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Abstract

Recent advances of image-to-image translation focus on learning the one-to-many
mapping from two aspects: multi-modal translation and multi-domain translation.
However, the existing methods only consider one of the two perspectives, which
makes them unable to solve each other’s problem. To address this issue, we propose
a novel unified model, which bridges these two objectives. First, we disentangle
the input images into the latent representations by an encoder-decoder architecture
with a conditional adversarial training in the feature space. Then, we encourage
the generator to learn multi-mappings by a random cross-domain translation. As a
result, we can manipulate different parts of the latent representations to perform
multi-modal and multi-domain translations simultaneously. Experiments demon-
strate that our method outperforms state-of-the-art methods. Code will be available
at https://github.com/Xiaoming-Yu/DMIT.

1 Introduction

Image-to-image (I2]) translation is a broad concept that aims to translate images from one domain to
another. Many computer vision and image processing problems can be handled in this framework,
e.g. image colorization [ 6], image inpainting [39], style transfer [45], etc. Previous works [16, 45,

, 18, 24] present the impressive results on the task with deterministic one-to-one mapping, but
suffer from mode collapse when the outputs correspond to multiple possibilities. For example, in the
season transfer task, as shown in Fig. 1, a summer image may correspond to multiple winter scenes
with different styles of lighting, sky, and snow. To tackle this problem and generalize the applicable
scenarios of I12I, recent studies focus on one-to-many translation and explore the problem from two
perspectives: multi-domain translation [20, 3, 25], and multi-modal translation [46, 22, 15, 42, 39].

The multi-domain translation aims to learn mappings between each domain and other domains.
Under a single unified framework, recent works realize the translation among multiple domains.
However, between the two domains, what these methods have learned are still deterministic one-to-
one mappings, thus they fail to capture the multi-modal nature of the image distribution within the
image domain. Another line of works is the multi-modal translation. BicycleGAN [46] achieves the
one-to-many mapping between the source domain and the target domain by combining the objective
of cVAE-GAN [21] and cLR-GAN [2, 5, 7]. MUNIT [15] and DRIT [22] extend the method to
learn two one-to-many mappings between the two image domains in an unsupervised setting, i.e.,
domain A to domain B and vice versa. While capable of generating diverse and realistic translation
outputs, these methods are limited when there are multiple image domains to be translated. In order
to adapt to the new task, the domain-specific encoder-decoder architecture in these methods needs to
be duplicated to the number of image domains. Moreover, they assume that there is no correlation of
the styles between domains, while we argue that they could be aligned as shown in Fig. 1. Besides,
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Figure 1: Multi-mapping image-to-image translation. The images with a black border are the
input images, and other images are generated by our method. The images on the same column have
the same style, which indicates that the styles between image domains could be aligned.

existing one-to-many mapping methods usually assume the state of the domain is finite and discrete,
which limits their application scenarios.

In this paper, we focus on bridging the objectives of multi-domain translation and multi-modal
translation with an unsupervised unified framework. For clarity, we refer our task to as multi-mapping
translation. Simultaneous modeling for these two problems not only makes the framework more
efficient but also encourages the model to learn efficient representations for diverse translations.

To instantiate the idea, as shown in Fig. 2(d), we assume that the images can be disentangled into two
latent representation spaces: a content space C and a style space S, and propose an encoder-decoder
architecture to learn the disentangled representations. Our assumption is developed by the shared
latent space assumption [24], but we disentangle the latent space into two separate parts to model
the multi-modal distribution and to achieve cross-domain translation. Unlike partially-shared latent
space assumption [15, 22], that treats style information as domain-specific, the styles between image
domains are aligned in our assumption, as shown in Fig. 1. Specifically, the style representations
in this work are low-dimensional vectors which do not contain spatial information and hence can
only control the global appearance of the outputs. By using a unified style encoder to learn style
representations and thus fully utilizing samples of all image domains, the sample space of our style
representation is denser than that learned from only one specific image domain. As for content
representations, they are feature maps capturing the spatial structure information across domains. To
mitigate the effects of distribution shift among domains, we eliminate domain-specific information in
content representations via conditional adversarial learning. To achieve multi-mapping translation
using a single unified decoder, we concatenate the disentangled style representations with the target
domain label, then adopt the style-based injection method to render the content representations to
our desired outputs. Through learning the inverse mapping of disentanglement, we can change
the domain label to translate an image to the specific domain or modify the style representation to
produce multi-modal outputs. Furthermore, we can extend our framework to a more challenging task
of semantic image synthesis whose domains can be considered as an uncountable set and cannot be
modeled by existing I12I approaches.

The contributions of this work are summarized as follows:
e We introduce an unsupervised unified multi-mapping framework, which unites the objectives
of multi-domain and multi-modal translations.

e By aligning latent representations among image domains, our model is efficient in learning
disentanglement and performing finer image translation.

e Experimental results show our model is superior to the state-of-the-art methods.

2 Related Work

Image-to-image translation. The problem of I2I is first defined by Isola er al. [16]. Based on
the generative adversarial networks [1 1, 27], they propose a general-purpose framework (pix2pix)
to handle I2I. To get rid of the constraint of paired data in pix2pix, [45, 40, 18] utilize the cycle-
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Figure 2: Comparisons of unsupervised 121 translation methods. Denote A, as the k-th image
domain. The solid lines and dashed lines represent the flow of encoder and generator respectively.
The lines with the same color indicate they belong to the same module.

Table 1: Comparisons with recent works on unsupervised image-to-image translation

Multi-modal ~ Multi-domain ~ Multi-mapping ~ Unified Feature Representation
translation translation translation structure  disentanglement alignment

UNIT - - - - - v
StarGAN - v - v - -

MUNIT v - - - v Partial

DRIT v - - - v Partial
SingleGAN v v - - - -
Ours v v v v v v

consistency for the stability of training. UNIT [24] assumes a shared latent space for two image
domains. It achieves unsupervised translation by learning the bijection between latent and image
spaces using two generators. However, these methods only learn the one-to-one mapping between
two domains and thus produce deterministic output for an input image. Recent studies focus on
multi-domain translation [20, 3, 42, 25] and multi-modal translation [46, 39, 22, 15, 39, 42, 31].
Unfortunately, neither multi-modal translation nor multi-domain translation considers the other’s
scenario, which makes them unable to solve the problem of each other. Table 1 shows a feature-
by-feature comparison among various unsupervised I2I models. Different from the aforementioned
methods, we explore a combination of these two problems rather than separation, which makes our
model more efficient and general purpose. Concurrent with our work, several independent researches
[4, 33, 37] also tackle the multi-mapping problem from different perspectives.

Representation disentanglement. To achieve a finer manipulation in image generation, disen-
tangling the factors of data variation has attracted a great amount of attention [19, 13, 2]. Some
previous works [20, 25] aim to learn domain-invariant representations from data across multiple
domains, then generate different realistic versions of an input image by varying the domain labels.
Others [22, 15, 10] focus on disentangling the images into domain-invariant and domain-specific
representations to facilitate learning diverse cross-domain mappings. Inspired by these works, we
attempt to disentangle the images into solely independent parts: content and style. Moreover, we
align these representations among image domains, which allows us to utilize rich content and style
from different domains and manipulate the translation in finer detail.

Semantic image synthesis. The goal of semantic image synthesis is to generate an image to match
the given text while retaining the irrelevant information from the input image. Dong et al. [0]
train a conditional GAN to synthesize a manipulated version of the image given an original image
and a target text description. To preserve text-irrelevant contents of the original image, Paired-D
GAN [26] proposes to model the foreground and background distribution with different discriminators.
TAGAN [30] introduces a text-adaptive discriminator to pay attention to the regions that correspond
to the given text. In this work, we treat the image set with the same text description as an image
domain. Thus the domains are countless and each domain contains very few images in the training
set. Benefit from the unified framework and the representation alignment among different domains,
we can tackle this problem in our unified multi-mapping framework.

3 Proposed Method

Let X = UN_, & C R¥*Wx3 pe an image set that contains all possible images of N different
domains. We assume that the images can be disentangled to two latent representations (C,S). C is



- —= S~ _ Prior distribution
- T ~ - Ly -l
,z Ld i . -

P -, S :‘ Domain encoder
\ - 1 N
Sy \ Pie rd N :I Content encoder
/ ——- N ‘ Lo N
- \ \

- [t I ] Generator
_________ D - X \

[ b »| Yx L \ % Loss

\ Data

\
\
\\
\ v
'
\
x \ ! \ Sampling
o6 ol
“sic 6 X B —>ic)

> , — 8
R -—_______ o/ = __-- =
Eem-"— T e
(a) Disentanglement path (b) Translation path

Figure 3: Overview. (a) The disentanglement path learns the bijective mapping between the disen-
tangled representations and the input image. (b) The translation path encourages to generate diverse
outputs with possible styles in different domains.

the set of contents excluded from the variation among domains and styles, and S is the set of styles
that is the rendering of the contents. Our goal is to train a unified model that learns multi-mappings
among multiple domains and styles. To achieve this goal, we also define D as a set of domain labels
and treat D as another disentangled representations of the images. Then we propose to learn mapping
functions between images and disentangled representations X = (C, S, D).

As illustrated in Fig. 3(a), we introduce the content encoder E. : X — C that maps an input image to
its content, and the encoder style E; : X — S that extracts the style of the input image. To unify the
formulation, We also denote the determined mapping function between X and D as the domain label
encoder F; : X — D which is organized as a dictionary' and extracts the domain label from the
input image. The inversely disentangled mapping is formulated as the generator G : (C,S,D) — X.
As aresult, with any desired style s € S and domain label d € D, we can translate an input image
x; € X to the corresponding target x; € X

zy = G(E.(x;), s,d). (1)

3.1 Network Architecture

Encoder. The content encoder F. is a fully convolutional network that encode the input image to
the spatial feature map c. Since the small output stride used in E., c retains rich spatial structure
information of input image. The style encoder I consists of several residual blocks followed by
global average pooling and fully connected layers. By global average pooling, E; removes the
structure information of input and extract the statistical characteristics to represent the input style [°].
The final style representation s are constructed as a low-dimensional vector by the reparameterization
trick [19].

Generator. Motivated by recent style-based methods [8, 14, 17, 15, 42], we adopt a style-based
generator G to simultaneous model for multi-domain and multi-modal translations. Specifically, the
generator GG consists of several residual blocks followed by several deconvolutional layers. Each
convolution layer in residual blocks is equipped with CBIN [42, 43] for information injection.

Discriminator. Unlike previous works [22, 15, 42] that apply different discriminators for different
image domains, we propose to adopt a unified conditional discriminator for different domains.
Since the large distribution shift between image domains in 121, it is challenging to use a unified
discriminator. Inspired by the style-based generator, we apply CBIN to the discriminator to extend
the capacity of our model. For more details of our network, we refer the reader to our supplementary
materials.

3.2 Learning Strategy

Our proposed method encourages the bijective mapping between the image and the latent represen-
tations while learning disentanglement. Fig. 3 presents an overview of our model, whose learning

'Since encoder F,4 has a deterministic mapping, it is no need for joint training with Eq in our training stage.



process can be separated into disentanglement path and translation path. The disentanglement path
can be considered as an encoder-decoder architecture that uses conditional adversarial training on the
latent space. Here we enforce the encoders to encode the image into the disentangled representations,
which can be mapped back to the input image by the conditional generator. The translation path
enforces the generator to capture the full distribution of possible outputs by a random cross-domain
translation.

Disentanglement path. To disentangle the latent representations from image x;, we adopt cVAE [34]
as the base structure. To align the style representations across visual domains and constrain the
information of the styles [ 1], we encourage the distribution of styles of all domains to be as close as
possible to a prior distribution.

Levap = AxLBenx[KL(Es (2:)|lg(s)]+ ArecBama [ G(Ee(2:), Es(2:), Ea(2i)) — ill1]. (2)

To enable stochastic sampling at test time, we choose the prior distribution ¢(s) to be a standard
Gaussian distribution (0, I'). As for the content representations, we propose to perform conditional
adversarial training in the content space to address the distribution shift issue of the contents among
domains. This process encourages . to exclude the information of the domain d in content ¢

GAN = EriNX[IOg(DC(EC(xi)7 Ed(xZ))) + Ed~(D—{Ed(ri)})[IOg(1 - DC(EC(xi)7 d))” 3)
the overall loss of the disentanglement path is

Lp—path = Levae + LG an- “)

Translation path. The disentanglement path encourages the model to learn the content c and the
style s with a prior distribution. But it leaves two issues to be solved: First, limited by the number
of training data and the optimization of KL loss, the generator G may sample only a subset of S
and generate the images with specific domain labels in the training stage [35]. It may lead to poor
generations when sampling s in the prior distribution A/ and d that does not match the test image, as
discussed in [46]. Second, the above training process lacks efficient incentives for the use of styles,
which would result in low diversity of the generated images. To overcome these issues and encourage
our generator to capture a complete distribution of outputs, we first propose to randomly sample
domain labels and styles in the prior distributions, in order to cover the whole sampling space at
training time. Then we introduce the latent regression [2, 46] to force the generator to utilize the style
vector. The regression can also be applied to the content c to separate the style s from c. Thus the
latent regression can be written as

Lreg =E ex (|1 Eo(Gle,5,d)) — s|1] +E -

d~D

~C
~N
d~D

[”EC(G(C’S’d)) _C||1]~ (5)

To match the distribution of generated images to the real data with sampling domain labels and styles,
we employ conditional adversarial training in the pixel space

1
LEan =Ea,~x[log(Dy (74, Eq(4))) + Ego(D—{Ey(zi)}) [5 log(1 — Dy (x;,d)) ©
1
+ ]Es~N[§ log(1 — Dy (G(Ec(x4), s,d), d))]]]-

Note that we also discriminate the pair of real image x; and mismatched target domain label d, in
order to encourage the generator to generate images that correspond to the given domain label. The
final objective of the translation is

£T—Path = /\regﬁreg + E?}AN' (7)

By combining both training paths, the full objective function of our model is

min  max Lp_path + LT—Path- ®)
G,E.,E; D.,D,

4 Experiments

We compare our approach against recent one-to-many mapping models in two tasks, including season
transfer and semantic image synthesis. For brevity, we refer to our method, Disentanglement for
Multi-mapping Image-to-Image Translation, as DMIT. In the supplementary material, we provide
additional visual results and extend our model to facial attribute transfer [23] and sketch-to-photo [41].
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Figure 4: Qualitative comparison of season transfer. The first column shows the input image. Each of
the remaining columns shows four outputs with the specified season from a method. Each image pair
for the specified season reflects the diversity within the domain.

4.1 Datasets

Yosemite summer <+ winter. The unpaired dataset is provided by Zhu et al. [45] for evaluating
unsupervised 121 methods. We use the default image size 256 x 256 and training set in all experiments.
The domain label(summer/winter) is organized as a one-hot vector.

CUB. The Caltech-UCSD Birds (CUB) [36] dataset contains 200 bird species with 11,788 images
that each have 10 text captions [32]. We preprocess the CUB dataset according to the method in [38].
The captions are encoded as the domain labels by the pretrained text encoder proposed in [38].

4.2 Season Transfer

Season transfer is a coarse-grained translation task that aims to learn the mapping between summer
and winter. We compare our method against five baselines, including:

e Multi-domain models: StarGAN [3] and StarGAN* that adds the noise vector into the
generator to encourage the diverse outputs.

e Multi-modal models: MUNIT [15], DRIT [22], and version-c of SingleGAN [42].

In the above models, MUNIT, DRIT and SingleGAN require a pair of GANs for summer — winter
and winter — summer severally. StarGAN-based models and DMIT only use a unified structure
to learn the bijection mapping between two domains. To better evaluate the performance of multi-
domain and multi-modal mappings, we propose to test inter-domain and intra-domain translations
separately.

As the qualitative comparison in Fig. 4 shows, the synthesis of StarGAN has significant artifacts and
suffer from mode collapse caused by the assumption of deterministic cross-domain mapping. With
the noise disturbance, the quality of generated images by StarGAN* has improved, but the results are
still lacking in diversity. All of the multi-modal models produce diverse results. However, without
utilizing the style information between different domains, the generated images are monotonous and
only differ in simple modes, such as global illumination. We observe that MUNIT is hard to converge
and to produce realistic season transfer results due to the limited training data. DRIT and SingleGAN
produce realistic results, but the images are not vivid enough. In contrast, our DMIT can use only
one unified model to produce realistic images with diverse details for different image domains.

To quantify the performance, we first translate each test image to 10 targets by sampling styles from
prior distribution. Then we adopt Fréchet Inception Distance (FID) [12] to evaluate the quality of
generated images, and LPIPS (official version 0.1) [44] to measure the diversity [15, 22, 46] of
samples generated by same input image within a specific domain. The quantitative results shown in
Table 2 further confirm our observations above. It is remarkable that our method achieves the best
FID score while greatly surpassing the multi-domain and multi-modal models in LPIPS distance.



Table 2: Quantitative comparison of season transfer.

summer—winter | summer—summer | winter—summer | winter—winter

FID LPIPS FID LPIPS FID LPIPS FID LPIPS

StarGAN 218.78 - | 233.61 - | 248.29 - | 224.37 -
StarGAN* 152.11 0.012 | 135.25 0.011 | 153.79 0.013 | 149.04 0.011
MUNIT 84.43 0.166 58.96 0.133 73.82 0.134 | 68.92 0.141
DRIT 58.70 0.205 49.58 0.166 53.79 0.192 57.11  0.179
SingleGAN 63.77 0.184 | 51.64 0.186 54.24 0.188 5730 0.178
DMIT w/o T-Path 75.90 0.109 57.24 0.118 72.75 0.124 | 65.15 0.116
DMIT w/o D-Path 116.71 0.545 85.97 0.513 95.63 0.517 | 12496  0.544
DMIT w/o LE 45 60.81 0.268 | 43.54 0.260 | 50.33 0.270 | 58.09 0.256
DMIT w/ VanillaD 63.34 0.259 | 44.73 0.239 50.79 0.255 60.10 0.242
DMIT w/ ProjectionD 66.50 0.289 | 46.92 0.301 52.4 0.293 65.66  0.299
DMIT 58.46 0.302 43.04 0.275 48.02 0.292 55.23 0.279

Ablation study. To analyze the importance of different components in our model, we perform an
ablation study with five variants of DMIT.

As for the training paths, we observe that both T-Path and D-Path are indispensable. Without T-Path,
the model is difficult to perform cross-domain translation as we analyzed in Section 3. In contrast,
without D-Path, the generated images are blurry and unrealistic and produce meaningless diversity by
the artifacts. Combining these two paths result in a trade-off of quality and diversity of images.

As for the training incentive, we observe L, 4y is influential for the diversity score. Without this
incentive, the visual styles are similar in summer and winter. It suggests that D, encourages the
model to eliminate the domain bias and to learn well-disentangled representations.

As for the architecture of discriminator, we evaluate two other conditional models with different
information injection strategies, including vanilla conditional discriminator (VanillaD) [16, 27]
that concatenates input image and conditional information together, and projection discriminator
(ProjectionD) [28, 29] that projects the conditional information to the hidden activation of image. The
qualitative results in Table 2 indicate that the capacity of VanillaD is limited. The images generated of
DMIT with ProjectionD are diverse, but prone to contain artifacts, which leads to its lower FID score.
Our full DMIT, equipped style-based discriminator, gets the balance between diversity and quality.

4.3 Semantic Image Synthesis

To further verify the potential of DMIT in mixed-modality (text and image) translation, we study on
the task of semantic image synthesis. The existing I2I approaches usually assume the state of the
domain is discrete, which causes them to not be able to handle this task. We compare our model
with the state-of-the-art models of semantic image synthesis: SISGAN [6], Paired-D GAN [26], and
TAGAN [30].

Fig. 5 shows our qualitative comparison with the baselines. Although SISGAN can generate di-
verse images that match the text, it is difficult to generate high-quality images. The structure and
background of the images are retained well by Paired-D GAN, but the results do not match the
text well. Furthermore, it can be observed that Paired-D GAN cannot produce diversity for condi-
tional input with different samples. TAGAN presents images with acceptable semantic matching
results, but the quality is unsatisfactory. By encoding the style from the input image, DMIT can well
preserve the original background of the input image and generate high-quality images that match
the text descriptions. Meanwhile, DMIT can also produce diverse results by sampling other style
representation.

Besides to calculate FID to qualify the performance, we perform a human perceptual study on
Amazon Mechanical Turk (AMT) to measure the semantic matching score. We randomly sample
2,500 images and mismatched texts for generating questions. For each comparison, five different
workers are required to select which image looks more realistic and fits the given text. As shown
in Table 3, DMIT gets the best of both image quality and semantic matching score. Since retaining
the irrelevant information of the input image is important for semantic image synthesis, we also
evaluate the reconstruction ability of different methods by transforming the input image with its
corresponding text. The scores of PSNR and SSIM further demonstrate the capabilities of our method
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Figure 5: Qualitative comparison of semantic image synthesis. In each column, the first row is the
input image and the remaining rows are the outputs according to the above text description. In each
pair of images generated by DMIT, the images in the first column are generated by encoding the style
from the input image and the second column are generated by random style.

Table 3: Quantitative comparison of semantic image synthesis.

FIp  Human - poup SSIM

evaluation
SISGAN 67.24 153% 1127 0.193
Paired-D GAN | 27.62 252% 2234 0.886
TAGAN 34.49 204% 19.01 0.736
DMIT 13.85 39.1% 2549 0.934

in learning efficient representations. It suggests that the disentangled representations enable our
model to manipulate the translation in finer detail.

4.4 Limitations

Although DMIT can perform multi-mapping translation, we observe that the style representations
tend to model some global properties as discussed in [31]. Besides, we observe that the convergence
rates of different domains are generally different. Further exploration will allow this work to be a
general-purpose solution for a variety of multi-mapping translation tasks.

5 Conclusion

In this paper, we present a novel model for multi-mapping image-to-image translation with unpaired
data. By learning disentangled representations, it is able to use the advances of both multi-domain
and multi-modal translations in a holistic manner. The integration of these two multi-mapping
problems encourages our model to learn a more complete distribution of possible outputs, improving
the performance of each task. Experiments in various multi-mapping tasks show that our model is
superior to the existing methods in terms of quality and diversity.
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