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Abstract

Modern large-scale finite-sum optimization relies on two key aspects: distribu-
tion and stochastic updates. For smooth and strongly convex problems, existing
decentralized algorithms are slower than modern accelerated variance-reduced
stochastic algorithms when run on a single machine, and are therefore not efficient.
Centralized algorithms are fast, but their scaling is limited by global aggrega-
tion steps that result in communication bottlenecks. In this work, we propose an
efficient Accelerated Decentralized stochastic algorithm for Finite Sums named
ADFS, which uses local stochastic proximal updates and randomized pairwise
communications between nodes. On n machines, ADFS learns from nm samples
in the same time it takes optimal algorithms to learn from m samples on one ma-
chine. This scaling holds until a critical network size is reached, which depends on
communication delays, on the number of samples m, and on the network topology.
We provide a theoretical analysis based on a novel augmented graph approach
combined with a precise evaluation of synchronization times and an extension of
the accelerated proximal coordinate gradient algorithm to arbitrary sampling. We
illustrate the improvement of ADFS over state-of-the-art decentralized approaches
with experiments.

1 Introduction
The success of machine learning models is mainly due to their capacity to train on huge amounts of
data. Distributed systems can be used to process more data than one computer can store or to increase
the pace at which models are trained by splitting the work among many computing nodes. In this
work, we focus on problems of the form:

min
θ∈Rd

n�

i=1

fi(θ), where fi(θ) =

m�

j=1

fi,j(θ) +
σi

2
�θ�2. (1)

This is the typical �2-regularized empirical risk minimization problem with n computing nodes that
have m local training examples each. The function fi,j represents the loss function for the j-th
training example of node i and is assumed to be convex and Li,j-smooth [Nesterov, 2013, Bubeck,
2015]. These problems are usually solved by first-order methods, and the basic distributed algorithms
compute gradients in parallel over several machines [Nedic and Ozdaglar, 2009]. Another way
to speed up training is to use stochastic algorithms [Bottou, 2010, Defazio et al., 2014, Johnson
and Zhang, 2013], that take advantage of the finite sum structure of the problem to use cheaper
iterations while preserving fast convergence. This paper aims at bridging the gap between stochastic
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ALGORITHM SYNCHRONY STOCHASTIC TIME

POINT-SAGA [DEFAZIO, 2016] N/A � nm+
√
nmκs

MSDA [SCAMAN ET AL., 2017] GLOBAL × √
κb

�
m+ τ√

γ

�

ESDACD [HENDRIKX ET AL., 2019] LOCAL × (m+ τ)
�

κb
γ

DSBA [SHEN ET AL., 2018] GLOBAL �
�
m+ κs + γ−1

�
(1 + τ)

ADFS (THIS PAPER) LOCAL � m+
√
mκs + (1 + τ)

�
κs
γ

Table 1: Comparison of various state-of-the-art decentralized algorithms to reach accuracy ε in
regular graphs. Constant factors are omitted, as well as the log

�
ε−1

�
factor in the TIME column.

Reported runtime for Point-SAGA corresponds to running it on a single machine with nm samples.
To allow for direct comparison, we assume that computing a dual gradient of a function fi as required
by MSDA and ESDACD takes time m, although it is generally more expensive than to compute m
separate proximal operators of single fi,j functions.

and decentralized algorithms when local functions are smooth and strongly convex. In the rest of
this paper, following Scaman et al. [2017], we assume that nodes are linked by a communication
network and can only exchange messages with their neighbours. We further assume that each
communication takes time τ and that processing one sample, i.e., computing the proximal operator
for a single function fi,j , takes time 1. The proximal operator of a function fi,j is defined by
proxηfi,j (x) = argminv

1
2η�v − x�2 + fi,j(v). The condition number of the Laplacian matrix of

the graph representing the communication network is denoted γ. This natural constant appears in the
running time of many decentralized algorithms and is for instance of order O(1) for the complete
graph and O(n−1) for the 2D grid. More generally, γ−1/2 is typically of the same order as the
diameter of the graph. Following notations from Xiao et al. [2019], we define the batch and stochastic
condition numbers κb and κs (which are classical quantities in the analysis of finite sum optimization)
such that for all i, κb ≥ Mi/σi where Mi is the smoothness constant of the function fi and κs ≥ κi,
with κi = 1 +

�m
j=1 Li,j/σi the stochastic condition number of node i. Although κs is always

bigger than κb, it is generally of the same order of magnitude, leading to the practical superiority of
stochastic algorithms. The next paragraphs discuss the relevant state of the art for both distributed and
stochastic methods, and Table 1 sums up the speeds of the main decentralized algorithms available
to solve Problem (1). Although it is not a distributed algorithm, Point-SAGA [Defazio, 2016], an
optimal single-machine algorithm, is also presented for comparison.

Centralized gradient methods. A simple way to split work between nodes is to distribute gradient
computations and to aggregate them on a parameter server. Provided the network is fast enough, this
allows the system to learn from the datasets of n workers in the same time one worker would need to
learn from its own dataset. Yet, these approaches are very sensitive to stochastic delays, slow nodes,
and communication bottlenecks. Asynchronous methods may be used [Recht et al., 2011, Leblond
et al., 2017, Xiao et al., 2019] to address the first two issues, but computing gradients on older (or
even inconsistent) versions of the parameter harms convergence [Chen et al., 2016]. Therefore, this
paper focuses on decentralized algorithms, which are generally less sensitive to communication
bottlenecks [Lian et al., 2017].

Decentralized gradient methods. In their synchronous versions, decentralized algorithms alternate
rounds of computations (in which all nodes compute gradients with respect to their local data) and
communications, in which nodes exchange information with their direct neighbors [Duchi et al.,
2012, Shi et al., 2015, Nedic et al., 2017, Tang et al., 2018, He et al., 2018]. Communication steps
often consist in averaging gradients or parameters with neighbours, and can thus be abstracted as
multiplication by a so-called gossip matrix. MSDA [Scaman et al., 2017] is a batch decentralized
synchronous algorithm, and it is optimal with respect to the constants γ and κb, among batch
algorithms that can only perform these two operations. Instead of performing global synchronous
updates, some approaches inspired from gossip algorithms [Boyd et al., 2006] use randomized
pairwise communications [Nedic and Ozdaglar, 2009, Johansson et al., 2009, Colin et al., 2016].
This for example allows fast nodes to perform more updates in order to benefit from their increased
computing power. These randomized algorithms do not suffer from the usual worst-case analyses of
bounded-delay asynchronous algorithms, and can thus have fast rates because the step-size does not
need to be reduced in the presence of delays. For example, ESDACD [Hendrikx et al., 2019] achieves
the same optimal speed as MSDA when batch computations are faster than communications (τ > m).
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However, both use gradients of the Fenchel conjugates of the full local functions, which are generally
much harder to get than regular gradients.

Stochastic algorithms for finite sums. All distributed methods presented earlier are batch methods
that rely on computing full gradient steps of each function fi. Stochastic methods perform updates
based on randomly chosen functions fi,j . In the smooth and strongly convex setting, they can be
coupled with variance reduction [Schmidt et al., 2017, Shalev-Shwartz and Zhang, 2013, Johnson and
Zhang, 2013, Defazio et al., 2014] and acceleration, to achieve the m+

√
mκs optimal finite-sum

rate, which greatly improves over the m
√
κb batch optimum when the dataset is large. Examples

of such methods include Accelerated-SDCA [Shalev-Shwartz and Zhang, 2014], APCG [Lin et al.,
2015], Point-SAGA [Defazio, 2016] or Katyusha [Allen-Zhu, 2017]

Decentralized stochastic methods. In the smooth and strongly convex setting, DSA [Mokhtari and
Ribeiro, 2016] and later DSBA [Shen et al., 2018] are two linearly converging stochastic decentralized
algorithms. DSBA uses the proximal operator of individual functions fi,j to significantly improve
over DSA in terms of rates. Yet, DSBA does not enjoy the

√
mκs accelerated rates and needs an

excellent network with very fast communications. Indeed, nodes need to communicate each time they
process a single sample, resulting in many communication steps. CHOCO-SGD [Koloskova et al.,
2019] is a simple decentralized stochastic algorithm with support for compressed communications.
Yet, it is not linearly convergent and it requires to communicate between each gradient step as
well. Therefore, to the best of our knowledge, there is no decentralized stochastic algorithm with
accelerated linear convergence rate or low communication complexity without sparsity assumptions
(i.e., sparse features in linear supervised learning).

ADFS. The main contribution of this paper is a locally synchronous Accelerated Decentralized
stochastic algorithm for Finite Sums, named ADFS. It is very similar to APCG for empirical risk
minimization in the limit case n = 1 (single machine), for which it gets the same m+

√
mκs rate.

Besides, this rate stays unchanged when the number of machines grows, meaning that ADFS can
process n times more data in the same amount of time on a network of size n. This scaling lasts as
long as (1+τ)

√
κsγ

− 1
2 < m+

√
mκs. This means that ADFS is at least as fast as MSDA unless both

the network is extremely fast (communications are faster than evaluating a single proximal operator)
and the diameter of the graph is very large compared to the size of the local finite sums. Therefore,
ADFS outperforms MSDA and DSBA in most standard machine learning settings, combining optimal
network scaling with the efficient distribution of optimal sequential finite-sum algorithms. Note
however that, similarly to DSBA and Point-SAGA, ADFS requires evaluating proxfi,j , which requires
solving a local optimization problem. Yet, in the case of linear models such as logistic regression, it is
only a constant factor slower than computing ∇fi,j , and it is especially much faster than computing
the gradient of the conjugate of the full dual functions ∇f∗

i required by ESDACD and MSDA, which
were not designed for finite sums on each node in the first place.
ADFS is based on three novel technical contributions: (i) a novel augmented graph approach which
yields the dual formulation of Section 2, (ii) an extension of the APCG algorithm to arbitrary sampling
that is applied to the dual problem in order to get the generic algorithm of Section 3, and (iii) the
analysis of local synchrony, which is performed in Section 4. Finally, Section 5 presents a relevant
choice of parameters leading to the rates shown in Table 1, and an experimental comparison is done
in Section 6. A Python implementation of ADFS is also provided in supplementary material.

2 Model and Derivations
We now specify our approach to solve the problem in Equation (1). The first (classical) step consists
in considering that all nodes have a local parameter, but that all local parameters should be equal
because the goal is to have the global minimizer of the sum. Therefore, the problem writes:

min
θ∈Rn×d

n�

i=1

fi(θ
(i)) such that θ(i) = θ(j) if j ∈ N(i), (2)

where N(i) represents the neighbors of node i in the communication graph. Then, ESDACD and
MSDA are obtained by applying accelerated (coordinate) gradient descent to an appropriate dual
formulation of Problem (2). In the dual formulation, constraints become variables and so updating
a dual coordinate consists in performing an update along an edge of the network. In this work, we
consider a new virtual graph in order to get a stochastic algorithm for finite sums. The transformation
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Figure 1: Illustration of the augmented graph for n = 3 and m = 3.

is sketched in Figure 1, and consists in replacing each node of the initial network by a star network.
The centers of the stars are connected by the actual communication network, and the center of the
star network replacing node i has the local function f comm

i : x �→ σi

2 �x�2. The center of node i is
then connected with m nodes whose local functions are the functions fi,j for j ∈ {1, ...,m}. If we
denote E the number of edges of the initial graph, then the augmented graph has n(1 +m) nodes
and E + nm edges.
Then, we consider one parameter vector θ(i,j) for each function fi,j and one vector θ(i) for each
function f comm

i . Therefore, there is one parameter vector for each node in the augmented graph.
We impose the standard constraint that the parameter of each node must be equal to the parameters
of its neighbors, but neighbors are now taken in the augmented graph. This yields the following
minimization problem:

min
θ∈Rn(1+m)×d

n�

i=1

� m�

j=1

fi,j(θ
(i,j)) +

σi

2
�θ(i)�2

�

such that θ(i) = θ(j) if j ∈ N(i), and θ(i,j) = θ(i) ∀j ∈ {1, ..,m}.
(3)

In the rest of the paper, we use letters k, � to refer to any nodes in the augmented graph, and letters
i, j to specifically refer to a communication node and one of its virtual nodes. More precisely, we
denote (k, �) the edge between the nodes k and � in the augmented graph. Note that k and � can be
virtual or communication nodes. We denote e(k) the unit vector of Rn(1+m) corresponding to node
k, and ek� the unit vector of RE+nm corresponding to edge (k, �). To clearly make the distinction
between node variables and edge variables, for any matrix on the set of nodes of the augmented graph
x ∈ Rn(1+m)×d we write that x(k) = xT e(k) for k ∈ {1, ..., n(1+m)} (superscript notation) and for
any matrix on the set of edges of the augmented graph λ ∈ R(E+nm)×d we write that λk� = λT ek�
(subscript notation) for any edge (k, �). For node variables, we use the subscript notation with a
t to denote time, for instance in Algorithm 1. By a slight abuse of notations, we use indices (i, j)
instead of (k, �) when specifically refering to virtual edges (or virtual nodes) and denote λij instead
of λi,(i,j) the virtual edge between node i and node (i, j) in the augmented graph. The constraints
of Problem (3) can be rewritten AT θ = 0 in matrix form, where A ∈ Rn(1+m)×(nm+E) is such that
Aek� = µk�(e

(k) − e(�)) for some µk� > 0. Then, the dual formulation of this problem writes:

max
λ∈R(nm+E)×d

−
n�

i=1

� m�

j=1

f∗
i,j

�
(Aλ)(i,j)

�
+

1

2σi
�(Aλ)(i)�2

�
, (4)

where the parameter λ is the Lagrange multiplier associated with the constraints of Problem (3)—
more precisely, for an edge (k, �), λk� ∈ Rd is the Lagrange multiplier associated with the constraint
µk�(e

(k) − e(�))T θ = 0. At this point, the functions fi,j are only assumed to be convex (and not
necessarily strongly convex) meaning that the functions f∗

i,j are potentially non-smooth. This problem
could be bypassed by transferring some of the quadratic penalty from the communication nodes to the
virtual nodes before going to the dual formulation. Yet, this approach fails when m is large because
the smoothness parameter of f∗

i,j would scale as m/σi at best, whereas a smoothness of order 1/σi

4



is required to match optimal finite-sum methods. A better option is to consider the f∗
i,j terms as

non-smooth and perform proximal updates on them. The rate of proximal gradient methods such
as APCG [Lin et al., 2015] does not depend on the strong convexity parameter of the non-smooth
functions f∗

i,j . Each f∗
i,j is (1/Li,j)-strongly convex (because fi,j was (Li,j)-smooth), so we can

rewrite the previous equation in order to transfer all the strong convexity to the communication node.
Noting that (Aλ)(i,j) = −µijλij when node (i, j) is a virtual node associated with node i, we rewrite
the dual problem as:

min
λ∈R(E+nm)×d

qA(λ) +

n�

i=1

m�

j=1

˜f∗
i,j(λij), (5)

with ˜f∗
i,j : x �→ f∗

i,j(−µijx) − µ2
ij

2Li,j
�x�2 and qA : x �→ Trace

�
1
2x

TATΣ−1Ax
�
, where Σ is the

diagonal matrix such that e(i)
T
Σe(i) = σi if i is a center node and e(i,j)

T
Σe(i,j) = Li,j if it is

the virtual node (i, j). Since dual variables are associated with edges, using coordinate descent
algorithms on dual formulations from a well-chosen augmented graph of constraints allows us to
handle both computations and communications in the same framework. Indeed, choosing a variable
corresponding to an actual edge of the network results in a communication along this edge, whereas
choosing a virtual edge results in a local computation step. Then, we balance the ratio between
communications and computations by adjusting the probability of picking a given kind of edges.

3 The Algorithm: ADFS Iterations and Expected Error

In this section, we detail our new ADFS algorithm. In order to obtain it, we introduce a generalized
version of the APCG algorithm [Lin et al., 2015], which we detail in Appendix A. More specifically,
this generalized version allows for arbitrary sampling of coordinates, which is required to use different
probabilities for communications and computations. It also includes corrections for functions that
are strongly convex on a subspace only, which is the case of our augmented dual problem since
the Laplacian of a graph is not full rank. Then we apply it to Problem (5) to get Algorithm 1. Due
to lack of space, we only present the smooth version of ADFS here, but a non-smooth version is
presented in Appendix B, along with the derivations required to obtain Algorithm 1 and Theorem 1.
We denote A† the pseudo inverse of A and Wk� ∈ Rn(1+m)×n(1+m) the matrix such that Wk� =
(e(k) − e(�))(e(k) − e(�))T for any edge (k, �). Note that variables xt, yt and vt from Algorithm 1 are
variables associated with the nodes of the augmented graph and are therefore matrices in Rn(1+m)×d

(one row for each node). They are obtained by multiplying the dual variables of the proximal
coordinate gradient algorithm applied to the dual problem of Equation (5) by A on the left. We denote
σA = λ+

min(A
TΣ−1A) the smallest non-zero eigenvalue of the matrix ATΣ−1A.

Algorithm 1 ADFS(A, (σi), (Li,j), (µk�), (pk�), ρ)

1: σA = λ+
min(A

TΣ−1A), η̃k� =
ρµ2

k�

σApk�
, Rk� = eTk�A

†Aek� // Initialization
2: x0 = y0 = v0 = z0 = 0(n+nm)×d

3: for t = 0 to K − 1 do // Run for K iterations
4: yt =

1
1+ρ (xt + ρvt)

5: Sample edge (k, �) with probability pk� // Edge sampled from the augmented graph
6: zt+1 = vt+1 = (1− ρ)vt + ρyt − η̃k�Wk�Σ

−1yt // Nodes k and � communicate yt
7: if (k, �) is the virtual edge between node i and virtual node (i, j) then
8: v

(i,j)
t+1 = proxη̃ij f̃∗

i,j

�
z
(i,j)
t+1

�
// Virtual node update using fi,j

9: v
(i)
t+1 = z

(i)
t+1 + z

(i,j)
t+1 − v

(i,j)
t+1 // Center node update

10: end if
11: xt+1 = yt +

ρRk�

pk�
(vt+1 − (1− ρ)vt − ρyt)

12: end for
13: return θK = Σ−1vK // Return primal parameter

5



Theorem 1. We denote θ� the minimizer of the primal function F : x �→ �n
i=1 fi(x) and θ�A a

minimizer of the dual function F ∗
A = qA + ψ. Then θt as output by Algorithm 1 verifies:

E
�
�θt − θ��2

�
≤ C0(1− ρ)t, if ρ2 ≤ min

k�

λ+
min(A

TΣ−1A)

Σ−1
kk + Σ−1

��

p2k�
µ2
k�Rk�

, (6)

with C0 = λmax(A
TΣ−2A)

�
�A†Aθ�A�2 + 2σ−1

A (F ∗
A(0)− F ∗

A(θ
�
A))

�
.

We discuss several aspects related to the implementation of Algorithm 1 below, and provide its Python
implementation in supplementary material.

Convergence rate. The parameter ρ controls the convergence rate of ADFS. It is defined by the
minimum of the individual rates for each edge, which explicitly depend on parameters related to the
functions themselves (1/(Σ−1

kk +Σ−1
�� )), to the graph topology (Rk� = eTk�A

†Aek�), to a mix of both
(λ+

min(A
TΣ−1A)/µ2

k�) and to the sampling probabilities of the edges (p2k�). Note that these quantities
are very different depending on whether edges are virtual or not. For example, the parameters µk� for
communication edges are related to the communication matrix by the fact that the Laplacian of the
communication network writes L =

�
communication (k,�) µ

2
k�Wk�. In Section 5, we carefully choose

the parameters µk� and pk� based on the graph and the local functions to get the best convergence
speed. Note that once µk� and pk� are fixed, the choice of the other parameters (such as Rk�, ρ, η and
σA) is fixed as well (no extra tuning is required).

Obtaining Line 6. The form of the communication update (virtual or not) comes from the fact that
the update in direction (k, �) writes A∇k�qA(yt) = Aek�e

T
k�AΣ−1yt = µ2

k�Wk�Σ
−1yt.

Sparse updates. Although the updates of Algorithm 1 involve all nodes of the network, it is actually
possible to implement them efficiently so that only two nodes are actually involved in each update, as
described below. Indeed, Wk� is a very sparse matrix so

�
Wk�Σ

−1yt
�(k)

= (Σ−1
k y

(k)
t −Σ−1

� y
(�)
t ) =

−
�
Wk�Σ

−1yt
�(�)

and
�
Wk�Σ

−1yt
�(h)

= 0 for h �= k, �. Therefore, only the following situations
can happen:

1. Communication updates: If (k, �) is a communication edge, the update only requires
nodes k and � to exchange parameters and perform a weighted difference between them.
Note that the Laplacian of the communication graph is

�
k�

2. Local updates: If (k, �) is the virtual edge between node i and its j-th virtual node,
parameters exchange of line 4 is local, and the proximal term involves function fi,j only.

3. Convex combinations: If we choose h �= k, � then v
(h)
t+1 and y

(h)
t+1 are obtained by convex

combinations of y(h)t and v
(h)
t so the update is cheap and local. Besides, nodes actually need

the value of their parameters only when they perform updates of type 1 or 2. Therefore, they
can simply store how many updates of this type they should have done and perform them all
at once before each communication or local update.

Primal proximal step. Algorithm 1 uses proximal steps performed on f̃∗
i,j : x → f∗

i,j(−µi,jx)−
µ2
ij

2Li,j
�x�2 instead of fi,j . Yet, it is possible to use Moreau identity to express proxηf̃∗

i,j
using only

the proximal operator of fi,j , which can easily be evaluated for many objective functions. The exact
derivations are presented in Appendix B.3.

Linear case. For many standard machine learning problems, fi,j(θ) = �(XT
i,jθ) with Xi,j ∈ Rd.

This implies that f∗
i,j(θ) = +∞ whenever θ /∈ Vec (Xi,j). Therefore, the proximal steps on the

Fenchel conjugate only have support on Xi,j , meaning that they are one-dimensional problems that
can be solved in constant time using for example the Newton method when no analytical solution is
available. Warm starts (initializing on the previous solution) can also be used for solving the local
problems even faster so that in the end, a one-dimensional proximal update is only a constant time
slower than a gradient update. Note that this also allows to store parameters vt and yt as scalar
coefficients for virtual nodes, thus greatly reducing the memory footprint of ADFS.

Unbalanced local datasets. We assume that all local datasets are of fixed size m in order to ease
reading. Yet, the impact of the value of m on Algorithm 1 is indirect, and unbalanced datasets can be
handled without any change. Yet, this may affect waiting time since nodes with large local datasets
will generally be more busy than nodes with smaller ones.
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4 Distributed Execution and Synchronization Time
Theorem 1 gives bounds on the expected error after a given number of iterations. To assess the
actual speed of the algorithm, it is still required to know how long executing a given number of
iterations takes. This is easy with synchronous algorithms such as MSDA or DSBA, in which all
nodes iteratively perform local updates or communication rounds. In this case, executing ncomp

computing rounds and ncomm communication rounds simply takes time ncomp + τncomm. ADFS
relies on randomized pairwise communications, so it is necessary to sample a schedule, i.e., a random
sequence of edges from the augmented graph, and evaluate how fast this schedule can be executed.
Note that the execution time crucially depends on how many edges can be updated in parallel, which
itself depends on the graph and on the random schedule sampled.

Figure 2: Illustration of parallel execution and local synchrony. Nodes from a toy graph execute
the schedule [(A,C), (B,D), (A,B), (D), (C,D)], where (D) means that node D performs a local
update. Each node needs to execute its updates in the partial order defined by the schedule. In
particular, node C has to perform update (A,C) and then update (C,D), so it is idle between times
τ and τ + 1 because it needs to wait for node D to finish its local update before the communication
update (C,D) can start. We assume τ > 1 since the local update terminates before the communication
update (A,B). Contrary to synchronous algorithms, no global notion of rounds exist and some nodes
(such as node D) perform more updates than others.

Shared schedule. Even though they only actively take part in a small fraction of the updates, all
nodes need to execute the same schedule to correctly implement Algorithm 1. To generate this shared
schedule, all nodes are given a seed and the sampling probabilities of all edges. This allows them to
avoid deadlocks and to precisely know how many convex combinations to perform between vt and yt.

Execution time. The problem of bounding the probability that a random schedule of fixed length
exceeds a given execution time can be cast in the framework of fork-join queuing networks with
blocking [Zeng et al., 2018]. In particular, queuing theory [Baccelli et al., 1992] tells us that the
average time per iteration exists for any fixed probability distribution over a given augmented graph.
Unfortunately, existing quantitative results are not precise enough for our purpose so we generalize
the method introduced by Hendrikx et al. [2019] to get a finer bound. While their result is valid when
the only possible operation is communicating with a neighbor, we extend it to the case in which nodes
can also perform local computations. For the rest of this paper, we denote pcomm the probability of
performing a communication update and pcomp the probability of performing a local update. They are
such that pcomp + pcomm = 1. We also define pmax

comm = nmaxk
�

�∈N(k) pk�/2, where neighbors
are in the communication network only. When all nodes have the same probability to participate in
an update, pmax

comm = pcomm. Then, the following theorem holds (see proof in Appendix C):
Theorem 2. Let T (t) be the time needed for the system to execute a schedule of size t, i.e., t
iterations of Algorithm 1. If all nodes perform local computations with probability pcomp/n with
pcomp > pmax

comm or if τ > 1 then there exists C < 24 such that:

P
�
1

t
T (t) ≤ C

n

�
pcomp + 2τpmax

comm

��
→ 1 as t → ∞ (7)

Note that the constant C is a worst-case estimate and that it is much smaller for homogeneous
communication probabilities. This novel result states that the number of iterations that Algorithm 1
can perform per unit of time increases linearly with the size of the network. This is possible because
each iteration only involves two nodes so many iterations can be done in parallel. The assumption
pcomp > pcomm is responsible for the 1+ τ factor instead of τ in Table 1, which prevents ADFS from
benefiting from network acceleration when communications are cheap (τ < 1). Note that this is
an actual restriction of following a schedule, as detailed in Appendix C. Yet, network operations
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generally suffer from communication protocols overhead whereas computing a single proximal
update often either has a closed-form solution or is a simple one-dimensional problem in the linear
case. Therefore, assuming τ > 1 is not very restrictive in the finite-sum setting.

5 Performances and Parameters Choice in the Homogeneous Setting
We now prove the time to convergence of ADFS presented in Table 1, and detail the conditions under
which it holds. Indeed, Section 3 presents ADFS in full generality but the different parameters have
to be chosen carefully to reach optimal speed. In particular, we have to choose the coefficients µ
to make sure that the graph augmentation trick does not cause the smallest positive eigenvalue of
ATΣ−1A to shrink too much. Similarly, ρ is defined in Equation (6) by a minimum over all edges of
a given quantity. This quantity heavily depends on whether the edge is an actual communication edge
or a virtual edge. One can trade pcomp for pcomm so that the minimum is the same for both kind of
edges, but Theorem 2 tells us that this is only possible as long as pcomp > pcomm.

Parameters choice. We define L = AcommA
T
comm ∈ Rn×n the Laplacian of the communication

graph, with Acomm ∈ Rn×E such that Acommek� = µk�(e
(k) − e(�)) for all edge (k, �) ∈ Ecomm,

the set of communication edges. Then, we define γ̃ = min(k,�)∈Ecomm λ+
min(L)n

2/(µ2
k�Rk�E

2).
As shown in Appendix D.2, γ̃ ≈ γ for regular graphs such as the complete graph or the grid,
justifying the use of γ instead of γ̃ in Table 1. We assume for simplicity that σi = σ and that κi = 1+
σ−1
i

�m
j=1 Li,j = κs for all nodes. For virtual edges, we choose µ2

ij = λ+
min(L)Li,j/(σκi) and pij =

pcomp(1 +Li,jσ
−1
i )

1
2 /(nScomp) with Scomp = n−1

�n
i=1

�m
j=1(1 +Li,jσ

−1
i )

1
2 . This corresponds

to using a standard importance sampling scheme for selecting samples. For communications edges
(k, �) ∈ Ecomm, we choose uniform pk� = pcomm/E and µ2

k� = 1/2.

Parameters tuning. The previous paragraph specifies relevant choices of parameters µk� and
pk�. Therefore, ADFS can be run without manual tuning. Extra tuning (such as communication
probabilities) could be performed to adapt to specific heterogeneous situations. Yet, this should
be considered as an extra degree of freedom that other algorithms may not have access to rather
than an extra parameter to tune. For example, the choice of uniform communication probabilities
is automatically enforced by synchronous gossip-based algorithms such as MSDA or DSBA (all
edges are activated at each step). Note that choosing different values of µk� for communication
edges amounts to tuning the gossip matrix, which is generally considered as an input of the problem.
Our specific choice of µij for virtual edges allows to precisely bound the strong convexity of the
augmented problem σA, as shown in Appendix D.1.

Influence of the network topology. The topology of the network only impacts the convergence
rate through the constant γ̃, which is almost equal to the eigengap of the Laplacian of the graph for
regular networks. This dependence is standard, as it can be seen in Table 1. The topology can also
influence the synchronization time since the presence of hubs generally increases waiting time.

Theorem 3. If we choose pcomm = min
�
1/2,

�
1+Scomp

�
γ̃/κs

�−1�
. Then, running Algorithm 1

for Kε = ρ−1 log(ε−1) iterations guarantees E
�
�θKε

− θ��2
�
≤ C0ε, and takes time T (Kε), with:

T (Kε) ≤
√
2C

�
m+

√
mκs +

√
2

�
1 + 4τ

��
κs

γ̃

�
log

�
1/ε

�

with probability tending to 1 as ρ−1 log(ε−1) → ∞, with C0 and C as in Theorems 1 and 2.

Theorem 3 assumes that all communication probabilities and condition numbers are exactly equal
in order to ease reading. A more detailed version with rates for more heterogeneous settings can be
found in Appendix D. Note that while algorithms such as MSDA required to use polynomials of the
initial gossip matrix to model several consecutive communication steps, we can more directly tune
the amount of communication and computation steps simply by adjusting pcomp and pcomm.

6 Experiments
In this section, we illustrate the theoretical results by showing how ADFS compares with MSDA [Sca-
man et al., 2017], ESDACD [Hendrikx et al., 2019], Point-SAGA [Defazio, 2016], and DSBA [Shen
et al., 2018]. All algorithms (except for DSBA, for which we fine-tuned the step-size) were run
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(a) Higgs, n = 4,
m = 104, σ = 1

(b) Higgs, n = 100,
m = 104, σ = 1

(c) Covtype, n = 100,
m = 104, σ = 1

(d) RCV1, n = 100,
m = 103, σ = 10−4

Figure 3: Performances of various decentralized algorithms on the logistic regression task with
m = 104 points per node, regularization parameter σ = 1 and communication delays τ = 5 on 2D
grid networks of different sizes.

with out-of-the-box hyperparameters given by theory on data extracted from the standard Higgs,
Covtype and RCV1 datasets from LibSVM. The underlying graph is assumed to be a 2D grid network.
Experiments were run in a distributed manner on an actual computing cluster. Yet, plots are shown for
idealized times in order to abstract implementation details as well as ensure that reported timings were
not impacted by the cluster status or implementation details. All the details of the experimental setup
as well as a comparison with centralized algorithms can be found in Appendix E. An implementation
of ADFS is also available in supplementary material.
Figure 3a shows that, as predicted by theory, ADFS and Point-SAGA have similar rates on small
networks whereas all other algorithms are significantly slower. Figures 3b, 3c and 3d use a much
larger grid to evaluate how these algorithms scale. In this setting, Point-SAGA is the slowest algorithm
since it has 100 times less computing power available. MSDA performs quite well on the Covtype
dataset thanks to its very good network scaling (dependent on κb rather than κs). Yet, the m

√
κb

factor dominates on the Higgs dataset, making it significantly slower. DSBA has to communicate after
each proximal step, thus having to wait for a time τ = 5 at each step. ESDACD does not perform
well either because m > τ and it has to perform as many batch computing steps as communication
steps. ADFS does not suffer from any of these drawbacks and therefore outperforms other approaches
by a large margin on these experiments. This illustrates the fact that ADFS combines the strengths
of accelerated stochastic algorithms, such as Point-SAGA, and fast decentralized algorithms, such
as MSDA. We see that DSBA initially outperforms ADFS on the RCV1 dataset. This may be due
to statistical reasons, since there is more overlap of the local datasets of the different nodes in this
experiment than in the others. Yet, we see that ADFS has a better rate in the steady state and quickly
catches up. Besides, we still used a value τ = 5 but a much higher value of τ would be more realistic
in this high dimensional setting since local computations are sparse whereas communications are
fully dimensional. We only compare DSBA and ADFS in this setting since the high-dimensionality
of the dataset made the computation of dual gradients expensive, and Point-SAGA is much slower
when using 100 nodes since it is a single-machine algorithm, as shown on the Higgs and Covtype
datasets.

7 Conclusion

In this paper, we provided a novel accelerated stochastic algorithm for decentralized optimization. To
the best of our knowledge, it is the first decentralized algorithm that successfully leverages the finite-
sum structure of the objective functions to match the rates of the best known sequential algorithms
while having the network scaling of optimal batch algorithms. The analysis in this paper could be
extended to better handle heterogeneous settings, both in terms of hardware (computing times, delays)
and local functions (different regularities). Finally, finding a locally synchronous algorithm that can
take advantage of arbitrarily low communication delays (beyond the τ > 1 limit) to scale to large
graphs is still an open problem.
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algorithms for smooth and strongly convex distributed optimization in networks. In International
Conference on Machine Learning, pages 3027–3036, 2017.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized loss
minimization. Journal of Machine Learning Research, 14(Feb):567–599, 2013.

Shai Shalev-Shwartz and Tong Zhang. Accelerated proximal stochastic dual coordinate ascent for
regularized loss minimization. In International Conference on Machine Learning, pages 64–72,
2014.

Zebang Shen, Aryan Mokhtari, Tengfei Zhou, Peilin Zhao, and Hui Qian. Towards more efficient
stochastic decentralized learning: Faster convergence and sparse communication. In International
Conference on Machine Learning, pages 4631–4640, 2018.

Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra: An exact first-order algorithm for decentralized
consensus optimization. SIAM Journal on Optimization, 25(2):944–966, 2015.

Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and Ji Liu. D2: Decentralized training over
decentralized data. In International Conference on Machine Learning, pages 4855–4863, 2018.

Lin Xiao, Adams Wei Yu, Qihang Lin, and Weizhu Chen. DSCOVR: Randomized primal-dual block
coordinate algorithms for asynchronous distributed optimization. Journal of Machine Learning
Research, 20(43):1–58, 2019.

Yun Zeng, Augustin Chaintreau, Don Towsley, and Cathy H Xia. Throughput scalability analysis of
fork-join queueing networks. Operations Research, 66(6):1728–1743, 2018.

11


