
Thank you very much for your reviews.1

Reviewer 1:2

1. Regarding the parameters in Section 4.2, I ran my experiments with 2 more sets of parameters, where the3

target dimensions are much lower than in Figure 6. The trends match trends in the submission as expected.

Figure 1: Phase transitions of v̂(m, 0.2, 0.01, s) Figure 2: Phase transitions of v̂(m, 0.05, 0.05, s)

4 2. Regarding experimental design in Section 4.2, recall my goal was to compute an estimate v̂(m, ε, δ, s) of5

v(m, ε, δ, s). As mentioned in footnote 20, the design is based on Section 3.1 of [13] (for s = 1).6

Here is a more detailed explanation of how v̂(m, ε, δ, s) is computed: I test using a set W of values w spaced7

between 0.03 and 1 (see footnote 19) . For each w ∈ W , I compute δ̂(s,m, ε, w), an estimate of failure8

probability on the specific binary vector xw where the first 1/w2 entries are nonzero. Then, I let v̂(m, ε, δ, s)9

be the max. value in W such that δ̂(s,m, ε, w) ≤ δ for all w ∈W where w ≤ v̂(m, ε, δ, s).10

How do I compute δ̂(s,m, ε, w)? As mentioned in the submission, I estimate PA∈As,m,n [‖Axw‖2 6∈ (1 ±11

ε) ‖xw‖2] by computing the projected norm for T = 100, 000 samples of a block sparse JL matrix.12

Why does it suffice to only consider sparse vectors xw, rather than all vectors in Sv? As mentioned in13

footnote 21, I show in the proof of Theorem 1.5 that asymptotically, if a “violating” vector (i.e. x s.t.14

PA∈As,m,n
[‖Ax‖2 6∈ (1± ε) ‖x‖2] > δ) exists in Sv , then there’s a “violating” vector xw for some w ≤ Θ(v).15

Thus, the estimate v̂(m, ε, δ, s) will approach v(m, ε, δ, s) up to constants as T →∞ and as precision in W16

goes to∞ (if ε, δ are sufficiently small for the “violating” vector asymptotics to kick in).17

3. Regarding the Section 4.1 experiment, the failure probability actually increases to a local maximum somewhere18

in 12 ≤ s ≤ 16, and then decreases when s ≥ 16, reaching lower than the value at s = 8 by the time s = 20.19

When ε = 0.07 and m = 500, there is similarly a local maximum (somewhere in 24 ≤ s ≤ 32) followed by a20

decrease. The phenomenon of non-monotonicity in s can also be observed on synthetic data in Figure 6 in the21

submission: for example, when δ = 0.05, ε = 0.02, m = 12000, we see that v̂(m, ε, δ, 4) < v̂(m, ε, δ, 3). I’d22

like to emphasize that my asymptotic theoretical results characterize the macroscopic behavior of v(m, ε, δ, s),23

and do not preclude the existence of constant factor fluctuations for small changes in parameters.24

4. Regarding [29], I will certainly add this reference – thanks for pointing this out. I agree that this reduction25

gives lower bounds for a distribution similar to the uniform sparse JL distribution. However, as you mentioned,26

the lower bounds differ from my work in the following ways: (a) they do not match the bounds in Theorem27

1.5, since they would not recover the branch 3, and (b) the distribution resulting from this reduction gives s28

nonzero entries that are independently selected (potentially resulting in a multiset), which is different than the29

uniform sparse JL distribution. Regarding (b), in fact, Theorem 5.1 in the JACM version of [18] shows that30

this “multiple hashing” distribution requires an extra (roughly) log(1/δ) factor on the sparsity to satisfy (1).31

5. Regarding obtaining a fine-grained understanding of each vector in Rn, I agree this would be an interesting32

result, though it would not immediately follow from the techniques that I present in this submission.33

Reviewer 3:34

1. I appreciate that you read through my supplementary material, and I will certainly address the typos you noted.35

(Regarding the specific typo on p. 12, it should say T ≥ max( se
mv2 , 3), T ≤ log(Tmv2/s).)36

2. Regarding your comment about feature vectors, I agree that considering vectors with restricted `∞-to-`237

norm ratio is also interesting in its own right from a theoretical perspective. This perspective also does nicely38

motivate my lower bound on dimension-sparsity tradeoffs (footnote 3, Corollary 1.3 in the supp. material).39

Nonetheless, my experiments in Section 4.1 link my analysis to feature vectors by considering the performance40

of sparse JL on feature vectors. I specifically evaluate the performance of sparse JL on bag-of-words feature41

vectors in two real-world datasets: News20 and Enron emails. Note that [29] also evaluates on bag-of-words42

datasets (in collaborative spam filtering, and the work initiates the study of vectors with restricted `∞-to-`243

norm ratio in this context). Subsequent work [13, 10] also experimentally considers the performance of feature44

hashing on bag-of-words feature vectors from News20 and a collection of NeurIPS papers.45


