
We thank all the reviewers for their helpful feedback. A main point raised was the need for a better comparison1

between Structured Procrastination (SP) and Structured Procrastination with Confidence (SPC); we will dedicate more2

space to this. In brief: SPC uses a novel form of lower confidence bound as an indicator of the quality of a particular3

configuration, while SP simply uses that configuration’s sample mean. The consequence is that SPC spends much4

less time running poorly performing configurations, as other configurations quickly appear better and receive more5

attention. Since SPC spends less time running bad configurations, we are also able to show an improved runtime bound6

for it over SP. As Reviewer 3 points out, rather than having an additive term of the form O(ε−2δ−1) for each of n7

configurations considered, the improved bound has a term of the form O(ε−2
i δ−1

i ), for each configuration i that is not8

(ε, δ)-optimal, where ε−2
i δ−1

i is as small as possible. This can be a significant improvement in runtime in cases where9

many configurations being considered are far from being (ε, δ)-optimal. Using this confidence bound in place of the10

mean also requires a novel proof technique which leverages the theory of empirical processes.11

The following concrete example illustrates the gains SPC can offer over SP. Suppose that there are just two configurations:12

one that always finishes in 100 milliseconds on every problem instance and another that always takes 1000 milliseconds.13

Suppose furthermore that κ0—the minimum time it potentially takes to run a configuration—is equal to one millisecond.14

SP, configured with approximation parameter ε = 0.01 and failure probability ζ = 0.1, will set the initial queue size of15

each configuration to be at least1 7500, because the queue size is initialized with a value that is at least 12ε−2 ln(3βn/ζ),16

where β ≥ 10 is the logarithm of the ratio of maximum to minimum potential running times, and n = 2 is the number17

of configurations. It will run each configuration 7500 times with a timeout of 1ms, then it will run each of them 750018

times with a timeout of 2ms, then 4ms, and so on, progressively doubling the timeout until it reaches 128ms. At that19

point it exceeds 100ms, so the first configuration will solve all of the instances in its queue. However, for the first20

2 ·7500 · (1+2+4+ · · ·+64) = 1.9×106 milliseconds of running the algorithm—more than half an hour—essentially21

nothing happens: SP obtains no evidence of the superiority of the first configuration.22

In contrast, SPC maintains more modest queue sizes, and thus runs each configuration on fewer instances before running23

them with a timeout of 128ms, at which point it can distinguish between the two configurations. In our example,24

during the first 5000 iterations of SPC, the size of each configuration’s instance queue is at most 400. This is because25

ri ≤ t, and t ≤ 5000, so qi ≤ 25 log(5000 log(5000)) < 400. Further, observe that 5000 iterations is sufficient for26

SPC to attempt to run both configurations on some instance with a cutoff of 128ms, since each configuration will first27

run at most 400 instances with cutoff 1ms, then at most 400 instances with cutoff 2ms, and so on. Continuing up28

to 64ms, for both configurations, takes a total of 2 · log(64) · 400 = 4800 < 5000 iterations. Thus, it takes at most29

2 · 400 · (1 + 2 + 4 + ...+ 64) = 101, 600 milliseconds (less than two minutes) before SPC runs each configuration on30

some instance with cutoff time 128ms. We see that SPC requires significantly less time—in this example, almost a31

factor of 20 less time—to reach the point where it can distinguish between the two configurations.32

We agree with Reviewer 3 that it is important for SPC to return the parameters for which its optimality guaran-33

tee holds; we will explain how to do this in the paper. In brief: it is not possible to return every (ε, δ) pair34

for which a guarantee is given because there are infinitely many such pairs. The original SP algorithm takes ε35

as a parameter and returns the corresponding δ for which the guarantee holds; we can do the same with SPC.36

We have also annotated our experimental results with the δ guaranteed as a function of time; see Figure 1.37

100 101 102 103 104

Time to find (ε,δ)-optimal solution (CPU days) 
 (ε=0.1)

0.0

0.2

0.4

0.6

0.8

1.0

δ

Structured Procrastination

LeapsAndBounds

Structured Procrastination
with Confidence

Figure 1: δ for which optimality holds, as a
function of runtime.

38

We experimented only with the MiniSAT data of Weisz et al (2018)39

since this is the dataset considered by the previous literature on40

provably near-optimal algorithm configuration. We are, however, also41

eager to see the results of more comprehensive experiments, including42

for the case of many configurations (i.e., continuous parameters). This43

is no small task, requiring significant amounts of coding and compute44

resources. We thus leave this important step for future work. We will45

of course make code available to reproduce our experiments as well.46

Finally, we will of course fix all typos and other minor issues iden-47

tified in the reviews.48

1The exact queue size depends on the number of active instances, but this lower bound suffices for our example.


