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Abstract

Policy evaluation with smooth and nonlinear function approximation has shown
great potential for reinforcement learning. Compared to linear function approxi-
mation, it allows for using a richer class of approximation functions such as the
neural networks. Traditional algorithms are based on two timescales stochastic
approximation whose convergence rate is often slow. This paper focuses on an
offline setting where a trajectory of m state-action pairs are observed. We formulate
the policy evaluation problem as a non-convex primal-dual, finite-sum optimiza-
tion problem, whose primal sub-problem is non-convex and dual sub-problem is
strongly concave. We suggest a single-timescale primal-dual gradient algorithm
with variance reduction, and show that it converges to an e-stationary point using
O(m/e) calls (in expectation) to a gradient oracle.

1 Introduction

In reinforcement learning (RL) [39], policy evaluation aims to estimate the value function that
corresponds to a given policy. It serves as a crucial step in policy optimization algorithms [19, 17, 34,
35] for solving RL tasks. Perhaps the most popular family of methods is temporal-difference (TD)
[9], which estimates the value function by minimizing loss functions that are based on the Bellman
equation. These methods can readily incorporate function approximations and have received huge
empirical success, e.g., when the value functions are parametrized by deep neural networks [26, 36].

In contrast to the wide application of policy evaluation with nonlinear function approximation, most
analytical results on policy evaluation focus on the linear setting [41, 40, 23, 14, 42, 45, 3, 37, 8].
However, when it comes to nonlinear function approximation, TD methods can be divergent [2, 43].
To remedy, Bhatnagar et al. [4] proposed an online algorithm for minimizing a generalized mean-
squared projected Bellman error (MSPBE) with smooth and nonlinear value functions. Asymptotic
convergence of this algorithm is established based on two-timescale stochastic approximation [5, 18]
with diminishing step size. In a similar vein, Chung et al. [7] established the convergence of TD-
learning with neural networks utilizing different step sizes for the top layer and the lower layers.
However, non-asymptotic convergence results for nonlinear policy evaluation remains an open
problem, illustrating a clear gap between theory and practice.

In this work, we make the first attempt to bridge this gap studying policy evaluation with smooth and
nonlinear function approximation. We focus on the offline setting where we are provided with m
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consecutive transitions from the policy to be evaluated, which is an important RL regime [20] and is
closely related to the technique of experience replay [21]. Our contributions are two-fold:

e We recast the MSPBE minimization problem as a primal-dual optimization via the Fenchel’s
duality. Here, the objective function is a finite-sum, and is non-convex in the primal, strongly
concave in the dual — constituting a one-sided non-convex primal-dual optimization problem.

e A variance reduced algorithm [cf. NPD-VR algorithm in Algorithm 1] is developed and applied
to tackle the nonlinear policy evaluation problem. The algorithm performs primal-dual updates
based on a single transition and has low computational complexity per-iteration. Unlike the
existing algorithms, the proposed algorithm uses a fixed set of step sizes which is easier to tune
and requires only a single for-loop to implement. We analyze the non-asymptotic performance
of the algorithm and show that it converges to an e-stationary point of the MSPBE within
O(m/e) calls to a gradient oracle, in expectation.

Note that the optimization problem arisen is strictly more challenging than plain non-convex min-
imization problems that are of recent interest, e.g., [30, 1, 15]. For instance, naive gradient-based
updates for this problem might exhibit bizarre behaviors such as cycling [10]. To the best of our
knowledge, the result in this paper constitutes the first convergence rate analysis for variance reduced
policy evaluation with smooth and nonlinear function approximation.

Related Work Our work extends the research on policy evaluation with linear function approxi-
mation [41, 40, 23, 38, 14, 42, 8, 45, 3, 44, 6, 37, 13]; see [9] for a comprehensive review. Among
these work, our work is closely related to [14, 44, 6], which study single- and multi-agent policy
evaluation in the offline setting. Besides, they utilize the Fenchel’s duality to obtain primal-dual
optimization problems with a finite-sum structure, for which they provide variance-reduced opti-
mization algorithms. Thanks to the linear function approximation, their objectives are strongly
convex-concave, which enables linear rate of convergence. Furthermore, [4, 7] seem to be the only
convergent policy evaluation results with nonlinear function approximation. Both of their algorithms
utilize two-timescale step sizes, which may yield slow convergence. Moreover, their convergence
results depends on two-timescale stochastic approximation [5, 18], which uses the trajectory of an
ODE to approximate that of a stochastic process. When specialized to an offline setting similar to
ours, [4] can be viewed as the primal-dual stochastic gradient algorithm for our problem.

From the optimization point of view, the non-convex primal-dual optimization (a.k.a non-convex min-
max problem) that arise in the above non-linear policy evaluation setting is difficult to tackle. Although
recent works have focused on the non-convex minimization problems [30, 1, 15], only a few have
focused on the non-convex min-max problems. Recently, Daskalakis and Panageas [10], Daskalakis
et al. [11] study the convergence of vanilla gradient descent/ascent (GDA), and the authors focused on
bilinear problems (thus without the non-convex component). An optimistic mirror descent algorithm
is proposed in [25], and its convergence to a saddle point is established under certain strong coherence
assumption. In [28], algorithms for robust machine learning problems have been proposed, where the
problem is linear in one side and non-convex in another side. In [29], a proximally guided stochastic
mirror descent method (PG-SMD) is proposed, which updates the variables simultaneously, while
adopting a double loop update rule in which the variables are updated in “stages”. These algorithms
yield the convergence rate in the order of O(1/v/K) and O(1/K'/4), respectively. Recently, an
oracle based non-convex stochastic gradient descent for generative adversarial networks was proposed
in [31, 32], where the algorithm solves the maximization subproblem up to some small error. It
was shown in [24] that a deterministic gradient descent/ascent min-max algorithm has O(1/K)
convergence rate. In [27], the O(1/K) convergence rate was proved for nonconvex-nonconcave
min-max problems under Polyak- L.ojasiewicz conditions.

Organization In §2 we describe the setup for the policy evaluation problem with smooth (possibly
nonlinear) function approximation. In §3 we describe the variance reduced method for policy
evaluation and present the results from a preliminary numerical experiment. In §4 we provide the
main convergence result in this paper for the proposed variance reduced method, in which a few key
lemmas and a proof outline will be presented.



2 Markov Decision Process and Nonlinear Function Approximation

Consider a Markov Decision Process (MDP) defined by (S JA PR, 7). We have denoted S as the
state space and A as the action space, notice that both S, A can be infinite. Let s € S,a € A be a
state and an action, respectively. For each a € A, the operator P* is a Markov kernel describing the
state transition upon taking action a. For any measurable function f on S, we have

(Pf)(s) = / P(s,8")f(s)ulds"), Vs € S. )
s
Lastly, the reward function R (s, a) is the reward received after taking action a in state s and v € (0, 1)

is the discount factor.

A policy 7 is defined through the conditional probability 7(a|s) of taking action a given the current
state s. Given a policy 7, the expected instantaneous reward at state s is defined as:

R™(s) = Equr(s) [R(s,a)], VseS. )

In the policy evaluation problem, we are interested in the value function V' : § — R that is defined as
the discounted total reward over an infinite horizon with the initial state fixed at s € S:

Vi(s) = E[Zio YR (s8¢, at)|s0 = s, a3 ~ w(:|ss), sp41 ~ P¥(ss, )} 3)

Let M(S) be the manifold of value function given the state space S, we define the Bellman operator

TT: M(S) = M(S) as:
(T7)(s) = E[R(s,0) +7f(la ~ 7([s), 8’ ~ P*(5,)], ¥s € S, @

where f is any measurable function defined on S. Denote V (s) (resp. R™(s)) as the average reward
for the policy when initialized at a state s € S. The Bellman equation [39] shows that the value
function V' : § — R satisfies

V(s)=R"(s)+v(P"V)(s) =T"V(s), Vs €S, 3)

where we have defined the operator P7 (-, -) as the expected Markov kernel of the policy 7:
P7(s,s') = / P(s,s" )w(a|s  \pu(da), Vs,s €S xS. (6)
A
In the above sense, the policy evaluation problem refers to solving for V' : & — R which satisfies (5).

2.1 Nonlinear Function Approximation

Solving for the function V' : & — R in (5) is a non-trivial task since the state space S is large (or even
infinite) and the expected Markov kernel P™ (-, -) is unknown. To address the first issue, a common
approach is to approximate V'(s) by a parametric family of functions.

This paper considers approximating V' : S — R from the family of parametric and smooth functions
given by F = {Vp : 8 € O}, where 0 is a d-dimensional parameter vector and © is a compact,
convex subset of R%. Note that F forms a differentiable manifold. For each 0, Vjp is a map from S to
R and the function is non-linear w.r.t. 8. As we consider the family of smooth functions, the gradient
and Hessian of Vg(s) w.r.t. 6 exists and they are denoted as

go(s) == (VoVp)(s) € RY, Hg(s) := (VgVp)(s) € R™*%, (7

for each s € S and @ € ©. We define Go := E,,=(,)[90(5)gq ()] € R4, where p™(-) is the
stationary distribution of the MDP under policy 7. Throughout this paper, we assume that Gg is a
positive definite matrix for all 8 € ©.

To find the best parameter 6 such that Vg~ : S — R is the closest approximation to a value function
V' that satisfies (5), Bhatnagar et al. [4] proposed to minimize the mean squared projected bellman
error (MSPBE) defined as follows:

J(0) = 3|[Tle (T"Ve = Vo) |, ®)



where the weighted norm ||V = [5p™(s)|V (s)|*u(ds) is defined with the stationary distribu-
tion p™ (s) and Ilg is a projection onto the space of nonlinear functions F w.r.z. the metric || - ||~ (.
ie,forany f: S — R, we have Ilp f = argminy, .~ || f — Vo HZ”(J' The following identities are
shown in [4]:

Espr () [(T™Va(s) = Vo(s))90(5) "] Gg' Egupr () [(T™Val(s) = Va(s))g0(s)]
= max (= 2 Eumyr () [ 00(3)%] + (10, Bunyr () [(T7Va(5) — Vo())go(5)]))

weRY 2

where the last equality is due to the Fenchel’s duality. With the above equivalence, the MSPBE
minimization problem can be reformulated as a primal-dual optimization problem:

J(9) =

1
2
1
5 ©)

Baeyr o [(T7Va(5) = Vool

min max L(0,w), where (10)
0€O weRd

1
L0, w) = (w,Espr(y [(T"Va(s) — Va(s))ga(s)]) — iESNN(,) [(w'go(s))?]. (11)

For convenience, we call 0 as the primal variable and w as the dual variable. For any fixed 8 € O,
the function L(6, w) is strongly concave in w since Gy is positive definite. Moreover, the primal
and dual gradients are given respectively by:

VQL(O,'H}) = Es~p”(~) [(TWVQ(S) — VQ(S) - gg(s)w)Hg(s)w]
+ Eonpr () [(96 (9)w) (VEsrmpm (1) [90(5)] — 90(5))], (12)

VwL(0,w) = Eqwpr () [(T™Vo(s) — Vo(s))g6(5)] — Eenpr (- [g6(5)g6 (s)w].
The above follows from the gradient of the temporal difference error:
Vo (T Ve(s) — Va(s)) = 1Elge(s')|s" ~ p(-[s, a), a ~ p(:|s)] — ge(s) (13)

and we have denoted E,/,~(.|5)[g0(s")] as the expectation considered in the above. The primal dual
projected gradient algorithm proceeds as

gk+1) — p@{g(k) _ akHVgL(@(k),w(’“))}
w* D) = w® 4 gV, LOF) wk),

where Pg denotes the Euclidean projection onto the set ©. Applying the primal dual gradient
algorithm (14) is difficult as evaluating the gradients Vo L(0) w¥)), V., L(0%) w*)) requires
computing the expectations in (12) (and may require computing the second order moment of the
quantities). In addition, while the problem (10) is strongly concave in w, it is potentially non-convex
in @ as the function Vp(-) is non-linear with respect to § € ©. It is unknown if the primal dual
gradient algorithm will converge to a stationary (or saddle) point solution, and if it converges, the rate
of convergence is unknown.

(14)

3 Variance Reduced Policy Evaluation with Nonlinear Approximation

We tackle the policy evaluation problem with smooth function approximation via focusing on a
sampled average version of problem (10). To fix idea, we observe a trajectory of state-action pairs
{51, 01, 82,02, ..., Sm, Qm, Sm+1} generated from the policy 7 that we wish to evaluate and consider
a sample average approximation of the stochastic objective function (11) as:

L(O,w):=L3" £;(0,w), where
L;(0,w) := <'w, [R(si,a;) + Ve (siy1) — Vg(Si)]gg(Si)> — %(ngg(si))Z.

Our goal is to evaluate the stationary point (to be defined later) of the finite-sum, non-convex, primal-
dual problem:

15)

~ _1xm p
min max LO,w) = --> " Li(0,w). (16)



Algorithm 1 Nonconvex Primal-Dual Gradient with Variance Reduction (hPD-VR) Algorithm.

1: Input: a trajectory of the state-action pairs {s1, a1, S2, a2, ..., Sm, Gm, Sm+1} generated from a
given policy; step sizes o, 3 > 0; initialization points 8° € ©, w° € R9.
2: Compute the initial averaged gradients as:

Gy = i Ly VoLi(00, w ), 64} = L3, Vo li(0® w®)  (8)
3: fork=0,1,2,...., K — 1do
4:  Select two indices iy, jx independently and uniformly from {1, ..., m}.
5:  Perform the primal-dual updates:

6+ = Po {0® — (G + (Vo Li, (01, w ™) = VoL, (61, wl))) }

1k 7 i

(19)
w* D) = *) ¢ a(Gﬂf) + (vwﬁik (0(16)7 w(k)) — Vwli, (01(:)7 wl(f))))
where the gradients can be given by (17).
6:  Update the variables as:
oK+ _ O(Z) if i = jg WD w(:) if i = jy 20)
‘ 0r ifi£g, w® ifi #£ j,
k+1 K 1 k) | (k
Go ™ = G+ — (VoL (0W,w™) = VoL, (07, w}))), 5
21
1
G+ — g 1 —(VawL;, O, w®) — v, L5, (08, wl)),
7: end for

o]

: Return: (B(f( ), wE) ), where K is independently and uniformly picked from {1, ..., K} — an
approximate stationary point to (16).

Observe that if m is sufficiently large and as Gl is positive definite, the primal-dual objective function
is strongly concave in w but is possibly non-convex in 6 due to non-linearity. The above problem is
hence a one-sided non-convex problem which remains challenging to tackle.

An exact primal-dual gradient (PDG) algorithm following (14) but replacing the gradients of L(6, w)
by that of £(0, w) may be applied to (15). In fact, through exploiting the one-sided non-convexity,
Lu et al. [24] showed that a similar algorithm to the PDG algorithm indeed converges sublinearly to
a stationary point of (16). However, for large m > 1, implementing the PDG algorithm involves a
high per-iteration complexity since evaluating the full gradient requires €2(m) FLOPS. Our idea is
to derive a fast stochastic algorithm for function approximation through borrowing techniques from
variance reduction methods [16, 12, 33, 30].

To fix notations, let ¢ € {1,...,m} and we define the primal-dual gradient of the ith samples:

( VoLi(0,w) > B ( (0:(8) — gg (si)w) Ho(si)w + (gg (s:)w) (vg0(si+1) — ga(si)) >
(

Vuwli(8,w) | 5:(0)g6(s:) — (g0(s0)Tw)ga(s:)
17)
where 6;(0) := R(s;,a;) + vVa(si+1) — Va(s;) is the ith sampled temporal difference.

We propose the Nonconvex Primal-Dual Gradient with Variance Reduction (nPD-VR) algorithm
for (16) in Algorithm 1. The algorithm is a natural extension of the non-convex SAGA algorithm
introduced by [30] to the primal-dual, finite-sum setting of interest. In specific, line 5 performs the
primal dual gradient update through an unbiased estimate of the gradient — by denoting
=(k k k k
Gy =Gy + (VoLi (W, w®) — VoL, (0 w™)),

1

égf) = G'(u]f) + (vwﬁik (0(k)7w(k)) - vwﬁik (o(k) wz(,lj)))a

ik 0

(22)

as iy, is uniformly picked from {1, ..., m}, therefore (when conditioned on the past random variable

generated up to iteration k) the expected values of the quantities 6ék), éﬂf ) are the primal-dual



gradients Vo £(0%) w*), V,,L(0F) w*)), respectively. Meanwhile, the updates in line 6 keep
refreshing the stored variables in the memory. We remark that these updates are based on the index
7% which is independent from the i; used in line 5. As we shall see in the analysis, this subtle detail
in the algorithm allows for proving that the variance in gradient is reduced [cf. Lemma 3].

As the NPD-VR algorithm employs an incremental update rule similar to the SAGA method, this
algorithm is suitable for the big-data setting when m > 1. Particularly, the cost for the updates in
line 5 and line 6 are independent of m. Moreover, the proposed algorithm utilizes a fixed step size
rule which allows for adaptation to more dynamical data.

We remark that existing approach [4, 7] have studied a two-timescale stochastic approximation
algorithm for tackling the stochastic problem (10); and in a similar vein, a recent related work [22]
proposed a double loop algorithm that requires solving the dual problem (nearly) optimally. In
contrast, the NnPD-VR algorithm runs on a single-timescale. The nPD-VR algorithm is more flexible
and numerically stable, as we shall show in the convergence analysis.

3.1 Preliminary Numerical Experiments

We present preliminary experiments
of learning the value function from
the MountainCar dataset with m = 1
5000 via the nPD-VR algorithm. We 0
ran Sarsa [39] to obtain a good pol-
icy, then we generate a trajectory of

-3
2><10

L(@,w)
L(o,w)

the state-action pairs. To learn the 0

value function, we parameterize Vp(-) ?

as a 2-layer neural network with n om0 w0 e 20 a0 a0 e0o
hidden neurons and consider a for- Epochs Epochs

getting factor v = 0.95. We set the Figure 1: Trajectory of the nPD-VR on the MountainCar
constraints in (16) with © = [0,1]", dataset such that the value function is approximated as a 2-
and in addition we consider w to be layer neural network with n neurons. (Left) n = 50 neurons
bounded in [0, 100]™ for better numer- (Right) n = 100 neurons.

ical stability, which can be enforced

by incorporating a projection step after (19). For the nPD-VR algorithm, we set the step sizes as
a =10"%, 8 = 10~8. Note we have approximated the Hessian in gradient computation (17) with
diagonal approximation. For benchmark, we also experiment with a single-timescale SGD on (16)
with a diminishing step size. Trajectory of the objective 11(0("“7 w®)) is shown in Fig. 1. As seen, the
objective of NPD-VR converges to (close to) zero in 4-5 passes on the data, while a single timescale
SGD on (16) takes a long time (or fail) to converge.

4 Convergence Analysis

Before stating the main results, let us list a few assumptions on the NPD-VR algorithm and the
primal-dual problem (16).

Assumption 1. For any 0 € O, the sum function L(0,w) is p-strongly concave in w.

In the case of policy evaluation problem, Assumption | can be implied by taking a sufficient number
of samples m and exploiting the fact that G in (7) is positive definite.

Assumption 2. The iterates {8%), w¥)}; o generated by the nPD-VR algorithm stay within a
compact set © x W, for some W C R® which is compact and convex.

Due to the Euclidean projection in the primal-update of 8, the condition %) € © holds straightfor-
wardly. Meanwhile it maybe difficult to verify w*) € W as the update is unconstrained in general.
An intuition is that as £(0, w) is strongly concave in w, for each 8 € ©, the maximizer to £(6, w)
is unique, i.e., denoted as w*(@). Also due to the strong concavity, at each iteration k£ and with
a sufficiently small step size, the dual update of w” pulls the dual variable towards w*(@““)) and
therefore w” also stays within a compact set. Nevertheless, in our numerical experiments in Sec. 3.1,
we find that incorporating an additional projection step to the dual update improves the numerical
performance. Lastly, we assume that:



Assumption 3. For each i € {1,...,m}, the gradient VoL;(0,w) (resp. V., L;(0,w)) is Lg
(resp. L., ) Lipschitz. We have:
IVoLi(0,w) — VoLli(6',w')|| < Lo (|0 — 6| + [[w — w'|]),

(23)
IV £i(8, w) = Vo Li(6', w")|| < Luo ([|0 — 6" + [ — w]]),

forany 0,0" € © and any w, w’' € W, where W is defined in Assumption 2.

Assumption 3 is mild and it can be verified by using the compactness of W and checking (17).
In particular, the assumption holds when the parametric family of functions has bounded, smooth
gradient and Hessian.

Summary of Main Results The primal-dual optimization (16) is a one-sided constrained problem,
i.e., only 6 is constrained to © while w is unconstrained. We quantify its convergence via the
following stationarity measure. Define 8 = P {6 — BVoL(0, w)} forany 6, w € © x R%. Observe
that if |@ — 6| = 0 and V,,£(8, w) = 0, then (0, w) is a (first order) stationary point. Inspired by
such observation, the following stationarity measure emerges as a natural metric:

X 1 —
G(O") wk)) = @IIGW — M2 4 |V £(8W, w™)2, (24)

where 8 is defined through (0) w(¥)) as
8" = Po{0W) — BVHLOM,w ™)}, (25)

Observe that if G(8*) w(¥)) = 0, then the primal-dual solution (8w (*)) is a stationary point.

Furthermore, the metric is roughly invariant with the step size since Hg(k) — 0|2 = O(B?). The
following theorem shows the convergence of the nPD-VR algorithm:

Theorem 1. Assume Assumption 1-3 hold true. There exist step size parameters — of the order
B =0(1/m),a = 0O(1/m) — such that it holds for any K € N that

i i FUE) 4 4(3 om(2L2 o+ L2 Vel (0© w©)[]2
]Ej[g(g(K)’w(K))] < ”( m( w Oﬂ))” ( i
K min{a, g}

, o (26)

where FE) .= E[L£(0©), w(©)) — £(8F) w )] and we recall that K is a uniform random
variable drawn from {1, ..., K }.

The above shows that the stationarity measure decays to zero at a sublinear rate. In particular, with the
step size order « = ©(1/m), 8 = O(1/m), the number of iterations required to reach an e-stationary
point [with G(0, w) = O(e)] is O(m/¢), provided that the strong concavity constant i, Lipschitz
constants of the functions Lg, L,, are independent of m.

Comparison to Prior Work Note that non-asymptotic convergence of primal-dual gradient type
algorithms to stationary points with (one sided) non-convex problems has only been recently re-
searched. Of close relationship is [24] which study a block coordinate descent version of single loop
primal-dual gradient method — the primal and dual updates are performed in sequence and complete
gradients are evaluated at each iteration — Lu et al. [24] showed that their algorithm converges to an
e-stationary point using O(1/¢) iterations, under a similar set of assumptions as ours. Since each
iteration of [24] requires a complete gradient evaluation, the number of calls to a gradient oracle is
thus O(m/e). In [22, 29], several proximally guided stochastic mirror descent methods (PG-SMD)
are proposed for primal-dual problems following a closely related set of assumptions. However,
the PG-SMD methods in [22, 29] rely on a double-loop update in which the primal variables are
updated in a faster pace than the dual variables. Nevertheless, [22, 29] show that these methods
converges to an e-stationary point using O(m/¢) gradient oracle calls. To the best of our knowledge,
our algorithm is the first stochastic algorithm that can deal with the finite-sum primal-dual problem
such as (16), using a single-loop, and variance reduced techniques. Furthermore, the convergence
rate of the proposed NPD-VR algorithm is on-par with the state-of-the-art methods.



4.1 Proof Outline

Our analysis follows from combining and improving recent techniques for analyzing non-convex
optimization algorithms in [30, 24]. To facilitate our analysis, we denote the errors in gradient by

eék) = ég’“) — VoL (0% w*)) and el .= G - VL (0% w®), respectively. Detailed proofs
of results in this section can be found in the supplementary materials.

Key Lemmas We begin by establishing a few lemmas for the convergence analysis. In specific, the
first step is to control the change in objective function value with the primal update:

Lemma 1. Under Assumption 3. For any k € N, we have
. . 1y,=
LOFHD 0y — £(0%) *)) < (Lo _ 7) H6,(%:) — W2
27

Lo 1 (k1) _ g2 o 2 palky2
+ (52 - g5 1o+ — 6P 4 Ll

The proof follows by the standard descent property of smooth functions combined with the variance
controlling technique introduced by [30].

Secondly, the progress made by the dual update obeys the following bounds:
Lemma 2. Under Assumption 1-3. For any k € N, the change in objective value is bounded as:
,C(B(k+1)7 w(k-‘rl)) _ [Z(H(’““), w(k)) < aLi)”a(k-‘rl) o B(k) ”2

a3L2 ,ua pa? (28)
(k) Y112 _ (k)2
(20+ 552 = ) 1V £(0W, w™)|? + (o = =) )2,

and the dual gradient is controlled by.
IV L0 w®))|2 < (1 +a2L2 - 2ua> [V £(0% 1) apt=1)) |12

+uoz||VwE(0(k),w(k))||2 + ﬁ(||9(k) _ 0(k—1)||2 —&—aQHeﬂf_l)HQ)

The bound (28) is a standard relation for dual gradient update, while (29) is a consequence of the
strong-concavity of £(8%) w(*)) — it shows that ||V, £(8*) w*))|| contracts after a dual update.

To control the gradient error terms in expectation ||e9 2, Hew |2, we consider [also see Lemma 4 in
the supplementary materials]

1 m
AR — = ok _ k)2 (k) _ 5 (k)2 30
m;{ll P '™ — w0 (30)
and notice that A(®) = (. Using Assumption 3 and when the step size is sufficiently small, we can
establish a bound on Ef:o E[A®)] via the below lemma:
Lemma 3. Under Assumption 3 and the condition on the step sizes that:

d(a, B) := % —max{a, B} —4L% (a® + a1 — %)) > 0. 31

For any K > 1, we have
K
S E[a®)] <
k=0

The proof of the lemma makes use of the property of the NPD-VR algorithm and uses a new technique
in proving the contraction of variance in SAGA-type algorithms. Furthermore, note that if the step
sizes satisfies

K

IE{ |6+ e<k>||2+4a|\vw.c(e<k>,w<k>)u2}. (32)
k‘:O

1
. > max{a, 8} + 8alL?,, (20)
then one has (1 — max{ca, 8} — 4L% (a? + a(1 — 1)))~! < 2. We simplify (32) into
K
S E[A®] Z]E{ %+ — g2 2ma||Vw£(0(k),w(k))||2}. (33)
k=0



Proof of Theorem 1 Equipped with the lemmas above on the progress made by primal-dual updates
and the SAGA gradient estimation, our proof follows by analyzing (27), (28), (29). We remark that
the proof technique used is new, which departs from the common Lyapunov/potential function
approach pursued in recent papers [30, 24] on non-convex analysis.

To illustrate the idea, through carefully controlling the step size, we show that by summing up the
inequalities (27), (28) from k = 0to k = K — 1, we get

Q(min{a, 8}) S p g EG(OF), w®)] < O(a) i Bl VW L0, w®)]?]

(34)
+0(m — %) S5 B[[0%HD) — 0)|[2] + constant.

Using (29), the sum Zf:_ol E[||VwL(8%), w*)||?] can be further upper bounded as the form
constant x Y p ' E[|@% 1) — 0*)||2] 4 constant. Substituting the newly obtained bound, one

can find a step size 3 > 0 such that the constant in front of the term E[|[@**+1) — @(*)||2] is negative.
It follows that we can upper bound the right hand side of (34) with a constant independent of K.

Subsequently, we observe that as K is an independent r.v. uniformly distributed on {0, ..., K — 1},
one has E[Q(O(K), 'w(K))] =K ! Zf:_ol E[G(0®), w*))] and applying (34) yields Theorem 1.

5 Conclusions and Extensions

In this paper, we have studied the policy evaluation problem in the case of smooth (possibly non-linear)
function approximation. We consider an offline setting via sample average approximation of the
Bellman equation. Albeit the sample size m can be large, we propose a simple and efficient, variance
reduced primal dual update strategy to handle the one-sided non-convex optimization problem arisen.
We analyze the non-asymptotic convergence rate of the algorithm towards a stationary point and
demonstrate that it performs on par with state-of-the-art optimization methods, while the latter
requires higher implementation complexity.

Several extensions are worth studying — similar to the SAGA algorithm considered here, the SVRG
algorithm [16] may benefit the nonconvex primal-dual optimization; as suggested by [30], using

mini-batch can accelerate the convergence rate from O(m/K) to O(m3 /K).
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