
The authors would like to thank all the three reviewers for their useful feedback and the area chair for handling this1

paper. To address the reviewers’ comments, upon acceptance of this paper, we will (i) include numerical experiment2

results, (ii) provide an explicit bound on α, β, and (iii) improve clarity. Some common concerns are as follows.3
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(Left) n = 50 neurons (Right) n = 100 neurons.

•• Empirical Results: To illustrate the pratical performance of nPD-4

VR, we experimented with MountainCar dataset w/ m = 5000. We5

ran Sarsa to obtain a good policy, then we generate a trajectory of the6

state-action pairs. For the nonlinearity, we parametrize V as a two-layer7

neural network with n hidden neurons. We set γ = 0.95, α = 10−4,8

β = 10−8 and constraint as θ ∈ Θ = [0, 1]n, w ∈ [0, 100]n. Trajectory9

of the objective L(θ(k),w(k)) is shown on the right. The objective of10

nPD-VR converges to (close to) zero in 4-5 passes on data, while a single11

timescale SGD on (16) takes a long time (or fail) to converge. Details of this experiment will be found in final version.12

Reviewer 1: We thank the reviewer for providing constructive and supportive comments.13

Typos: We apologize for the typos made. Firstly, thanks to your suggestions, we have corrected the definition of the14

projection Π and fixed the constant for the cost function. Secondly, we clarify that our algorithm only guarantees15

approximate stationary points to the saddle point MSPBE problem. They will be corrected in the final version.16

Assumption 1: We acknowledge that it is not obvious to check. An intuition is that as Θ is bounded and the objective17

is strongly concave in w, the dual update (w.r.t. w) at the kth iteration pulls the dual variable towardsw?(θ(k)), the18

unique maximizer given θ(k), this suggestsw(k) may stay in a bounded set. Details will be provided in the final version.19

Complexity: We will include a comparison to single-timescale primal-dual SGD in terms of computation and memory.20

The per iteration computation complexity for both methods are O(d2) (due to Hessian-gradient mult.), and the memory21

requirement is O(d) for SGD and O(md) for nPD-VR – we only need to store θ(k)i ,w
(k)
i as in (20). Convergence22

speed for nPD-VR is O(1/K) while the SGD is only anticipated to converge at O(1/
√
K) (no known result in the23

literature in this setting). The O(d2) complexity may appear impractical, yet we can apply a diagonal approximation.24

Reviewer 2: We thank the reviewer for providing constructive and supportive comments.25

Contributions w.r.t. Related Work: The suggested references are useful and will be included. We remark that26

[1]-[4] only considered linear function approximation, while this work focuses on the nonlinear setting. Also, the fast27

convergence of primal-dual SAGA for one-sided non-convex problem is new even to the optimization community.28

Existence of β: We checked (a0),(a1),(a2),(a3),(a4) carefully and derived this:29

α ≤ min
{ µ2

8L2
wm

,
1/m

(16L2
w + 2)

,
1/m

12L
2

+ 96L2
w/µ

2

}
, β ≤ min

{ µ2

48L2
w

α,
1

8

(
8mL

2L2
w

µ2
+
Lθ
2

+
µ2

8m

)−1}
.

L
2

= 2L2
w + L2

θ and loose constraints are skipped. To get α, β, we first fix α with the first inequality, then obtain β.30

Reviewer 3: We emphasize that our contributions are substantial, from both TD learning and optimization perspectives:31

First, we disagree that our paper does not provide a real analysis for TD algorithm. Our (10) is actually a TD learning32

problem, and we focus on tackling its batch/offline version (16). While in this setting the randomness in state/action33

becomes decoupled from the learning process, there are vast applications related scenarios with offline available data34

and experience replay – as studied in “Batch Reinforcement Learning” by Lange et al., “Least squares policy evaluation35

algorithms with linear function approximation” by Nedić et al., etc. (references will be added). All these works only36

focused on linear function approximation, while we study the nonlinear case. Nonlinear TD learning is a challenging37

problem due to non-convexity in the underlying optimization. It has only been studied by a few authors, e.g., [4,7],38

and there are no prior finite-time analysis papers. While we consider the batch/offline setting (16), we developed39

an algorithm with finite-time analysis and is efficient. This result is one of the first in the literature and advances the40

analytical understanding for TD learning.41

We also disagree that our analysis follows from standard techniques in optimization. While the use of variance reduction42

(VR) on finite-sum problems is common, applying and analyzing VR on one-sided non-convex primal dual problem43

(that arises from nonlinear TD) is new and non-trivial, even to the optimization community. The only comparable44

results are the recent works [22,24,27] with focuses on two-timescale and batch update methods. Our novelty is also45

evidenced in the analysis in Appendix D where we developed novel analysis techniques to handle the unique challenges.46

An online nonlinear TD learning algorithm, that accounts for Markovian randomness in state/action, is an interesting47

extension. It relates to a stochastic approximation scheme [arXiv:1806.02450] for bilevel programs [arXiv:1802.02246],48

and a finite time analysis is possible. This, however, belongs to a different setting than our focus.49


