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Abstract

A formidable challenge in multi-label learning is to model the interdependencies
between labels and features. Unfortunately, the statistical properties of existing
multi-label dependency modelings are still not well understood. Copulas are a
powerful tool for modeling dependence of multivariate data, and achieve great
success in a wide range of applications, such as finance, econometrics and systems
neuroscience. This inspires us to develop a novel copula multi-label learning
paradigm for modeling label and feature dependencies. The copula based paradigm
enables to reveal new statistical insights in multi-label learning. In particular, the
paper first leverages the kernel trick to construct continuous distribution in the
output space, and then estimates our proposed model semiparametrically where
the copula is modeled parametrically, while the marginal distributions are modeled
nonparametrically. Theoretically, we show that our estimator is an unbiased and
consistent estimator and follows asymptotically a normal distribution. Moreover,
we bound the mean squared error of estimator. The experimental results from
various domains validate the superiority of our proposed approach.

1 Introduction

Multi-label learning [1, 2, 3, 4, 5, 6], which allows multiple labels for each instance simultaneously,
is of paramount importance in a variety of fields ranging from protein function classification and
video annotation, to automatic image categorization. For example, an image may have Cloud, Tree
and Sky tags; labels such as Government, Policy and Election may be needed to describe the subject
of the video; a gene can belong to the functions of Protein Synthesis, Metabolism and Transcription.

Binary relevance (BR) [7] is one of the most popular baselines for multi-label learning, which aims
to independently train a binary classifier for each label. Recently, much of the multi-label learning
literature [8, 9, 10, 11, 12, 13] have shown that the independent assumption among labels and features
leads to degenerated performance. A plethora of methods have been motivated by a perceived need
to modelling the dependence. For example, the classifier chain (CC) model [14] captures label
dependency by using binary label predictions as extra input attributes for the following classifiers in a
chain. CCA [15] uses canonical correlation analysis for learning label dependency. CPLST [10] uses
principal component analysis to capture both the label and the feature dependencies. Unfortunately,
the statistical properties of all these methods are still not well understood. This paper aims to fill this
gap. Particularly, the work in this paper is inspired by Sklar’s observation below.

Sklar’s Observation. Sklar’s Theorem [16] shows that the univariate margins and the multivariate
dependence structure can be separated, and the dependence structure can be represented by a copula
[17]. Therefore, a copula contains all the information that we need to measure dependence, and it is
invariant to any nonlinear strictly increasing transformations of the marginal variables.

Contributions. Motivated by copulas’s superiority in modeling dependence, we develop a novel
copula multi-label learning paradigm for modeling label and feature dependencies. Our main
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contributions may be summarized as follows. Firstly, we provide the statistical understandings
for multi-label learning. Secondly, this paper leverages the kernel trick to construct continuous
distribution in the output space, and then we use a semiparametric approach to estimate our proposed
model where the copula is modeled parametrically, while the marginal distributions are modeled
nonparametrically. Theoretically, we show that our estimator is an unbiased and consistent estimator
and follows asymptotically a normal distribution. Moreover, we bound the mean squared error (MSE)
of estimator. Our results show that the MSE of estimator goes to 0 as the number of training samples
goes to infinity. The experimental results on several real-world data sets with a wide range of domains
demonstrate that our proposed approach outperforms existing dependency modelings.

We organize this paper as follows. We first discuss the related work in the following paragraph.
§2 presents some basic definitions and n-dimensional copula. §3 introduces copula multi-label
learning paradigm and estimators. §4 presents the statistical properties of our proposed estimator,
and experimental results are presented in §5. The last section provides our conclusions.

Related Work. Copula [17] modeling has become exceedingly popular in recent years, and has
been successfully used in a diverse range of applications, especially in finance [18], actuarial science
[19], survival analysis [20], systems neuroscience [21] and econometrics [22]. Due to its flexibility
and simplicity in modeling the dependence, copulas have also been widely explored in machine
learning community, such as domain adaptation [23, 24], Markov Chain Monte Carlo [25], latent
markov networks [26], Bayesian networks [27], kernel learning [28] and graphical models [29, 30].
However, it is unclear whether copula is advantageous for multi-label learning. This work provides
an affirmative answer.

2 Preliminaries

We denote by DomH and RanH the domain and range of a function H . Given two real vectors
a = [a1, · · · , an] and b = [b1, · · · , bn]. We write a ≤ b, if ai ≤ bi for all i ∈ {1, 2, . . . , n}. For
a ≤ b, let [a,b] represent the n-box B = [a1, b1]× · · · × [an, bn], the Cartesian product of n closed
intervals. The vertices of an n-box B are the points d = [d1, · · · , dn], where di is equal to either ai
or bi. We first present the following concepts and notations.
Definition 1. A sequence of random variables xn is said to converge to a constant $ in probability,
in symbols xn

P→$, if for every ε > 0, P (|xn −$| < ε)→ 1 as n→∞, or P (|xn −$| ≥ ε)→ 0
as n→∞.
Definition 2. Given two sequences of random variables xn and yn. xn is of smaller order in
probability than yn, in symbols xn = op(yn) , if xnyn

P→ 0. Particularly, xn = op(1) , if and only if xn
P→ 0.
Definition 3. Given two sequences of random variables xn and yn. xn is of order less than or
equal to that of yn in probability, in symbols xn = Op(yn) , if given ε > 0 there exists a constant
M = M(ε) and an integer m = m(ε) such that P (|xn| ≤M |yn|) ≥ 1− ε for all n > m.
Definition 4. A sequence of random variables xn with cumulative distribution functions (CD-
F) Fn converges in distribution to a random variable x with CDF F , in symbols xn

D→ x, if
limn→∞ Fn(x) = F (x), for all continuity points x of F .

Next, we introduce some important definitions before going to the copulas.
Definition 5 (H-volume). Let S1,S2,· · · ,Sn be nonempty subsets of [−∞,+∞]. Let H be a real
function of n variables such that DomH = S1 × · · · × Sn. Let B = [a,b] be an n-box all of whose
vertices are in DomH . Then the H-volume of B is given by VH(B) =

∑
sgn(d)H(d), where the

sum is taken over all vertices d of B, and sgn(d) is given by

sgn(d) =

{
1 if di = ai for an even number of i’s
−1 if di = ai for an odd number of i’s

Definition 6 (n-increasing). A real function H of n variables is n-increasing if VH(B) ≥ 0 for all
n-boxes B whose vertices lie in DomH .
Definition 7. Suppose that the domain of a real function H of n variables is given by DomH =
S1 × · · · × Sn, where each Si has a least element ai. We say that H is grounded if H(d) = 0 for all
d in DomH such that di = ai for at least one i.
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If each Si is nonempty and has a greatest element bi, then H has margins, and the one
dimensional margins of H are the functions Hi given by DomHi = Si and Hi(x) =
H(b1, · · · , bi−1, x, bi+1, · · · , bn) for all x in Si. Higher-dimensional margins are defined by fixing
fewer places in H . One dimensional margins are just called margins, and for i ≥ 2, we will write
i-margin for i-dimensional margin.

Definition 8 (n-dimensional copula). An n-dimensional copula (or n-copula) is a function C :
[0, 1]n → [0, 1] such that

(i) C is n-increasing and grounded.

(ii) C has margins Ci, i ∈ {1, 2, . . . , n}, which satisfy Ci(u) = u for all u in [0, 1].

Note that for any n-copula C, n ≥ 3, each i-margin of C is a i-copula, for 2 ≤ i < n. Next, we
introduce the most important Sklar’s Theorem regarding copulas.

Theorem 1 (Sklar’s Theorem [16]). Let H be an n-dimensional distribution function with marginal
CDF F1,. . .,Fn. Then there exists an n-copula C such that for all (x1, x2, . . . , xn) ∈ [−∞,+∞]n,

H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn))

If F1,. . .,Fn are all continuous, then C is unique; otherwise C is uniquely determined on RanF1 ×
· · · × RanFn. Conversely, if C is an n-copula and F1,. . .,Fn are distribution functions, then the
function H defined above is an n-dimensional distribution function with marginal CDF F1,. . .,Fn.

Sklar’s Theorem indicates that copula allows a complete separation of dependence modeling from the
marginal distributions and by specifying a copula one can summarize all the dependencies between
margins.

Assuming H has n-order partial derivatives. Using the chain rule, we derive the joint density f from
the copula construction:

f(x1, . . . , xn) =
∂nC(F1(x1), . . . , Fn(xn))

∂F1(x1), . . . , ∂Fn(xn)

n∏
i=1

fi(xi) = c(F1(x1), . . . , Fn(xn))

n∏
i=1

fi(xi) (1)

where c(F1(x1), . . . , Fn(xn)) is called the copula density function and fi is the marginal density
function of xi.

3 Copula Multi-label Learning

We denote the transpose of the vector/matrix by the superscript ′ and the logarithms to base 2
by log. Let || · ||2 represent the l2 norm. Assume that x = (x1, . . . , xp)

′ ∈ Rp×1 is a random
vector representing an input (feature), and z = (z1, . . . , zq)

′ ∈ {0, 1}q×1 is a binary random vector
representing the corresponding output (label) of multi-label learning (MLC). We denote by Fa and
fa the CDF and density function of xa, a ∈ {1, . . . , p}, respectively. Let pj represent the probability
mass function of zj , j ∈ {1, . . . , q}.

3.1 Kernel Trick: Constructing Continuous Distribution

Note that the output of MLC is boolean-valued variable, and it is non-trivial to apply Sklar’s Theorem
to discrete variable. In this paper, we use a continuous distribution to replace each discrete distribution.
In particular, we leverage a kernel density with a uniform kernel and a small bandwidth to construct
the continuous distribution. Let b be the bandwidth. b should be less than or equal to half the distance
of the two discrete points. For an observation at zj , j ∈ {1, . . . , q}, the kernel density function is
pj(zj)

2b . By setting b = 0.5, we transform binary variable zj to continuous variable yj with CDF Fj :

Fj(yj) =


0 yj < −0.5

pj(0)(yj + 0.5) −0.5 ≤ yj ≤ 0.5

pj(0) + pj(1)(yj − 0.5) 0.5 < yj ≤ 1.5

1 yj > 1.5
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3.2 Copula Modeling

Using Sklar’s Theorem, the CDF of (y1, . . . , yq, x1, . . . , xp) can be expressed as
C(F1(y1), . . . ,Fq(yq), F1(x1), . . . , Fp(xp)), where C is the (p + q)-copula function of
(y1, . . . , yq, x1, . . . , xp). In the following paper, we focus on the (p + 1)-margin of C on
variables (yj , x1, . . . , xp),∀j ∈ {1, . . . , q}, which have inherited the label dependence information
from (p+ q)-copula function.

Using Eq.(1), we derive the conditional density of yj given x as:

fyj (yj |x) =
Υj(yj)c(Fj(yj), F1(x1), . . . , Fp(xp))

cx(F1(x1), . . . , Fp(xp))

where Υj(yj) is the density function of yj and cx(F1(x1), . . . , Fp(xp)) =
∂pC(1,F1(x1),...,Fp(xp))
∂F1(x1),...,∂Fp(xp) is

the copula density of x1, . . . , xp. The conditional mean, Ξj(x), of yj given x, can be derived as:

Ξj(x)=E(yj |x)

=

∫ +∞

−∞
yjfyj (yj |x)dyj

=

∫ +∞

−∞

yjΥj(yj)c(Fj(yj), F1(x1), . . . , Fp(xp))

cx(F1(x1), . . . , Fp(xp))
dyj

=
ϑj(F1(x1), . . . , Fp(xp))

cx(F1(x1), . . . , Fp(xp))

=E
(
yjω(Fj(yj), F1(x1), . . . , Fp(xp))

)
(2)

where ω(Fj(yj), F1(x1), . . . , Fp(xp)) =
c(Fj(yj),F1(x1),...,Fp(xp))
cx(F1(x1),...,Fp(xp)) and ϑj(F1(x1), . . . , Fp(xp)) =

E(yjc(Fj(yj), F1(x1), . . . , Fp(xp)).

Eq.(2) demonstrates that the conditional mean of yj given x can be obtained from the copula density.
It also indicates that the conditional mean is a weighted mean function, where the weights are induced
by the copula function ω defined above.
Proposition 1. If p = 1 or x1, . . . , xp are mutually independent, Eq.(2) reduces to Ξj(x) =
ϑj(F1(x1), . . . , Fp(xp)),∀j ∈ {1, . . . , q}.

Given estimators ω̂, F̂j and F̂1, . . . , F̂p for ω, Fj and F1, . . . , Fp, respectively, then Ξj can be
estimated by Ξ̂j(x) = E

(
yjω̂(F̂j(yj), F̂1(x1), . . . , F̂p(xp))

)
. To estimate ω, one needs estimators

for the copula densities c and cx. Finally, we conduct the multi-label predictions based on the value
of Ξ̂j(x). This paper uses a semiparametric approach where the copula is modeled parametrically,
while the marginal distributions are modeled nonparametrically.

3.3 Estimators

Let (y
(i)
1 , . . . , y

(i)
q , x

(i)
1 , . . . , x

(i)
p ), i ∈ {1, . . . , n}, be n independent and identically distributed (i.i.d.)

training samples generated from the distribution of (y1, . . . , yq, x1, . . . , xp). For j ∈ {1, . . . , q}, the

probability mass functions are estimated by p̂j(0) =
∑n
i=1 I(y

(i)
j =0)

n and p̂j(1) = 1− p̂j(0), where
I(·) is the indicator function. Fj is estimated by

F̂j(yj) =


0 yj < −0.5

p̂j(0)(yj + 0.5) −0.5 ≤ yj ≤ 0.5

p̂j(0) + p̂j(1)(yj − 0.5) 0.5 < yj ≤ 1.5

1 yj > 1.5

We use kernel smoothing method to estimate F1, . . . , Fp. Let k(·) be a symmetric probability density
function and h be the bandwidth. For j ∈ {1, . . . , p}, Fj is estimated by

F̂j(xj) =

∑n
i=1K

(
xj−x(i)

j

h

)
n
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where K(t) =
∫ t
−∞ k(u)du. We make the following assumption for F̂j(xj).

Assumption A. For j ∈ {1, . . . , p},

F̂j(xj) =

∑n
i=1 I(x

(i)
j ≤ xj)
n

+ op(n
−1/2)

We use a parametric approach to estimate the copula. Suppose that (p+ q)-copula density belongs to
a given parametric family C = {c(·; θ), θ ∈ Rv×1}. Assume that θ∗ is the true but unknown copula
parameter. Maximum pseudo-likelihood estimator [31, 32] θ̂ is one of the most popular estimators of
θ∗, which is defined as θ̂ = arg maxθ log

∑n
i=1 c(F̂1(y

(i)
1 ), . . . , F̂q(y

(i)
q ), F̂1(x

(i)
1 ), . . . , F̂p(x

(i)
p ); θ).

Let θ∗j ∈ Rd×1 and θ̂j ∈ Rd×1 be the corresponding true and estimator of parameter for (p + 1)-
margin on variables (yj , x1, . . . , xp). We make the following assumption on θ̂j .
Assumption B. For j ∈ {1, . . . , q},

θ̂j − θ∗j =

∑n
i=1 ψi
n

+ op(n
−1/2)

where ψi = ψ(Fj(y
(i)
j ), F1(x

(i)
1 ), . . . , Fp(x

(i)
p ); θ∗j ) is a d-dimensional random vector such that

E(ψ) = (0, . . . , 0)′ and E||ψ||22 <∞.

[32] shows that maximum pseudo-likelihood estimator satisfy this assumption.

The following analysis focuses on the (p+ 1)-margin c on variables (yj , x1, . . . , xp). To simplify
the analysis, we provide some simple notations. For a ∈ {1, . . . , p + 1}, ca = ∂c

∂ua
. For a ∈

{1, . . . , p}, cx,a = ∂cx
∂ua

and ϑj,a =
∂ϑj
∂ua

. ∂cx = (cx,1, . . . , cx,p)
′. ∂ϑj = (ϑj,1, . . . , ϑj,p)

′. Let

ċ = ( ∂c∂θ1 , . . . ,
∂c
∂θd

)′, ċx = (∂cx∂θ1
, . . . , ∂cx∂θd

)′ and ϑ̇j = (
∂ϑj
∂θ1

, . . . ,
∂ϑj
∂θd

)′, where ϑj(u1, . . . , up; θ) =

E(yjc(Fj(yj), u1, . . . , up; θ)). We make the following assumptions.
Assumption C. (i) ċ and ca, a ∈ {1, . . . , p+ 1}, are continuous.

(ii) E|yj | <∞ for j ∈ {1, . . . , q}.

(iii) E(yjca(Fj(yj), F1(x1), . . . , Fp(xp); θ
∗
j ))2 < ∞ and

E(yjc(Fj(yj), F1(x1), . . . , Fp(xp); θ
∗
j ))2 <∞ for j ∈ {1, . . . , q} and a ∈ {1, . . . , p+ 1}.

(iv) E(yj
∂c(Fj(yj),F1(x1),...,Fp(xp);θ∗j )

∂θb
)2 <∞ for j ∈ {1, . . . , q} and b ∈ {1, . . . , d}.

4 Main Results

This section presents the statistical properties of our proposed estimator. The proofs can be found in
the Supplementary Materials.

4.1 Unbias and Consistency

We first consider the simple case where p = 1. Proposition 1 shows that Ξj(x1) = ϑj(F1(x1); θ∗j ) =

E(yjc(Fj(yj), F1(x1); θ∗j )) can be estimated by Ξ̂j(x1) =
∑n
i=1 y

(i)
j c(F̂j(y

(i)
j ),F̂1(x1);θ̂j)

n . We first
provide the following Lemma.

Lemma 1. For j ∈ {1, . . . , q}, suppose that Assumption C holds, if F̂1(x1) = F1(x1) +Op(n
−1/2),

and θ̂j = θ∗j +Op(n
−1/2), then we have

Ξ̂j(x1)−
∑n
i=1 y

(i)
j c(Fj(y

(i)
j ), F1(x1); θ∗j )

n

=1/n

n∑
i=1

y
(i)
j (F̂j(y

(i)
j )−Fj(y(i)

j ))c1(Fj(y
(i)
j ), F1(x1);θ∗j )

+(F̂1(x1)− F1(x1))ϑj,1(F1(x1); θ∗j ) + (θ̂j − θ∗j )′ϑ̇j(F1(x1); θ∗j ) + op(n
−1/2).
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Based on Lemma 1, we present the following theorem.

Theorem 2. Given p = 1, under Assumptions A, B and the conditions of Lemma 1, for j ∈ {1, . . . , q},
Ξ̂j(x1) is an unbiased and consistent estimator for Ξj(x1).

In the general case, if p > 1, let F (x) = (F1(x1), . . . , Fp(xp)) and F̂ (x) = (F̂1(x1), . . . , F̂p(xp)),

Ξj(x) =
ϑj(F (x);θ∗j )

cx(F (x);θ∗j ) . Similar to the case p = 1, we estimate the numerator of Ξj(x) by

ϑ̂j(F̂ (x); θ̂j) = 1/n
∑n
i=1 y

(i)
j c(F̂j(y

(i)
j ), F̂ (x); θ̂j). Under Assumptions A, B and C, suppose

that F̂a(xa) = Fa(xa) +Op(n
−1/2),∀a ∈ {1, . . . , p} and θ̂j = θ∗j +Op(n

−1/2),∀j ∈ {1, . . . , q},
according to Lemma 1, we obtain that

ϑ̂j(F̂ (x); θ̂j)− ϑj(F (x); θ∗j ) = 1/n

n∑
i=1

Ψi(x; θ∗j ) + op(n
−1/2) (3)

where Ψi(x; θ∗j ) = y
(i)
j (F̂j(y

(i)
j ) − Fj(y

(i)
j ))c1(Fj(y

(i)
j ), F (x); θ∗j ) +

∑p
a=1(I(x

(i)
a ≤ xa) −

Fa(xa))ϑj,a(F (x); θ∗j ) + ψ′iϑ̇j(F (x); θ∗j ).

The denominator of Ξj(x) can be estimated by ĉx(F̂ (x); θ̂j) = 1/n
∑n
i=1 c(F̂j(y

(i)
j ), F̂ (x); θ̂j).

Similarly, under conditions of the numerator estimator, we can also obtain that

ĉx(F̂ (x); θ̂j)− cx(F (x); θ∗j ) = 1/n

n∑
i=1

Wi(x; θ∗j ) + op(n
−1/2) (4)

where Wi(x; θ∗j ) =
∑p
a=1(I(x

(i)
a ≤ xa)− Fa(xa))cx,a(F (x); θ∗j ) + ψ′iċx(F (x); θ∗j ).

For j ∈ {1, . . . , q}, the estimator of Ξj(x) is given by Ξ̂j(x) =
ϑ̂j(F̂ (x))

ĉx(F̂ (x))
=∑n

i=1 y
(i)
j c(F̂j(y

(i)
j ),F̂ (x);θ̂j)∑n

i=1 c(F̂j(y
(i)
j ),F̂ (x);θ̂j)

. Eq.(3) and Eq.(4) lead to the following theorem.

Theorem 3. Under Assumptions A, B and C, suppose that F̂a(xa) = Fa(xa) + Op(n
−1/2),∀a ∈

{1, . . . , p} and θ̂j = θ∗j +Op(n
−1/2),∀j ∈ {1, . . . , q}, we have

Ξ̂j(x)− Ξj(x) = 1/n

n∑
i=1

Ψi(x)− Ξj(x)Wi(x)

cx(F (x))
+ op(n

−1/2)

Based on Theorem 3, we derive the following corollary.

Corollary 1. Given p > 1, under conditions of Theorem 3, for j ∈ {1, . . . , q}, Ξ̂j(x) is an unbiased
and consistent estimator for Ξj(x).

4.2 Asymptotic Normality

Let N(0, 1) denote the standard Gaussian distribution. V ar represents the variance. We first consider
the simple case p = 1, based on Lemma 1 and central limit theorem (CLT) [33], we provide the
following theorem.

Theorem 4. If p = 1, suppose that Assumptions A, B and the conditions of Lemma 1 hold, for
j ∈ {1, . . . , q}, we have

√
n(Ξ̂j(x1)− Ξj(x1))√

V ar(Ψi(x1))

D→ N(0, 1)

where Ψi(x1) = y
(i)
j (F̂j(y

(i)
j ) − Fj(y

(i)
j ))c1(Fj(y

(i)
j ), F1(x1); θ∗j ) + (I(x

(i)
1 ≤ x1) −

F1(x1))ϑj,1(F1(x1); θ∗j ) + ψ′iϑ̇j(F1(x1); θ∗j ).

Based on Theorem 3 and CLT, we provide the following theorem in the general case.
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Theorem 5. Given p > 1, under conditions of Theorem 3, for j ∈ {1, . . . , q}, we have
√
n(Ξ̂j(x)− Ξj(x))√

V ar(
Ψi(x)−Ξj(x)Wi(x)

cx(F (x)) )

D→ N(0, 1)

Theorem 5 shows that
√
n(Ξ̂j(x)− Ξj(x)) follows asymptotically a normal distribution with mean

0 and variance V ar(Ψi(x)−Ξj(x)Wi(x)
cx(F (x)) ).

4.3 Bounds on the Mean Squared Error

The mean squared error (MSE) is a basic measure of the accuracy of estimator Ξ̂j(x),∀j ∈ {1, . . . , q},
at an arbitrary fixed point x = (x1, . . . , xp)

′ ∈ Rp×1, which is defined as:

MSEj(x) = E
(
Ξ̂j(x)− Ξj(x)

)2 (5)

Eq.(5) can be transformed to the following formula:

MSEj(x) = b2j (x) + σ2
j (x) (6)

where bj(x) = E(Ξ̂j(x))− Ξj(x) is the bias and σ2
j (x) = E

(
Ξ̂j(x)− E(Ξ̂j(x))

)2

is the variance

of the estimator Ξ̂j(x) at point x. §4.1 shows that Ξ̂j(x) is an unbiased estimator, so bj(x) = 0.
Next, we bound the variance of the estimator. The following theorem is under the case of p = 1.
Theorem 6. Given p = 1. Suppose that Assumptions A, B and the conditions of Lemma 1
hold. For j ∈ {1, . . . , q}, assume that the density function of yj , Υj(yj) ≤ Υmax < ∞ and
c(F̂j(yj), F̂1(x1)) ≤ cmax <∞, then we have

MSEj(x1) ≤ 7Υmaxc
2
max

6n

Similarly, we obtain the following theorem in the general case.
Theorem 7. Given p > 1. Suppose that the conditions of Theorem 3 hold. For j ∈ {1, . . . , q},
assume that the density function of yj , Υj(yj) ≤ Υmax <∞, then we have

MSEj(x) ≤ 7Υmax

6n

Remark. Theorem 6 and Theorem 7 show that the MSE of Ξ̂j(x1) and Ξ̂j(x), ∀j ∈ {1, . . . , q}, go
to 0 as n goes to infinity.

5 Experiment

5.1 Data Sets and Baselines

This paper considers two popular families of copulas:

• Multivariate normal copula: A Gaussian copula with a given correlation matrix Z ∈
[−1, 1]d×d is defined as C(u1, . . . , ud;Z) = ΦZ(Φ−1(u1), . . . ,Φ−1(ud)), where Φ−1 is
the inverse CDF of a standard normal distribution and ΦZ is the joint CDF of a multivariate
normal distribution with zero mean vector and correlation matrix equal to Z. The density
function is written as c(u1, . . . , ud;Z) = det(Z)−1/2exp(−1/2ς ′(Z−1 − Id)ς), where
det(Z) represents the determinant of Z, ς = (Φ−1(u1), . . . ,Φ−1(ud))

′ and Id is the
identity matrix.

• Multivariate student’s t copula: A student’s t copula with a given correlation ma-
trix Z ∈ [−1, 1]d×d and degree of freedom ν is defined as C(u1, . . . , ud;Z, ν) =
TZ,ν(T−1

ν (u1), . . . , T−1
ν (ud)), where T−1

ν is the inverse CDF of a student’s t-distribution
with degree of freedom ν and TZ,ν is the joint CDF of a multivariate student’s t-
distribution with a correlation matrix Z and degree of freedom ν. The density function is
c(u1, . . . , ud;Z, ν) = det(Z)−1/2 Γ((ν+d)/2)(Γ(ν/2))d−1

(Γ((ν+1)/2))d
(1+1/νς′Z−1ς)−(ν+d)/2∏d
i=1(1+ς2i /ν)−(ν+1)/2 , where Γ is

the gamma function, ς = (ς1, . . . , ςd)
′ with ςi = T−1

ν (ui),∀i = 1, . . . , d.
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Table 1: The results of Example-F1 on the various data sets (mean ± standard deviation). The best
ones are in bold.

DATA SET BR CC CCA CPLST CML+GAU CML+ST
EMOTIONS 0.5051 ± 0.0288 0.5063 ± 0.0349 0.5141 ± 0.0283 0.5178 ± 0.0686 0.5215 ± 0.0642 0.5146 ± 0.0389
SCENE 0.5203 ± 0.0509 0.5358 ± 0.0229 0.5212 ± 0.0559 0.5311 ± 0.0533 0.5378 ± 0.0250 0.5367 ± 0.0571
MEDICAL 0.1633 ± 0.0738 0.1690 ± 0.0145 0.1713 ± 0.0866 0.1716 ± 0.0372 0.1767 ± 0.0160 0.1728 ± 0.0551
YEAST 0.5578 ± 0.0153 0.5620 ± 0.0329 0.5609 ± 0.0124 0.5649 ± 0.0323 0.5647 ± 0.0112 0.5893 ± 0.0429
ENRON 0.1707 ± 0.0536 0.1799 ± 0.0107 0.1756 ± 0.0413 0.1822 ± 0.0225 0.1888 ± 0.0313 0.1831 ± 0.0322

Table 2: The results of Macro-F1 on the various data sets (mean ± standard deviation). The best ones
are in bold.

DATA SET BR CC CCA CPLST CML+GAU CML+ST
EMOTIONS 0.5475 ± 0.0172 0.5510 ± 0.0304 0.5492 ± 0.0259 0.5528 ± 0.0393 0.5701 ± 0.0147 0.5534 ± 0.0355
SCENE 0.5801 ± 0.0540 0.5814 ± 0.0163 0.5910 ± 0.0335 0.5926 ± 0.0312 0.6084 ± 0.0217 0.5953 ± 0.0411
MEDICAL 0.0669 ± 0.0417 0.0769 ± 0.0153 0.0677 ± 0.0276 0.0733 ± 0.0463 0.0751 ± 0.0018 0.0808 ± 0.0199
YEAST 0.3342 ± 0.0115 0.3393 ± 0.0267 0.3373 ± 0.0106 0.3453 ± 0.0381 0.3523 ± 0.0143 0.3590 ± 0.0145
ENRON 0.0165 ± 0.0054 0.0176 ± 0.0018 0.0216 ± 0.0033 0.0194 ± 0.0016 0.0218 ± 0.0016 0.0220 ± 0.0030

We abbreviate our proposed copula multi-label learning with multivariate normal copula and mul-
tivariate student’s t copula to CML+GAU and CML+ST, respectively. This section evaluates the
performance of the proposed method on five real-world benchmark data sets with various domains:
EMOTIONS (music), SCENE (image), MEDICAL (text), YEAST (biology) and ENRON (text). The
statistics of these data sets are presented in the website1. We compare our CML+GAU and CML+ST
with several multi-label learning approaches, which aim to capture the interdependencies between
labels: BR, CC, CCA and CPLST. We use the code provided by the respective authors with default
parameters. The bandwidth is set to h = 0.1 in the experiment.

To fairly measure the performance of our methods and the baseline methods, we consider Hamming
Loss, Example-F1, Micro-F1 and Macro-F1 as the evaluation measurements [10, 34, 35]. The smaller
the value of Hamming Loss, the better the performance, while the larger the value of the other three
measurements, the better the performance. We perform 3-fold cross-validation on each data set and
report the mean and standard error of each evaluation measurement.

5.2 Results

Tables 1 and 2 show the Example-F1 and Macro-F1 results for our methods and baseline approaches
in respect of the different data sets. The Hamming Loss and Micro-F1 results are reported in the
Supplementary Materials. From Tables 1 and 2, we can see that: 1) BR generally underperforms.
BR does not consider the distributions and relationships between labels, so it achieves much lower
accuracy. 2) CPLST outperforms CC and CCA, because CPLST captures both the label and the
feature dependency. 3) Our proposed methods are most successful on all data sets. The empirical
results illustrate the superiority of our proposed model and corroborate our theoretical studies.

6 Conclusion

The great success of copulas in a wide range of applications inspires us to develop a novel copula
multi-label learning paradigm for modeling label and feature dependencies, and reveal new statistical
insights in multi-label learning. Particularly, after leveraging the kernel trick to construct continuous
distribution in the output space, we use a semiparametric approach to estimate our proposed model.
Theoretically, we show that our estimator is an unbiased and consistent estimator and the distribution
of our proposed estimator converges to a normal distribution. Moreover, we provide the bound for the
MSE of estimator. The experimental results demonstrate the effectiveness of our proposed approach.
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