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Abstract

To recognize objects of the unseen classes, most existing Zero-Shot Learning(ZSL)
methods first learn a compatible projection function between the common semantic
space and the visual space based on the data of source seen classes, then directly
apply it to the target unseen classes. However, in real scenarios, the data distribution
between the source and target domain might not match well, thus causing the well-
known domain shift problem. Based on the observation that visual features of test
instances can be separated into different clusters, we propose a new visual structure
constraint on class centers for transductive ZSL, to improve the generality of the
projection function (i.e.alleviate the above domain shift problem). Specifically,
three different strategies (symmetric Chamfer-distance, Bipartite matching distance,
and Wasserstein distance) are adopted to align the projected unseen semantic centers
and visual cluster centers of test instances. We also propose a new training strategy
to handle the real cases where many unrelated images exist in the test dataset, which
is not considered in previous methods. Experiments on many widely used datasets
demonstrate that the proposed visual structure constraint can bring substantial
performance gain consistently and achieve state-of-the-art results. The source code
is available at https://github.com/raywzy/VSC.

1 Introduction

Relying on massive labeled training datasets, significant progress has been made for image recognition
in the past years [12]. However, it is unrealistic to label all the object classes, thus making these
supervised learning methods struggle to recognize objects which are unseen during training. By
contrast, Zero-Shot Learning (ZSL) [24, 38, 40] only requires labeled images of seen classes (source
domain), and are capable of recognizing images of unseen classes (target domain). The seen and
unseen domains often share a common semantic space, which defines how unseen classes are
semantically related to seen classes. The most popular semantic space is based on semantic attributes,
where each seen or unseen class is represented by an attribute vector. Besides the semantic space,
images of the source and target domains are also related and represented in a visual feature space.

To associate the semantic space and the visual space, existing methods often rely on the source domain
data to learn a compatible projection function to map one space to the other, or two compatible
projection functions to map both spaces into one common embedding space. During test time, to
recognize an image in the target domain, semantic vectors of all unseen classes and the visual feature
of this image would be projected into the embedding space using the learned function, then nearest
neighbor (NN) search will be performed to find the best match class. However, due to the existence of
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the distribution difference between the source and target domains in most real scenarios, the learned
projection function often suffers from the well-known domain shift problem.

To compensate for this domain gap, transductive zero-shot learning [9] assumes that the semantic
information (e.g.attributes) of unseen classes and visual features of all test images are known in
advance. Different ways like domain adaption [15] and label propagation [39] are well investigated
to better leverage this extra information. Recently, Zhang et al.[38] find that visual features of unseen
target instances can be separated into different clusters even though their labels are unknown as shown
in Figure 1. By incorporating this prior as a regularization term, a better label assignment matrix can
be solved with a non-convex optimization procedure. However, their method still has three main
limitations: 1) This visual structure prior is not used to learn a better projection, which directly limits
the upper bound of the final performance. 2) They model the ZSL problem as a less-scalable batch
mode, which requires reoptimization when adding new test data. 3) Like most previous transductive
ZSL methods, they have not considered the real cases where many unrelated images may exist in the
test dataset and make the above prior invalid.

Considering the first problem, we model the above visual structure prior as a new constraint to learn
a better projection function rather than use the pre-defined one. In this paper, we adopt the visual
space as the embedding space and project the semantic space into it. To learn the projection function,
we not only use the projection constraint of the source domain data as [35] but also impose the
aforementioned visual structure constraint of the target domain data. Specifically, during training,
we first project all the unseen semantic classes into the visual space, then consider three different
strategies (“Chamfer-distance based", “Bipartite matching based" and “Wasserstein-distance based”)
to align the projected unseen semantic centers and the visual centers. However, due to the lack
of labels of test instances in the ZSL setting, we approximate these real visual centers with some
unsupervised clustering algorithms (e.g.K-Means). Need to note that in our method, we directly apply
the learned projection function to the online-mode testing, which is more friendly to real applications
when compared to the batch mode in [38].

For the third problem of real application scenarios, since many unrelated images, which belong to
neither seen nor unseen classes, often exist in the target domain, using current unsupervised clustering
algorithms directly on the whole test dataset will generate invalid visual centers, thus misguiding
the learning of the project functions. To overcome this problem, we further propose a new training
strategy which first filters out the highly unrelated images and then uses the remaining ones to
impose the proposed visual constraint. To the best of our knowledge, we are the first to consider this
transductive ZSL configuration with unrelated test images.

We demonstrate the effectiveness of the proposed visual structure constraint on many different
widely-used datasets. Experiments show that the proposed visual structure constraint consistently
brings substantial performance gain and achieves state-of-the-art results.

To summarize, our contributions are three-fold as below:

• We have proposed three different types of visual structure constraint for the projection
learning of transductive ZSL to alleviate its domain shift problem.

• We introduce a new transductive ZSL configuration where many unrelated images exist in
the test dataset and propose a new training strategy to make our method work for it.

• Experiments demonstrate that the proposed visual structure constraint can bring substantial
performance gain consistently and achieve state-of-the-art results.

2 Related Work
Unlike supervised image recognition [12] which relies on large-scale human annotations and cannot
generalize to unseen classes, ZSL bridges the gap between training seen classes and test unseen
classes via different kinds of semantic spaces. Among them, the most popular and effective one is
the attribute-based semantic space [17], which is often designed by experts. To incorporate more
attributes and save human labor, the text description-based [27] and word vector-based semantic
space [7] are also proposed. Though the effectiveness of the proposed structure constraint is only
demonstrated with the attribute semantic space by default, it should be general to all these spaces.

To relate the visual feature of test images and semantic attribute of unseen classes, three different
embedding spaces are used by existing zero-shot learning methods: the original semantic space,
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the original visual space, and a learned common embedding space. Correspondingly, a projection
function is learned from the visual space to the semantic space [27] or from the semantic space to the
visual space [35], or learn two projection functions from semantic and visual space to the common
embedding space [4, 22] respectively. Our method uses the visual space as the embedding space,
because it can help to alleviate the hubness problem [26] as shown in [35]. More importantly, our
structure constraint is based on the separability of the visual features of unseen classes.

Recently, to alleviate the domain shift problem, transductive approaches [9, 19] are proposed to
leverage test-time unseen data in the learning stage. For example, unsupervised domain adaption is
used in [15], and transductive multi-class and multi-label ZSL are proposed in [9]. Our method also
belongs to transductive approaches, and the proposed visual structure constraint is inspired by [38],
but we have addressed their aforementioned drawbacks and improved the performance significantly.

3 Method
Problem Definition In ZSL setting, we have Ns source labeled samples Ds ≡ {(xsi , ysi )}Ns

i=1,
where xsi is an image and ysi ∈ Ys = {1, . . . , S} is the corresponding label within total S source
classes. We are also given Nu unlabeled target samples Du ≡ {xui }

Nu
i=1 that are from target classes

Yu = {S + 1, . . . , S + U}. According to the definition of ZSL, there is no overlap between source
seen classes Ys and target unseen classes Yu, i.e.Ys ∩ Yu = ∅. But they are associated in a common
semantic space, which is the knowledge bridge between the source and target domain. As explained
before, we adopt semantic attribute space here, where each class z ∈ Ys ∪ Yu is represented with a
pre-defined auxiliary attribute vector az ∈ A. The goal of ZSL is to predict the label yui ∈ Yu given
xui with no labeled training data.

Besides the semantic representations, images of the source and target domains are also represented
with their corresponding features in a common visual space. To relate these two spaces, projection
functions are often learned to project these two spaces into a common embedding space. Following
[35], we directly use the visual space as the embedding space, in which case only one projection
function is needed. The key problem then becomes how to learn a better projection function.

VCL Center Real Center BMVSc Center K-Means Center

Figure 1: Visualization of CNN feature distribution of
10 target unseen classes on AwA2 dataset using t-SNE,
which can be clearly clustered into several real centers
(stars). Squares (VCL) are synthetic centers projected by
the projection function learned only from source domain
data. By incorporating our visual structure constraint,
our method (BMVSc) can help to learn better projection
function and the generated synthetic semantic centers
would be much closer to the real visual centers.

Motivation Our method is inspired by [38],
whose idea is shown in Figure 1: thanks to the
powerful discriminativity of pre-trained CNN,
the visual features of test images can be sep-
arated into different clusters. We denote the
centers of these clusters as real centers. We be-
lieve that if we have a perfect projection function
to project the semantic attributes to the visual
space, the projected points (called synthetic cen-
ters) should align with real centers. However,
due to the domain shift problem, the projection
function learned on the source domain is not per-
fect so that the synthetic centers (i.e.VCL centers
in Figure 1) will deviate from real centers, and
then NN search among these deviated centers
to assign labels will cause inferior ZSL perfor-
mance. Based on the above analysis, besides
source domain data, we attempt to take advan-
tage of the existing discriminative structure of
target unseen class clusters during the learning
of the projection function, i.e.the learned pro-
jection function should also align the synthetic
centers with the real ones in the target domain.

3.1 Visual Center Learning (VCL)

In this section, we first introduce a baseline
method which learns the projection function
only with source domain data. Specifically, a
CNN feature extractor φ(·) is used to convert each image x into a d-dimensional feature vector
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φ(x) ∈ Rd×1. According to the above analysis, each class i of source domain should have a real
visual center csi , which is defined as the mean of all feature vectors in the corresponding class. For the
projection function, a two-layer embedding network is utilized to transfer source semantic attribute
asi to generate corresponding synthetic center csyn,si :

csyn,si = σ2(wT
2 σ1(wT

1 a
s
i )) (1)

where σ1(·) and σ2(·) denote non-linear operation (Leaky ReLU with negative slope of 0.2 by default).
w1 and w2 are the weights of two fully connected layers to be learned.

Since the correspondence relationship is given in the source domain, we directly adopt the simple
mean square loss to minimize the distance between synthetic centers csyn and real centers c in the
visual feature space:

LMSE =
1

S

S∑
i=1

‖csyn,si − csi‖
2
2 + λΨ(w1, w2) (2)

where Ψ(·) is the L2-norm parameter regularizer decreasing the model complexity, we empirically
set λ = 0.0005. Need to note that different from [35] which trains with a large number of individual
instances of each class i, we choose to utilize a single cluster center csi to represent each object
class, and train the model with just several center points. It is based on the observation that the
instances of the same category could form compact clusters, and will make our method much more
computationally efficient.

When performing ZSL prediction, we first project the semantic attributes of each unseen class i to its
corresponding synthetic visual center csyn,ui using the learned embedding network as in Equation (1).
Then for a test image xuk , its classification result i∗ can be achieved by selecting the nearest synthetic
center in the visual space. Formally,

i∗ = argmin
i
‖φ(xuk)− csyn,ui ‖2 (3)

3.2 Chamfer-Distance-based Visual Structure Constraint(CDVSc)

As discussed earlier, the domain shift problem will cause the target synthetic centers csyn,u deviated
from the real centers cu, thus yields poor performance. Intuitively, if we also require the projected
synthetic centers to align with the real ones by using the target domain dataset during the learning
process, a better projection function can be learned. However, due to the lack of the label information
of the target domain, it is impossible to directly get real centers of unseen classes. Considering the
fact that the visual features of unseen classes can be separated into different clusters, we try to utilize
some unsupervised clustering algorithms (K-means by default) to get approximated real centers. To
valid it, we plot the K-means centers in Figure 1, which are very close to the real ones.

After obtaining the cluster centers, aligning the structure of cluster centers to that of synthetic centers
can be formulated as reducing the distance between the two unordered high-dimensional point sets.
Inspired by the work in 3D point clouds [6], a symmetric Chamfer-distance constraint is proposed to
solve the structure matching problem:

LCD =
∑

x∈Csyn,u

miny∈Cclu,u ‖x− y‖22 +
∑

y∈Cclu,u

minx∈Csyn,u ‖x− y‖22 (4)

where Cclu,u indicates the cluster centers of unseen classes obtained by K-means algorithm. Csyn,u

represents the synthetic target centers obtained with the learned projection. Combining the above
constraint, the final loss function to train the embedding network is defined as:

LCDV Sc = LMSE + β × LCD (5)

3.3 Bipartite-Matching-based Visual Structure Constraint(BMVSc)

CDVSc helps to preserve the structure similarity of two sets, but sometimes many-to-one matching
may happen with the Chamfer-distance constraint. This conflicts with the important prior in ZSL
that the obtained matching relation between synthetic and real centers should conform to the strict
one-to-one principle. When undesirable many-to-one matching arises, the synthetic centers will be
pulled to incorrect real centers and result in inferior performance. To address this issue, we change
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CDVSc to bipartite matching based visual structure constraint (BMVSc), which aims to find a global
minimum distance between the two sets meanwhile to satisfy the strict one-to-one matching principle.

We first consider a graph G = (V,E) with two partitions A and B, where A is the set of all synthetic
centers Csyn, u and B contains all cluster centers of target classes. Let disij ∈ D denotes the
Euclidean distance between i ∈ A and j ∈ B, element xij of the assignment matrix X defines the
matching relationship between i and j. To find a one-to-one minimum matching between real and
synthetic centers, we could formulate it as a min-weight perfect matching problem, and optimize the
problem as follows:

LBM = min
X

∑
i,j

disijxij , s.t.
∑
j

xij = 1,
∑
i

xij = 1, xij ∈ {0, 1} (6)

In this formulation, the assignment matrix X strictly conforms to the one-to-one principle. To solve
this linear programming problem, we employ Kuhn-Munkres algorithm whose time complexity is
O(V 2E). Like CDVSc, we also combine the MSE loss and this bipartite matching loss

LBMV Sc = LMSE + β × LBM (7)

3.4 Wasserstein-Distance-based Visual Structure Constraint(WDVSc)

Ideally, if the synthetic and real centers are compact and accurate, the above bipartite matching
based distance can achieve a global optimal matching. However, this assumption is not always valid,
especially for the approximated cluster centers of target classes, because these centers may contain
noises and are not accurate enough. Therefore, instead of using a hard-value (0 or 1) assignment
matrix X , a soft-value X whose values represent the joint probability distribution between these
two point sets is further considered by using the Wasserstein distance. In the optimal transport
theory, Wasserstein distance is demonstrated as a good metric for measuring the distance between
two discrete distributions, whose goal is to find the optimal “coupling matrix” X that achieves the
minimum matching distance. Its objective formulation is the same as Equation (6), but X represents
the soft joint probability values rather than {0, 1}. In this paper, in order to make this optimization
problem convex and solve it more efficiently, we adopt the entropy-regularized optimal transport
problem by using the Sinkhorn iterations [5].

LWD = min
X

∑
i,j

disijxij − εH(X) (8)

where H(X) is the entropy of matrix H(X) = −
∑

ij xij logxij , ε is the regularization coef-
ficient to encourage smoother assignment matrix X . The solution X can be written in form
X = diag{u}Kdiag{v} (diag{v} returns a square diagonal matrix with vector v as the main
diagonal), and the iterations alternate between updating u and v is:

u(k+1) =
a

Kv(k+1)
, v(k+1) =

b

KTu(k+1)
(9)

Here, K is a kernel matrix calculated with D. Since these iterations are solving a regularized version
of the original problem, the corresponding Wasserstein distance that results is sometimes called the
Sinkhorn distance. Combining this constraint, the final loss function is:

LWDV Sc = LMSE + β × LWD (10)

3.5 A Realistic Setting with Unrelated Test Data

Existing transductive ZSL methods always assume that all the images in the test dataset belong to
target unseen classes we have already defined. However, in real scenarios, many unrelated images
which do not belong to any defined class may exist. If we directly perform clustering on all these
unfiltered images, the approximated real centers will deviate far from the real centers of unseen
classes and make the proposed visual structure constraint invalid. This problem also exists in [38].
To solve this relatively difficult setting, we propose a new training strategy for our method which first
uses the baseline VCL to filter out unrelated images before conducting CDVSc, BMVSc or WDVSc.

Step 1: Since the source domain data is definitely clean, and we assume that the domain shift problem
is not that severe, we first use VCL to get the initial unseen synthetic centers C.
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Table 1: Quantitative comparisons of MCA (%) under standard splits (SS) in conventional ZSL setting. I:
Inductive, T: Transductive, O: Our method, Bold: Best, Blue: Second best, V: VGG, R: ResNet, G: GoogLeNet

Method Features AwA1 AwA2 CUB SUN72 SUN10
CONSE [24] R 63.6 67.9 36.7 44.2 –

SSE [36] V 76.3 – 30.4 – 82.5
JLSE [37] V 80.5 – 42.1 – 83.8
SynC [4] R 72.2 71.2 54.1 59.1 –
SAE [16] R 80.6 80.7 33.4 42.4 –

SCoRe [23] V 82.8 – 59.5 – –

I

f-CLSWGAN [33] R 69.9 – 61.5 62.1 –
SP-ZSR [38] V 92.0 – 53.2 – 86.0
DSRL [34] V 87.2 – 57.1 – 85.4
DMaP [19] V+G+R 90.5 – 67.7 – –
VZSL [31] V 94.8 – 66.5 – 87.8

T

QFSL [30] V – 84.1 61.2 – –

O

VCL V 81.7 82.6 58.2 58.8 87.2
CDVSc V 89.6 93.3 69.9 59.7 90.6
BMVSc V 92.7 94.0 70.8 61.3 89.7
WDVSc V 92.9 94.2 71.0 62.3 91.2

VCL R 82.0 82.5 60.1 63.8 89.6
CDVSc R 94.3 93.9 74.2 64.5 90.5
BMVSc R 95.9 96.8 73.6 66.2 91.7
WDVSc R 96.2 96.7 74.2 67.8 92.2

Step 2: Find distance set D of the farthest point pair of each source class in visual feature space.

Step 3: Select reliable image x if and only if ∃ci ∈ C, ‖x− ci‖22 ≤ max(D)/2 to construct a new
target domain and perform unsupervised clustering on this domain.

Step 4: Conduct CDVSc, BMVSc or WDVSc as above.

4 Experiments

Implementation Details We adopt the pretrained ResNet-101 to extract visual features unless
specified. All images are resized to 224× 224 without any data augmentation, and the dimension
of extracted features is 2048. The hidden unit numbers of the two FC layers in the embedding
network are both 2048. Both visual features and semantic attributes are L2-normalized. Using Adam
optimizer, our method is trained for 5000 epochs with a fixed learning rate of 0.0001. The weight β in
CDVSc and BMVSc is cross-validated in [10−4, 10−3] and [10−5, 10−4] respectively, while WDVSc
directly sets β = 0.001 because of its very stable performance.

Datasets To demonstrate the effectiveness of our method, extensive experiments are conducted on
four widely-used ZSL benchmark datasets, i.e., AwA1, AwA2, CUB ,SUN10, and SUN72. Following
the same configuration of previous methods, two different data split strategies are adopted: 1)
Standard Splits (SS): The standard seen/unseen class split is first proposed in [17] and then widely
used in most ZSL works. 2) Proposed Splits (PS): This split way is proposed by[32] to remove the
overlapped ImageNet-1K classes from target domain since it is used to pre-train the CNN model.
Please refer to the supplementary material for more details.

Evaluation Metrics For fair comparison and completeness, we consider two different ZSL settings:
1) Conventional ZSL, which assumes all the test instances only belong to target unseen classes.
2) Generalized ZSL, where test instances are from both seen and unseen classes, which is a more
realistic setting in real applications. For the former setting, we compute the multi-way classification
accuracy (MCA) as in previous works, while for the latter one, we define three metrics. 1) accYs –
the accuracy of classifying the data samples from the seen classes to all the classes (both seen and
unseen); 2) accYu

– the accuracy of classifying the data samples from the unseen classes to all the
classes; 3) H – the harmonic mean of accYs

and accYu
.

6



Table 2: Quantitative comparisons under the pro-
posed splits (PS).

Method AwA2 CUB SUN72 Ave.
CONSE [24] 44.5 34.3 38.8 39.2
DeViSE [7] 59.7 52.0 56.5 56.0

SJE[2] 61.9 53.9 53.7 56.5
SynC [4] 46.6 55.6 56.3 52.8
SAE [16] 54.1 33.3 40.3 42.5

SCoRe [23] 69.5 61.0 51.7 60.7
LDF[20] – 69.2 – –

PSR-ZSL[3] 63.8 56.0 61.4 60.4
DCN [21] – 56.2 61.8 –

VCL 61.5 59.6 59.4 60.1
CDVSc 78.2 71.7 61.2 70.3
BMVSc 81.7 71.0 62.2 71.6
WDVSc 87.3 73.4 63.4 74.7

Table 3: Quantitative comparisons under general-
ized ZSL setting.

AwA2 CUB
Method accYu

accYs
H accYu

accYs
H

CONSE [24] 0.5 90.6 1.0 1.6 72.2 3.1
SSE [36] 8.1 82.5 14.8 8.5 46.9 14.4

DeViSE [7] 17.1 74.7 27.8 23.8 53.0 32.8
SJE[2] 8.0 73.9 14.4 23.5 59.2 33.6

ESZSL[28] 5.9 77.8 11.0 12.6 63.8 21.0
SynC [4] 10.0 90.5 18.0 11.5 70.9 19.8
ALE[1] 14.0 81.8 23.9 23.7 62.8 34.4

PSR-ZSL[3] 20.7 73.8 32.3 24.6 54.3 33.9
VCL 21.4 89.6 34.6 15.6 86.3 26.5

CDVSc 66.9 88.1 76.0 37.0 84.6 51.4
BMVSc 71.9 88.2 79.2 33.1 86.1 47.9
WDVSc 76.4 88.1 81.8 43.3 85.4 57.5

4.1 Conventional ZSL Results

To show the effectiveness of the proposed visual structure constraint, we first compare our method
with existing state-of-the-art methods in the conventional setting. Table 1 is the comparison results
under standard splits (SS), where we also re-implement our method using 4096-dimensional VGG
features to guarantee fairness. Obviously, with the three different types of visual structure constraint,
our method can obtain substantial performance gains consistently on all the datasets and outperforms
previous state-of-the-art methods. The only exception is that VZSL [31] is slightly better than our
method on the AwA1 dataset when using VGG features.

Specially, comparing with SP-ZSR [38] which shares the similar spirit with our method, we could
find that their performance sometimes is even worse than inductive methods such as SynC [4], SCoRe
[23] or VCL. The possible underlying reason is that, when utilizing the structure information only in
test time, the final performance gain highly depends on the quality of the project function. When
the projection function is not good enough, the initial synthetic centers will deviate far from the real
centers and result in bad matching results with unsupervised cluster centers, thus causing even worse
results. By contrast, in our method, this visual structure constraint is incorporated into the learning of
projection function in the training stage, which can help to learn a better projection function and bring
performance gain consistently. Another bonus is that, during runtime, we can directly do recognition
in real-time online-mode rather than the batch-mode optimization in SP-ZSR [38], which is more
friendly in real applications.

The results on proposed splits of AwA2, CUB and SUN72 are reported in Table 2 with ResNet-101
features. It can be seen that almost all methods suffer from performance degradation under this
setting. However, our proposed method could still maintain the highest accuracy. Specifically, the
improvements obtained by our method range from 0.8% to 25.8%, which indicate that visual structure
constraint is effective to solve the domain shift problem.
4.2 Generalized ZSL Results

In Table 3, we compare our method with eight different generalized ZSL methods. It can be seen that,
although almost all the methods cannot maintain the same level accuracy for both seen (accYs

) and
unseen classes (accYu

), our method with visual structure constraint still significantly outperforms
other methods by a large margin on these datasets. More specifically, take CONSE [24] as an example,
due to the domain shift problem, it can achieve the best results on the source seen classes but totally
fails on the target unseen classes. By contrast, since the proposed two structure constraints can help
to align the structure of synthetic centers to that of real unseen centers, our method can achieve
acceptable ZSL performance on target unseen classes.

4.3 Results of New Realistic Setting

To imitate the realistic setting where many unrelated images may exist in the test dataset, we mix the
test dataset with extra 8K unrelated images from the aPY dataset. These unrelated images do not
belong to the classes of either AwA2 or ImageNet-1K. From Table 4, it could be seen that without
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Table 4: Results (%) on more realistic setting. With the new proposed training strategy (S + ∗), the proposed
method can still work well and bring performance gain.

Method VCL CDVSc BMVSc WDVSc S+CDVSc S+BMVSc S+WDVSc
SS+noise 82.5 79.7 78.3 81.3 89.3 86.9 92.4
PS+noise 61.5 57.4 58.9 60.8 65.3 66.7 78.3

Table 5: Generality to the word vector based semantic space on the AwA1 dataset.
Method DeViSE[7] ZSCNN[18] SS-Voc[10] DEM[35] VCL CDVSc BMVSc WDVSc

MCA (%) 50.4 58.7 68.9 78.8 72.3 79.4 83.9 90.8

filtering out the unrelated images, the performance of our method with CDVSc, BMVSc and WDVSc
degrades, which means that the alignment of wrong visual structures is harmful to the learning of
projection function. By contrast, the new training strategy (S + ∗) can still make the proposed visual
structure constraint work very well.

4.4 More Analysis

Due to the limited space, only two analysis experiments are given in this section. Please refer to the
supplementary material for more analysis.

Generality to word vectors based semantic space. Compared to some previous methods which
are only applicable to one specific semantic space, we further demonstrate that the proposed visual
structure constraint can also be applied to word vector-based semantic space. Specifically, to obtain
the word representations for the embedding networks inputs, we use the GloVe text model [25]
trained on the Wikipedia dataset leading to 300-d vectors. For the classes containing multiple words,
we match all the words in the trained model and average their word embeddings as the corresponding
category embedding. As shown in Table 5, though the contained effective information of word
vectors is less than that of semantic attributes, the proposed visual structure constraint can still bring
substantial performance gain and outperform previous methods. Note that DEM [35] utilized 1000-d
word vectors provided by [8, 9] to represent a category.

Robustness for imperfect separability of visual features for unseen classes. Though our motiva-
tion is inspired by the great separable ability of visual features for unseen classes on the AwA2 dataset,
we find the proposed visual structure constraint is very robust and does not rely on it seriously. For
example, on the CUB dataset, the feature distribution (refer to Fig 5 in the supplementary material) is
not totally separable, but the proposed visual structure constraint still brings significant performance
gain as shown in the above Tables. Because even though there are some incorrect clusters, as long as
most of them are correct clusters, the proposed visual structure constraint will be beneficial.

On the other hand, though the unseen class number K is often pre-defined, we find the proposed
visual constraint can improve the performance even when it is unknown. In Table 6, we report the
performance for different K. Specifically, we first perform K-means both in the semantic space
and visual space simultaneously, then use BMVSc and WDVSc to align these two synthetic sets.
Obviously, the proposed visual structure constraint can bring performance gain consistently. With
the increase of K, it could capture the more fine-grained structure of visual space and achieve better
results. In other words, as long as the visual features can form some superclasses (not fine-level,
which is satisfied by most datasets), the proposed visual structure constraint is always effective.

5 Conclusion

To alleviate the domain shift problem in ZSL, three new different types of visual structure constraint
are proposed for transductive ZSL in this paper.We also introduce a new transductive ZSL con-
figuration for real applications and design a new training strategy to make our method work well.
Experiments demonstrate that they can bring substantial performance gain consistently on different
benchmark datasets and outperform previous state-of-the-art methods by a large margin. In the future,
we will try to apply the proposed idea to broader application scenarios [13, 11, 14, 29].
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Table 6: Results (%) of different cluster number K on AwA2 dataset.
K 0 3 4 5 6 7 8 9 10

BMVSc 61.5 62.3 62.9 64.5 65.1 68.2 70.1 74.3 81.7
WDVSc 61.5 63.4 64.0 66.3 67.0 69.2 75.1 80.3 87.3
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