimating the active
coordinates is referred to as support recovery. The active coordinates may be estimated all at once
(Algorithm 2) or sequentially (Algorithm 3). Algorithm 2 is referred to as Linear Programming
Support Recovery (LPSR) and Algorithm 3 is referred to as Sequential Linear Programming Support
Recovery (S-LPSR). The two-stage algorithm for estimating f̂n first estimates the set of active
coordinates using the LPSR or S-LPSR algorithm, and then estimates the function values. The results
algorithm is referred to as Two Stage Isotonic Regression (TSIR) (Algorithm 4).

Algorithm 2 Linear Programming Support Recovery (LPSR)

Input: Values (X1, Y1), . . . , (Xn, Yn); sparsity level s
Output: The estimated support, Â

1: Solve the following optimization problem.

min
v,c

n∑
i=1

n∑
j=1

d∑
k=1

cijk (10)

s.t.
d∑
k=1

vk = s (11)

d∑
k=1

q(i, j, k)
(
vk + cijk

)
≥ 1 if Yi > Yj and

d∑
k=1

q(i, j, k) ≥ 1 (12)

0 ≤ vk ≤ 1 ∀k ∈ {1, . . . , d} (13)

cijk ≥ 0 ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , n}, k ∈ {1, . . . , p} (14)

2: Determine the s largest values vi, breaking ties arbitrarily. Let Â be the set of the corresponding
s indices.

In Problem (10)-(14), the vk variables are meant to indicate the active coordinates, while the cijk
variables act as correction in the monotonicity constraints. For example, if for one of the constraints
(12),

∑d
k=1 q(i, j, k)vk = 0.7, then we will need to set cijk = 0.3 for some (i, j, k) such that

q(i, j, k) = 1. The vk’s should therefore be chosen in a way to minimize the correction.

Algorithm 3 determines the active coordinates one at a time, setting s = 1 in Problem (10)-(14).
Once a coordinate i is included in the set of active coordinates, variable vi is set to zero in future
iterations.

Algorithm 3 Sequential Linear Programming Support Recovery (S-LPSR)

Input: Values (X1, Y1), . . . , (Xn, Yn); sparsity level s
Output: The estimated support, Â

1: B ← ∅
2: while |B| < s do
3: Solve the optimization problem in Algorithm 2 with s = 1:

min

n∑
i=1

n∑
j=1

d∑
k=1

cijk (15)

s.t.
d∑
k=1

vk = 1 (16)

vi = 0 ∀i ∈ B (17)
d∑
k=1

q(i, j, k)
(
vk + cijk

)
≥ 1 if Yi > Yj and

d∑
k=1

q(i, j, k) ≥ 1 (18)
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0 ≤ vk ≤ 1 ∀k ∈ {1, . . . , d} (19)

cijk ≥ 0 ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , n}, k ∈ {1, . . . , d} (20)
4: Identify i? such that vi? = maxi{vi}, breaking ties arbitrarily. Set B ← B ∪ {imax}.
5: end while
6: Return Â = B.

Algorithm 3’ is defined to be the batch version of Algorithm 3. Namely, there are n samples in total,
divided into n

s batches. The first iteration of the sequential procedure is performed on the first batch,
the second iteration on the second batch, and so on.

We are now ready to state the two-stage algorithm for estimating the function f̂n.

Algorithm 4 Two Stage Isotonic Regression (TSIR)

Input: Values (X1, Y1), . . . , (Xn, Yn); sparsity level s
Output: The estimated function, f̂n

1: Estimate Â by using Algorithm 2, 3, or 3’. Let vk = 1 if k ∈ Â and vk = 0 otherwise.
2: Solve the following optimization problem.

min

n∑
i=1

(Yi − Fi)2 (21)

s.t.
d∑
k=1

q(i, j, k)vk ≥ Fi − Fj ∀i, j ∈ {1, . . . , n} (22)

Fi ∈ R ∀i ∈ {1, . . . , n} (23)
In the Noisy Input Model, replace the objective with

∑
i∈S+ (1− Fi) +

∑
i∈S− Fi.

3: Return the function f̂n(x) = max{Fi : Xi � x}.

Both algorithms for support recovery are linear programs, which can be solved in polynomial time.
The second step of Algorithm 4 when applied to the Noisy Output Model is a linearly-constrained
quadratic minimization program that can be solved in polynomial time. The following lemma shows
that Step 2 of Algorithm 4 when applied to the Noisy Input Model can be reduced to a linear program.
Lemma 1. Under the Noisy Input Model, replacing the constraints Fi ∈ {0, 1} with Fi ∈ [0, 1] in
Problems (5)-(9) and (21)-(23) does not change the optimal value. Furthermore, there always exists
an integer optimal solution that can be constructed from an optimal solution in polynomial time.

3 Results on the Noisy Output Model

Recall the Noisy Output Model: Y = f(X) +W , where f is an s-sparse coordinate-wise monotone
function with active coordinates A. We assume throughout this section that X is a uniform random
variable on [0, 1]d, W is a zero-mean random variable independent from X , and the domain of f
is [0, 1]d. We additionally assume that Y ∈ [0, 1] almost surely. Up to shifting and scaling, this is
equivalent to assuming that f has a bounded range and W has a bounded support.

3.1 Statistical consistency

In this section, we extend the results of [11], in order to demonstrate the statistical consistency of the
estimator produced by Algorithm 1. The consistency will be stated in terms of the L2 norm error.

Definition 2 (L2 Norm Error). For an estimator f̂n, define

‖f̂n − f‖22 ,
∫
x∈[0,1]d

(
f̂n(x)− f(x)

)2

dx.

We call ‖f̂n − f‖2 the L2 norm error.

Definition 3 (Consistent Estimator). Let f̂n be a estimator for the function f . We say that f̂n is
consistent if for all ε > 0, it holds that

lim
n→∞

P
(
‖f̂n − f‖2 ≥ ε

)
→ 0.
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Theorem 1. The L2 error of the estimator f̂n obtained from Algorithm 1 is upper bounded as

P
(
‖f̂n − f‖2 ≥ ε

)
≤ 8

(
d

s

)
exp

[(
128 log(2)

ε2
+ 2

64
ε2 2s

)
n
s−1
s − ε4n

512

]
.

Corollary 1. When n = max
{
eω(s2), ω(s log(d))

}
, the estimator f̂n from Algorithm 1 is consistent.

Namely, ‖f̂n − f‖2 → 0 in probability as n→∞. In particular, if the sparsity level s is constant,
the sample complexity is only logarithmic in the dimension.

3.2 Support recovery

In this subsection, we give support recovery guarantees for Algorithm 3. The guarantees will be in
terms of the values pk, defined below.
Definition 4. Let Y1 = f(X1) +W1 and Y2 = f(X2) +W2 be two independent samples from the
model. For k ∈ A, let

pk , P (Y1 > Y2 | q(1, 2, k) = 1)− P (Y1 < Y2 | q(1, 2, k) = 1) .

Assume without loss of generality that A = {1, 2, . . . , s} and p1 ≤ p2 ≤ · · · ≤ ps.
Lemma 2. It holds that pk > 0 for all k. In other words, when X1 is greater than X2 in at least one
active coordinate, the output corresponding to X1 is likely to be larger than the one corresponding to
X2.
Theorem 2. Let B be the set of indices corresponding to running Algorithm 3’ using n samples.
Then it holds that B = A with probability at least

1− ds exp

(
− p2

1n

64s3

)
.

Corollary 2. Assume that p1 = Θ(1). Let n be the number of samples used by Algorithm 3’. If
n = ω(s3 log(d)), then Algorithm 3’ recovers the true support w.h.p. as n→∞.

For x ∈ Rd, let xA denote x restricted to coordinates defined by the set A. Suppose that s is
constant, and the sequence of functions {fd} extends a function on s variables, i.e. fd is defined as
fd(x) = g(xA) for some g : [0, 1]s → R. In that case, p1 = Θ(1).

We can now give a guarantee of the success of Algorithm 4, using Algorithm 3’ for support recovery.
Corollary 3. Assume that p1 = Θ(1). Consider running Algorithm 4 using n samples for se-
quential recovery. Let m = n

s . Consider using an additional m samples for function value
estimation, so that the total sample size is n + m. Let f̂n+m be the estimated function. If
n = max

{
ω(s3 log(d)), seω(s2)

}
, then f̂n+m is a consistent estimator.

Corollary 3 shows that if s is constant and the sequence of functions {fd} extends a function of s
variables, then Algorithm 4 produces a consistent estimator with n = ω(log(d)) samples. In the
supplementary material, we state the statistical consistency results for the Noisy Input Model.

4 Experimental results

All algorithms were implemented in Java version 8, using Gurobi version 6.0.0.

4.1 Support recovery

We test the support recovery algorithms on random synthetic instances. Let A = {1, . . . , s} without
loss of generality. First, randomly sample r “anchor points” in [0, 1]d, calling them Z1, . . . , Zr. The
parameter r governs the complexity of the function produced. In our experiment, we set r = 10.
Next, randomly sample X1, . . . , Xn in [0, 1]d. For i ∈ {1, . . . , n}, assign Yi = 1 +Wi if Zj �A Xi

for some j ∈ {1, . . . , r}, and assign Yi = Wi otherwise. The linear programming based algorithms
for support recovery, LPSR and S-LPSR, are compared to the simultaneous approach, IPIR, which
estimates the active coordinates while also estimating the function values. Note that even though the
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proof of support recovery using S-LPSR requires fresh data at each iteration, our experiments do not
use fresh data. We keep s = 3 fixed and vary d and n. The error is Gaussian with mean 0 and variance
0.1, independent across coordinates. We report the percentages of successful recovery (see Table 1).
The IPIR algorithm performs the best on nearly all settings of (n, d). This suggests that the objective
of the IPIR algorithm- to minimize the number of misclassifications on the data- gives the algorithm
an advantage in selecting the true active coordinates. The LPSR algorithm outperforms the S-LPSR
algorithm when d = 5, but the situation reverses for d ∈ {10, 20}. For n = 200 samples and d = 5,
the LPSR algorithm correctly recovers the coordinates all but one time, while S-LPSR succeeds
86% of the time. For d = 10, LPSR and S-LPSR succeed 46 and 75% of the time, respectively; for
d = 20, LPSR and S-LPSR succeed 30 and 63% of the time, respectively. It appears that determining
the coordinates one at a time provides implicit regularization for larger d.

We additionally compare the accuracy in function estimation (Table 2). We found these results to be
extremely encouraging. For n = 200 samples, the IPIR and S-LPSR algorithms had accuracy rates in
the range of 87− 90%.

Table 1: Performance of support recovery algorithms on synthetic instances. Each line of the table
corresponds to 100 trials.

IPIR LPSR S-LPSR
d = d = d =

n 5 10 20 5 10 20 5 10 20

50 62 55 57 76 29 1 62 33 26
100 92 85 90 92 33 13 76 56 49
150 98 94 91 99 50 16 86 71 65
200 95 99 92 99 46 30 86 75 63

Table 2: Accuracy of isotonic regression on synthetic instances. Each line of the table corresponds to
100 trials.

IPIR LPSR S-LPSR
d = d = d =

n 5 10 20 5 10 20 5 10 20

50 78.2 77.8 77.6 77.4 74.2 65.9 77.1 76.1 74.3
100 85.1 85.8 84.6 84.1 77.6 75.0 84.2 83.9 81.7
150 87.9 87.8 86.8 87.8 81.3 77.9 87.1 86.6 85.9
200 89.2 89.8 88.3 89.1 83.6 83.4 89.0 88.9 87.5

4.2 Cancer classification using gene expression data

The presence or absence of a disease is believed to follow a monotone relationship with respect to
gene expression. Similarly, classifying patients as having one of two diseases amounts to applying
the monotonicity principle to a subpopulation of individuals having one of the two diseases. In
order to assess the applicability of our sparse monotone regression approach, we apply it to cancer
classification using gene expression data. The motivation for using a sparse model for disease
classification is that certain genes should be more responsible for disease than others. Sparsity can
be viewed as a kind of regularization; to prevent overfitting, we allow the regression to explain the
results using only a small number of genes.

The data is drawn from the COSMIC database [9], which is widely used in quantitative research
in cancer biology. Each patient in the database is identified as having a certain type of cancer. For
each patient, gene expressions of tumor cells are reported as a z-score. Namely, if µG and σG are
the mean and standard deviation of the gene expression of gene G and x is the gene expression of a
certain patient, then his or her z-score would be equal to x−µG

σG
. We filter the patients by cancer type,

selecting those with skin and lung cancer, two common cancer types. There are 236698 people with
lung or skin cancer in the database, though the database only includes gene expression data for 1492
of these individuals. Of these, 1019 have lung cancer and 473 have skin cancer. A classifier always
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selecting “lung” would have an expected correct classification rate of 1019/1492 ≈ 68%. Therefore
this rate should be regarded as the baseline classification rate.

Our goal is to use gene expression data to classify the patients as having either skin or lung cancer.
We associate skin cancer as a “0” label and lung cancer as a “1” label. We only include the 20 most
associated genes for each of the two types, according to the COSMIC website. This leaves 31 genes,
since some genes appear on both lists. We additionally include the negations of the gene expression
values as coordinates, since a lower gene expression of certain genes may promote lung cancer over
skin cancer. The number of coordinates is therefore equal to 62. The number of active genes is ranged
between 1 and 5.

We perform both simultaneous and two-stage isotonic regression, comparing the IPIR and TSIR
algorithms, using S-LPSR to recover the coordinates in the two-stage approach. Since for every
gene, its negation also corresponds to a coordinate, we added additional constraints. In IPIR, we use
variables vk ∈ {0, 1} to indicate whether coordinate k is in the estimated set of active coordinates.
In LPSR and S-LPSR, we use variables vk ∈ [0, 1] instead. In order to incorporate the constraints
regarding negation of coordinates in IPIR, we included the constraint vi + vj ≤ 1 for pairs (i, j) such
that coordinate j is the negation of coordinate i. In S-LPSR, once a coordinate vi was selected, its
negation was set to zero in future iterations. The LPSR algorithm, however, could not be modified to
take this additional structure into account without using integer variables. Adding the constraints
vi + vj ≤ 1 when coordinate j is the negation of coordinate i proved to be insufficient. Therefore,
we do not include the LPSR algorithm in our experiments on the COSMIC database.

We compare our isotonic regression algorithms to two classical algorithms: k-Nearest Neighbors ([8])
and the Support Vector Machine ([4]). Given a test sample x and an odd number k, the k-Nearest
Neighbors algorithm finds the k closest training samples to x. The label of x is chosen according
to the majority of the labels of the k closest training samples. The SVM algorithm used is the
soft-margin classifier with penalty C and polynomial kernel given by K(x, y) = (1 + x · y)m. We
have additionally implemented a version of kNN with dimensionality reduction, in an effort to reduce
the curse-of-dimensionality suffered by kNN. Data points are compressed by Principal Component
Analysis ([18]) prior to nearest-neighbor classification. However, this version of kNN performed
worse than the basic version, and we omit the results.

In Table 3, each row is based on 10 trials, with 1000 test data points chosen uniformly and separately
from the training points. The two-stage method was generally faster than the simultaneous method.
With 200 training points and s = 3, the simultaneous method took 260 seconds on average per
trial, while the two-stage method took only 42 seconds per trial. The simultaneous method became
prohibitively slow for higher values of n. The averages for k-Nearest Neighbors and Support
Vector Machine are taken as the best over parameter choices in hindsight. For k-Nearest Neighbors,
k ∈ {1, 3, 5, 7, 9, 11, 15}, and for SVM, C ∈ {10, 100, 500, 1000} and m ∈ {1, 2, 3, 4}. The fact
that the sparse isotonic regression method outperforms the k-NN classifier and the polynomial kernel
SVM by such a large margin can be explained by a difference in structural assumptions; the results
suggest that monotonicity, rather than proximity or a polynomial functional relationship, is the correct
property to leverage.

Table 3: Comparison of classifier success rates on COSMIC data. Top row data is according to the
“min” interpolation rule and bottom row data is according to the “max” interpolation rule.

n
IPIR TSIR + S-LPSR k-NN SVM
s = s =

1 2 3 4 5 1 2 3 4 5

100 83.1 84.6 76.8 66.2 53.8 82.4 84.6 77.8 73.0 65.4 69.8 63.8
83.9 91.8 91.0 85.7 75.7 82.9 90.4 88.9 87.4 83.3

200 85.4 88.1 84.3 73.9 62.7 85.4 89.3 86.7 81.2 76.9 76.6 72.6
85.8 92.6 96.4 88.9 83.9 85.8 94.5 95.9 95.3 93.0

300 - - - - - 84.7 91.7 89.0 84.4 80.2 76.6 74.2
- - - - - 85.1 94.2 95.6 95.9 94.8

400 - - - - - 85.6 91.8 89.7 87.3 81.7 78.6 77.4
- - - - - 85.8 94.0 95.7 96.4 95.7
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The results suggest that the correct sparsity level is s = 3. With n = 400 samples, the classification
accuracy rate is 95.7%. When the sparsity level is too low, the monotonicity model is too simple to
accurately describe the monotonicity pattern. On the other hand, when the sparsity level is too high,
fewer points are comparable, which leads to fewer monotonicity constraints. For n ∈ {100, 200} and
d ∈ {1, 2, 3, 4, 5}, TSIR + S-LPSR does at least as well as IPIR on 15 out of 20 of (n, d) pairs, and
outperforms on 12 of these. This result is surprising, because synthetic experiments show that IPIR
outperforms S-LPSR on support recovery.

We further investigate the TSIR + S-LPSR algorithm. Figure 1 shows how the two-stage procedure
labels the training points. The high success rate of the sparse isotonic regression method suggests
that this nonlinear picture is quite close to reality. The observed clustering of points may be a feature
of the distribution of patients, or could be due to a saturation in measurement. Figure 2 studies the
robustness of TSIR + S-LPSR. Additional synthetic zero-mean Gaussian noise is added to the inputs,
with varying standard deviation. The “max” classification rule is used. 200 training points and 1000
test points were used. Ten trials were run, with one standard deviation error bars indicated in gray.
The results indicate that TSIR + S-LPSR is robust to moderate levels of noise.

We note that because the gene expression is measured from tumor cells, much of the variation between
the lung and skin cancer patients can be attributed to intrinsic differences between lung and skin
cells. Still, this classification task is highly non-linear and challenging, as evidenced by the poor
performance of other classifiers. We view these experiments as a proof-of-concept, showing that our
algorithm can perform well on real data. An example of a more medically relevant application of our
algorithm would be identifying patients as having cancer or not, using blood protein levels [3].
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Figure 1: Illustration of the TSIR + S-LPSR algorithm. Blue and red markers correspond to lung and
skin cancer, respectively.
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Figure 2: Robustness to error of TSIR + S-LPSR.

5 Conclusion

In this paper, we have considered the sparse isotonic regression problem under two noise models:
Noisy Output and Noisy Input. We have formulated optimization problems to recover the active
coordinates, and then estimate the underlying monotone function. We provide explicit guarantees on
the performance of these estimators. We leave the analysis of Linear Programming Support Recovery
(Algorithm 2) as an open problem. Finally, we demonstrate the applicability of our approach to a
cancer classification task, showing that our methods outperform widely-used classifiers. While the
task of classifying patients with two cancer types is relatively simple, the accuracy rates illustrate the
modeling power of the sparse monotone regression approach.
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