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Abstract

We consider massive distributed datasets that consist of elements modeled as key-
value pairs and the task of computing statistics or aggregates where the contribution
of each key is weighted by a function of its frequency (sum of values of its elements).
This fundamental problem has a wealth of applications in data analytics and
machine learning, in particular, with concave sublinear functions of the frequencies
that mitigate the disproportionate effect of keys with high frequency. The family
of concave sublinear functions includes low frequency moments (p < 1), capping,
logarithms, and their compositions. A common approach is to sample keys, ideally,
proportionally to their contributions and estimate statistics from the sample. A
simple but costly way to do this is by aggregating the data to produce a table of keys
and their frequencies, apply our function to the frequency values, and then apply
a weighted sampling scheme. Our main contribution is the design of composable
sampling sketches that can be tailored to any concave sublinear function of the
frequencies. Our sketch structure size is very close to the desired sample size and
our samples provide statistical guarantees on the estimation quality that are very
close to that of an ideal sample of the same size computed over aggregated data.
Finally, we demonstrate experimentally the simplicity and effectiveness of our
methods.

1 Introduction

We consider massive distributed datasets that consist of elements that are key-value pairs e =
(e.key, e.val) with e.val > 0. The elements are generated or stored on a large number of servers
or devices. A key x may repeat in multiple elements, and we define its frequency v, to be the
sum of values of the elements with that key, i.e., vz := 3_, |, 4., —, €-val. For example, the keys
can be search queries, videos, terms, users, or tuples of entities (such as video co-watches or term
co-occurrences) and each data element can correspond to an occurrence or an interaction involving
this key: the search query was issued, the video was watched, or two terms co-occurred in a typed
sentence. An instructive common special case is when all elements have the same value 1 and the
frequency v, of each key x in the dataset is simply the number of elements with key x.

A common task is to compute statistics or aggregates, which are sums over key contributions.
The contribution of each key x is weighted by a function of its frequency v,. One example of
such sum aggregates are queries of domain statistics ) ., v, for some domain (subset of keys)
H. The domains of interest are often overlapping and specified at query time. Sum aggregates
also arise as components of a larger pipeline, such as the training of a machine learning model
with parameters 6, labeled examples x € X with frequencies v,, and a loss objective of the form
0(X;0) =3 f(ve)L(x;0). The function f that is applied to the frequencies can be any concave
sublinear function. Concave sublinear functions, which we discuss further below, are used in
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applications to mitigate the disproportionate effect of keys with very high frequencies. The training
of the model typically involves repeated evaluation of the loss function (or of its gradient that also
has a sum form) for different values of §. We would like to compute these aggregates on demand,
without needing to go over the data many times.

When the number of keys is very large it is often helpful to compute a smaller random sample
S C X of the keys from which aggregates can be efficiently estimated. In some applications,
obtaining a sample can be the end goal. For example, when the aggregate is a gradient, we can use
the sample itself as a stochastic gradient. To provide statistical guarantees on our estimate quality,
the sampling needs to be weighted (importance sampling), with heavier keys sampled with higher
probability, ideally, proportional to their contribution (f(v,)). When the weights of the keys are
known, there are classic sampling schemes that provide estimators with tight worst-case variance
bounds (28] 13, (6] (10} [32} 33]..

The datasets we consider here are presented in an unaggregated form: each key can appear multiple
times in different locations. The focus of this work is designing composable sketch structures
(formally defined below) that allow to compute a sample over unaggregated data with respect to
the weights f(v,). One approach to compute a sample from unaggregated data is to first aggregate
the data to produce a table of key-frequency pairs (x, v, ), compute the weights f(v,), and apply a
weighted sampling scheme. This aggregation can be performed using composable structures that are
essentially a table with an entry for each distinct key that occurred in the data. The number of distinct
keys, however, and hence the size of that sketch, can be huge. For our sampling application, we
would hope to use sketches of size that is proportional to the desired sample size, which is generally
much smaller than the number of unique keys, and still provide statistical guarantees on the estimate
quality that are close to that of a weighted sample computed according to f(v).

Concave Sublinear Functions. Typical datasets have a skewed frequency distribution, where
a small fraction of the keys have very large frequencies and we can get better results or learn a
better model of the data by suppressing their effect. The practice is to apply a concave sublinear
function f to the frequency, so that the importance weight of the key is f(v, ) instead of simply its
frequency v,. This family of functions includes the frequency moments v2 for p < 1, In(1 + v,,),
capy(v,;) = min{T,v,} for a fixed T' > 0, their compositions, and more. A formal definition
appears in Section [2.3]

Two hugely popular methods for producing word embeddings from word co-occurrences use this form
of mitigation: word2vec [25] uses f(v) = v°-5 and f(v) = v°-7 for positive and negative examples,
respectively, and GloVe [30] uses f(r) = min{7,v%7} to mitigate co-occurrence frequencies.
When the data is highly distributed, for example, when it originates or resides at millions of mobile
devices (as in federated learning [24]), it is useful to estimate the loss or compute a stochastic gradient
update efficiently via a weighted sample.

The suppression of higher frequencies may also directly arise in applications. One example is
campaign planning for online advertising, where the value of showing an ad to a user diminishes
with the number of views. Platforms allow an advertiser to specify a cap value 7" on the number of
times the same ad can be presented to a user [[19}29]]. In this case, the number of opportunities to
display an ad to a user x is a cap function of the frequency of the user f(v,) = min{T, v, }, and
the number for a segment of users H is the statistics ) | f(v). When planning a campaign, we
need to quickly estimate the statistics for different segments, and this can be done from a sample that
ideally is weighted by f(v).

Our Contribution. In this work, we design composable sketches that can be tailored to any concave
sublinear function f, and allow us to compute a weighted sample over unaggregated data with respect
to the weights f(v,). Using the sample, we will be able to compute unbiased estimators for the
aggregates mentioned above. In order to compute the estimators, we need to make a second pass over
the data: In the first pass, we compute the set of sampled keys, and in the second pass we compute
their frequencies. Both passes can be done in a distributed manner.

A sketch S(D) is a data structure that summarizes a set D of data elements, so that the output of
interest for D (in our case, a sample of keys) can be recovered from the sketch S(D). A sketch
structure is composable if we can obtain a sketch S(D; U Ds) of two sets of elements D; and Do
from the sketches S(D1) and S(Ds) of the sets. This property alone gives us full flexibility to



parallelize or distribute the computation. The size of the sketch determines the communication and
storage needs of the computation.

We provide theoretical guarantees on the quality (variance) of the estimators. The baseline for our
analysis is the bounds on the variance that are guaranteed by PPSWOR on aggregated data. PPSWOR
[32}133] is a sampling scheme with tight worst-case variance bounds. The estimators provided by our
sketch have variance at most 4/((1 — £)?) times the variance bound for PPSWOR. The parameter
€ < 1/2 mostly affects the run time of processing a data element, which grows near-linearly in 1 /.
Thus, our sketch allows us to get approximately optimal guarantees on the variance while avoiding
the costly aggregation of the data. We remark that these guarantees are for soft concave sublinear

functions and the extension to any concave sublinear function incurs a factor of (14 1/(e — 1))* in
the variance. The space required by our sketch significantly improves upon the previous methods
(which all require aggregating the data). In particular, if the desired sample size is k, we show that
the space required by the sketch at any given time is O(k) in expectation and is well concentrated.

We complement our work with a small-scale experimental study. We use a simple implementation of
our sampling sketch to study the actual performance in terms of estimate quality and sketch size. In
particular, we show that the estimate quality is even better than the (already adequate) guarantees
provided by our worst-case bounds. We additionally compare the estimate quality to that of two
popular sampling schemes for aggregated data, PPSWOR [32,|33]] and priority (sequential Poisson)
sampling [28 [13]]. In the experiments, we see that the estimate quality of our sketch is close to what
achieved by PPSWOR and priority sampling, while our sketch uses much less space by eliminating
the need for aggregation. This paper presents our sketch structures and states our results. The full
version (including proofs and additional details) can be found in the supplementary material.

Related Work. Composable weighted sampling schemes with tight worst-case variance for aggre-
gated datasets (where keys are unique to elements) include priority (sequential Poisson) sampling
[28L [13]], VarOpt sampling [6} [10], and PPSWOR [32} [33]]. We use PPSWOR as our base scheme
because it extends to unaggregated datasets, where multiple elements can additively contribute to the
frequency/weight of each key. A prolific line of research developed sketch structures for different
tasks over streamed or distributed unaggregated data [26, 16} [1]. Composable sampling sketches
for unaggregated datasets have the goal of meeting the quality of samples computed on aggregated
frequencies while using a sketch structure that can only hold a final-sample-size number of distinct
keys. Prior work includes a folklore sketch for distinct sampling (f(~) = 1 when v > 0) [22,[34],
sum sampling (f(v) = v) [O 18] 14} 11] based on PPSWOR, cap functions (f () = min{T, v}) [7],
and universal (multi-objective) samples with a logarithmic overhead that simultaneously support all
concave sublinear f. In the current work we propose sampling sketches that can be tailored to any
concave sublinear function and only have a small constant overhead. An important line of work uses
random linear projections to estimate frequency statistics and to sample. In particular, £, sampling
sketches [[17, 27, 2} 211 20]] sample (roughly) according to f(r) = vP. These sketches have higher
overhead than sample-based sketches and are more limited in their application. Their advantage is that
they can be used with super-linear (e.g., moments with p € (1, 2]) functions of frequencies and can
also support signed element values (the turnstile model). For the more basic problem of sketches that
estimate frequency statistics over the full data, a characterization of sketchable frequency functions is
provided in [5, 3]]. Universal sketches for estimating £, norms of subsets were recently considered in
[4]. A double logarithmic size sketch (extending [[15] for distinct counting) that computes statistics
over the entire dataset for all soft concave sublinear functions is provided in [8]. Our design builds on
components of that sketch.

2 Preliminaries

Consider a set D of data elements of the form e = (e.key, e.val) where e.val > 0. We denote
the set of possible keys by X'. For akey z € X, we let Maxp(z) := max.cpje.key=- €.val and
SuMp(2) == > ceple ey €-val denote the maximum value of a data element in D with key
z and the sum of values of data elements in D with key z, respectively. Each key z € X that
appears in D is called active. If there is no element e € D with e.key = z, we say that z is
inactive and define Maxp(z) := 0 and Sump(z) := 0. When D is clear from context, it is omitted.
For a key z, we use the shorthand v, := Sump(z) and refer to it as the frequency of z. The
sum and the max-distinct statistics of D are defined, respectively, as Sump := > ., e.val and



MxDistinctp := ). » Maxp(z). For a function f, fp := 3 ., f(Sump(2)) = > » f(v2)is

the f-frequency statistics of D.

2.1 The Composable Bottom-% Structure

In this work, we will use composable sketch struc-
tures in order to efficiently summarize streamed or dis-
tributed data elements. A composable sketch structure
is specified by three operations: The initialization of an
empty sketch structure s, the processing of a data ele-
ment e into a structure s, and the merging of two sketch
structures s; and so. To sketch a stream of elements, we
start with an empty structure and sequentially process
data elements while storing only the sketch structure.
The merge operation is useful with distributed or par-
allel computation and allows us to compute the sketch
of a large set D = (J, D; of data elements by merg-
ing the sketches of the parts D;. In particular, one of
the main building blocks that we use is the bottom-k
structure [12], specified in Algorithm[I] The structure
maintains k data elements: For each key, consider only
the element with that key that has the minimum value.
Of these elements, the structure keeps the k elements
that have the lowest values.

2.2 The PPSWOR Sampling Sketch

Algorithm 1: Bottom-% Sketch Structure

// Initialize structure
Input: the structure size k
s.set < (0 // Set of <k key-value
pairs
// Process element
Input: element e = (e.key, e.val), a
bottom-£ structure s
if e.key € s.set then
replace the current value v of e.key in
‘ s.set with min{v, e.val}
else
insert (e.key, e.val) to s.set
if |s.set| = k + 1 then
Remove the element ¢’ with
maximum value from s.set

// Merge two bottom-k structures
Input: s1,s2 // Bottom-k structures
Output: s // Bottom-k structure

P < s1.set U so.s€t

s.set < the (at most) k elements of P with
lowest values (at most one element per key)

In this subsection, we describe a scheme to pro-
duce a sample of k keys, where at each step the
probability that a key is selected is proportional
to its weight. That is, the sample we produce
will be equivalent to performing the following
k steps. At each step we select one key and
add it to the sample. At the first step, each key
r € X (with weight w,,) is selected with proba-
bility wy/ 3, wy. Ateach subsequent step, we
choose one of the remaining keys, again with
probability proportional to its weight. This pro-

Algorithm 2: PPSWOR Sampling Sketch

// Initialize structure

Input: the sample size k

Initialize a bottom-k structure s.sample
// Algorithm

// Process element

Input: element e = (e.key, e.val), PPSWOR

sample structure s

v ~ Exple.val]

Process the element (e.key, v) into the bottom-k
structure s.sample

// Merge two structures si,s2 to obtain s

cess is called probability proportional to size
and without replacement (PPSWOR) sampling.

A classic method for PPSWOR sampling is the

following scheme [32] [33]]. For each key = with weight w,, we independently draw seed(x) ~
Exp(w,). The output sample will include the k keys with smallest seed(x). This method together
with a bottom-k structure can be used to implement PPSWOR sampling over a set of data elements
D according to v, = Sump (). The sampling sketch is presented here as Algorithm This sketch
is due to [9] (based on [18, 14} [11]).

s.sample < Merge the bottom-k structures
s1.sample and sz.sample

2.3 Concave Sublinear Functions

A function f : [0, 00) — [0, 00) iS soft concave sublinear if for some a(t) > 0 it can be expressed as

fv) = La)(v) == /000 a(t)(1 —e "H)dt . (1)

L¢[a](v) is called the complement Laplace transform of a at v. The sampling schemes we present in
this work will be defined for soft concave sublinear functions of the frequencies. However, this will
allow us to estimate well any function that is within a small multiplicative constant of a soft concave
sublinear function. In particular, we can estimate concave sublinear functions. These functions can



Algorithm 3: Sampling Sketch Structure for f

// Initialize empty structure s

Input: k: Sample size, €, a(t) > 0

Initialize s. SumMax // SumMax sketch of
size k (Algorithm [5)

Initialize s.ppswor // PPSWOR sketch of size
k (Algorithm

Initialize s.sum <= 0// A sum of all the
elements seen so far

Initialize s.y <— oo // Threshold

Initialize s.Sideline // A composable
max-heap/priority queue

// Merge two structures s; and s2 to s (with

same k,ec,a and same h in SumMax
sub-structures)

$.8UM <— S1.5um + S2.5um

$ s sz'im

s.Sideline + merge s1.Sideline and s2.Sideline
// merge priority queues.

s. SumMax < merge s1. SumMax and
s2.SumMax // Merge SumMax structures
(Algorithm

while s.Sideline contains an element
g = (g.key, g.val) with g.val > s.y do

Remove g from s.Sideline
if [, a(t)dt > 0 then
L Process element (g.key, [  a(t)dt) by

g.val
s. SumMax

// Process element
Input: Element e = (e.key, e.val), structure s
Process e by s.ppswor
s.sum <— s.sum + e.val
8.y = a?im
foreachi € [r|do // r =k/e
y ~ Exple.val] // exponentially
distributed with parameter e.val
// Process in Sideline
if The key (e.key, t) appears in s.Sideline then
Update the value of (e.key, 7) to be the
minimum of y and the current value

else
| Add the element ((e.key, i), y) to s.Sideline

while s.Sideline contains an element
g = (g.key, g.val) with g.val > s.y do
Remove g from s.Sideline
if [, a(t)dt > 0 then
L Process element (g.key, [ a(t)dt) by
s. SumMax

—

be expressed as

flv) = /000 a(t) min{1, vt}dt 2)

for a(t) > 0. The concave sublinear family includes all functions such that f(0) = 0, f is monotoni-
cally non-decreasing, 9, f(0) < oo, and 9% f < 0.

Any concave sublinear function f can be approximated by a soft concave sublinear function as
follows. Consider the corresponding soft concave sublinear function f using the same coefficients
a(t). The function f closely approximates f pointwise [8]:

(1—1/e)f(v) < J(v) < f(v) .
Our weighted sample for fwill respectively approximate a weighted sample for f.

Consider a soft concave sublinear f and a set of data elements D with the respective frequency
function W : (0, 00) — N U {0} (for every v > 0, W (v) is the number of keys with frequency v in
D). The statistics fp = > f(Sump(x)) = > f(v;) can then be expressed as fp = L°[W][a]g®

with the notation ,

CWal? = / a(t) LW (t)dt 3)

Y
3 Sketch Overview

Given a set D of elements e = (e.key, e.val), we wish to maintain a sample of k keys, that will be
close to PPSWOR according to a soft concave sublinear function of their frequencies f(v,;). Atahigh
level, our sampling sketch is guided by the sketch for estimating the statistics fp due to Cohen [8§]].

Recall that a soft concave sublinear function f can be represented as f(w) = L[a](w)y® =
Jo7 a(t)(1 — e=**)dt for a(t) > 0. Using this representation, we express f(;) as a sum of two
contributions for each key x:

fva) = Lal(va)g + Lal(v2)T,



where + is a value we will set adaptively while processing the elements. Our sampling sketch is
described in Algorithm 3] It maintains a separate sampling sketch for each set of contributions. In
order to produce a sample from the sketch, these separate sketches need to be combined. Algorithm 4]

describes how to produce a final sample from the sketch.

Running Algorithm [3|and then Algorithm |4|requires one
pass over the data. In order to use the final sample to esti-
mate statistics, we need to compute the Horvitz-Thompson

inverse-probability estimator f(v,) for each of the sam-
pled keys. Informally, the estimator for key x in the sam-
ple is f(v;)/Pr[z in sample] (and O for keys not in the
sample). To compute the estimator, we need to know the
values f(v,) for the keys in the sample, which we get

Algorithm 4: Produce a Final Sam-

ple from a Sampling Sketch Structure

(Algorithm 3)

Input: sampling sketch structure s for f

Output: sample of size k of key and
seed pairs

if [77 a(t)dt > 0 then

foreach e € s.Sideline do

from a second pass over the data, and the conditional in-
clusion probabilities (the denominator), that have a closed
form and can be computed. The parameter ¢ trades off the
running time of processing an element with the bound on
the variance of the inverse-probability estimator.

(e-key, [° a(t)dt) by sketch

L Process element
s. SumMax

foreach e € s. SumMax .sample do
e.val < rxe.val // scale
sample by r

if [ ta(t)dt > 0 then
foreach e € s.ppswor.sample do

e.val
L e.val < TT ta(tyd

sample « merge
s. SumMax .sample and
s.ppswor.sample // bottom-k
merge (Algorithm

We continue with an overview of the different compo-
nents of the sketch. As mentioned above, we represent
f(vz) = La](ve)g + L[a](v2)S°, and for each sum-
mand we maintain a separate sample of size k (which
will later be merged). For £¢[a](v, )], we maintain a stan-
dard PPSWOR sketch. For £¢[a](v;)3°, we build on a
result from [, which shows a way to map each input
element into an temporary “output” element with a ran-
dom value, such that if we look at all the output elements,
E[Max(z)] = L[a](v.)3°. These components were used
in [8]] to estimate the f-statistics of the data.

else
| sample + s. SumMax .sample

return sample

However, in this work we need to produce a sample according to L° [a](ux)go (as opposed to
estimating the sum of these quantities for all keys). In particular, when we look at the output elements,
we only see their random value, but we are interested in producing a weighted sample according to
their expected value. For that, we introduce the analysis of PPSWOR with stochastic inputs, which
appears in Section[d] In that analysis, we establish the conditions that are needed in order for the
sample according to the random values to be close to a sample according to the expected values.

The conditions in the analysis of stochastic PPSWOR require creating k /e independent output
elements for each element we see, and subsequently, the sample we need for the range £¢[a] (V)
is a PPSWOR sample of the output elements according to the weights SumMax(z) (defined in

Section[3)). That is the purpose of the SumMax sketch structure, which is presented in Section [5

Each of the two samples we maintain (the PPSWOR and SumMax samples) has a fixed size and
stores at most k keys at any time. The ~y threshold is chosen to guarantee that we get the desired
approximation ratio. The only structure that can use more space is the Sideline structure. As part
of the analysis, we bound the size of the Sideline and show that in expectation, it is O(k) and also
provide worst case bounds on its maximum size during the run of the algorithm. The output elements
that are processed by the SumMax sketch have a value that depends on v (which changes as we
process the data), and the purpose of the Sideline structure is to store elements until v decreases
enough that their value is fixed (and then they are removed from the Sideline and processed by the
SumMax sketch).

The analysis results in the following main theorem.
Theorem 3.1. Letk > 3and0 < e < % Algorithmsand produce a stochastic PPSWOR sample

of size k — 1, where each key x has weight V,, that satisfies f(v,) < E[V;] < ﬁf(ui) The
per-key inverse-probability estimator of f (v, ) is unbiased and has variance

— 4f(l/$) Zze f(VZ)
Var [f(Vac)} < 1- E)2(1;(_ 2)



The space required by the sketch at any given time is O(k) in expectation. Additionally, with proba-
bility at least 1 — 6, the space will not exceed O (k + min{log m, log log (SMUIZ((IV;/)»} + log (%))

at any time while processing D, where m is the number of elements in D, Min(D) is the minimum
value of an element in D, and Sum(W) is the sum of frequencies of all keys.

4 Stochastic PPSWOR Sampling

In the PPSWOR sampling scheme described in Section [2.2] the weights w, of the keys were part
of the deterministic input to the algorithm. In this section, we consider PPSWOR sampling when
the weights are random variables. We will show that under certain assumptions, PPSWOR sampling
according to randomized inputs is close to sampling according to the expected values of these random
1nputs.

Formally, let X be a set of keys. Each key z € X is associated with r,, > 0 independent random
variables Sy 1, ..., Sy, in the range [0, T'] (for some constant T' > 0). The weight of key « is the
random variable S, := ) _'*, S, ;. We additionally denote its expected weight by v, := E[S,], and
the expected sum statistics by V' := > v,.

A stochastic PPSWOR sample is a PPSWOR sample computed for the key-value pairs (z, S,;). That
is, we draw the random variables .S, then we draw for each z a random variable seed(x) ~ EXp[S.],
and take the k keys with lowest seed values.

The following result bounds the variance of estimating v, using a stochastic PPSWOR sample. We
consider the conditional inverse-probability estimator of v,. Note that even though the PPSWOR
sample was computed using the random weight S, the estimator v, is computed using v, and will
be m for keys « in the sample. It suffices to bound the per-key variance and relate it to
the per-key variance bound for a PPSWOR sample computed directly for v,. We show that when
V' > Tk, the overhead due to the stochastic sample is at most 4 (that is, the variance grows by a
multiplicative factor of 4). The proof details would also reveal that when V' >> T'k, the worst-case
bound on the overhead is actually closer to 2.

Theorem 4.1. Let k > 3. In a stochastic PPSWOR sample, if V' > Tk, then for every key x € X,
the variance Var[v,] of the bottom-k inverse probability estimator of v, is bounded by

4o,V
Var[o,] < ——.
o] < 375
5 SumMax Sampling Sketch
We present an auxiliary sketch that processes elements e = (e.key, e.val) with keys e.key =

(e.key.p, e.key.s) that are structured to have a primary key e.key.p and a secondary key e.key.s. For
each primary key z, we define

SumMaxp(z) := Y Maxp(z)

z|z.p=z

where Max is as defined in Section [2] If there are no elements e € D such that e.key.p = z, then
by definition Maxp(z) = 0 for all z with z.p = x (as there are no elements in D with key z) and
therefore SumMaxp (z) = 0. The SumMax sampling sketch (Algorithm[5) produces a PPSWOR
sample of primary keys x according to weights SumMaxp (z). Note that while the key space of the
input elements contains structured keys of the form e.key = (e.key.p, e.key.s), the key space for the
output sample will be the space of primary keys only. The sketch structure consists of a bottom-k
structure and a hash function h. We assume we have a perfectly random hash function h such that
for every key z = (2.p, z.s), h(z) ~ Exp[1] independently (in practice, we assume that the hash
function is provided by the platform on which we run). We process an input element e by generating
a new data element with key e.key.p (the primary key of the key of the input element) and value

ElementScore(e) := h(e.key)/e.val

and then processing that element by our bottom-k% structure. The bottom-k structure holds our current
sample of primary keys. By definition, the bottom-k structure retains the k£ primary keys = with



Algorithm 5: SumMax sampling sketch

// Initialize empty structure s

Input: Sample size k

s.h < independent random hash with range Exp[1]

Initialize s.sample // A bottom-k structure (Algorithm

// Process element ¢ = (e.key,e.val) where e.key = (e.key.p, e.key.s)

Process element (e.key.p, s.h(e.key)/e.val) to structure s.sample // bottom-k process element
// Merge structures si, s (with si.h = s2.h) to get s

s.h < s1.h // si1.h = s2.h

s.sample < Merge s1.sample, sz.sample// bottom-k merge (Algorithm

minimum
seedp(x) 1= min ElementScore(e) .
e€Dle.key.p=z
To establish that this is a PPSWOR sample according to SumMaxp, (z), we study the distribution of
seedp(x).

Lemma 5.1. For all primary keys x that appear in elements of D, seedp(zx) ~
Exp|SumMaxp(x))]. The random variables seedp(x) are independent.

Note that the distribution of seedp(x), which is Exp[SumMaxp(z)], does not depend on the
particular structure of D or the order in which elements are processed, but only on the parameter
SumMaxp (x). The bottom-% sketch structure maintains the & primary keys with smallest seedp (z)
values. We therefore get the following corollary.

Corollary 5.2. Given a stream or distributed set of elements D, the sampling sketch Algorithm[3]
produces a PPSWOR sample according to the weights SumMaxp (x).

6 Experiments

We implemented our sampling sketch in Python and report here the results of experiments on real
and synthetic datasets. The implementation follows the pseudocode except that we incorporated
two practical optimizations: removing redundant keys from the PPSWOR subsketch and removing
redundant elements from Sideline. These optimizations do not affect the outcome of the computation
or the worst-case analysis, but reduce the sketch size in practice. We used the following datasets:

e abcnews [23]]: News headlines. For each word, we created an element with value 1.

o flicker [31]: Tags used by Flickr users to annotate images. The key of each element is a
tag, and the value is the number of times it appeared in a certain folder.

e Three synthetic generated datasets that contain 2 x 105 data elements. Each element has
value 1, and the key was chosen according to the Zipf distribution (numpy.random.zipf),
with Zipf parameter values « € {1.1,1.2,1.5}. The Zipf family in this range is often a good
model to real-world frequency distributions.

We applied our sampling sketch with sample size parameter values k& € {25, 50, 75,100} and set the
parameter € = 0.5 in all experiments. We sampled according to two concave sublinear functions: the
frequency moment f(v) = v and f(v) = In(1 + v). Tables reports aggregated results of 200
repetitions where we used the final sample to estimate the sum ) . f(v). For error bounds, we

list the worst-case bound on the CV (which depends only on k and € and is < 1/ V/k) and report the
actual normalized root of the average squared error (NRMSE). In addition, we report the NRMSE that
we got from 200 repetitions of estimating the same statistics using two common sampling schemes
for aggregated data, PPSWOR and priority sampling, which we use as benchmarks. We also consider
the size of the sketch after processing each element. Since the representation of each key can be
explicit and require a lot of space, we separately consider the number of distinct keys and the number
of elements stored in the sketch. We report the maximum number of distinct keys stored in the sketch
at any point (the average and the maximum over the 200 repetitions) and the respective maximum
number of elements stored in the sketch at any point during the computations (again, the average
and the maximum over the 200 repetitions). We can see that the actual error reported is significantly



Table 1: Experimental Results: f(v) = 2%, In(1 + v)

k NRMSE Benchmark max #keys max #elem
bound actual || ppswor Pri. ave max_|| ave max
fv) = u0‘5,200reps
Dataset: abcnews (7.07 X 108 elements, 91.7 X 103 keys)
25 0.834  0.213 0.213  0.217 31.7 37 50.9 76
50 0.577  0.142 0.128  0.137 58.5 66 95.1 136
75 0.468  0.120 0.111  0.110 85.4 94 134.8 181
100 0.404  0.105 0.098  0.103 111.2 120 171.1 256
Dataset: £1ickr (7.64 X 10° elements, 572.4 X 10° keys)
25 0.834  0.200 0.190  0.208 31.2 37 53.1 77
50 0.577  0.144 0.147  0.142 57.8 64 94.6 130
75 0.468  0.123 0.114  0.110 83.7 91 131.7 175
100 0.404 0.115 0.095  0.099 108.9 116 173.4 223
Dataset: zipf1.1(2.00 X 100 elements, 652.2 X 10° keys)
25 0.834  0.215 0.198  0.217 31.8 39 52.5 75
50 0.577  0.123 0.137  0.131 58.7 66 95.0 130
75 0.468  0.109 0.115  0.114 84.7 91 135.2 186
100 0.404  0.106 0.103  0.097 111.2 119 176.3 221
Dataset: zipf1.2 (2.00 x 10° elements, 237.3 x 10° keys)
25 0.834  0.199 0.208  0.214 31.1 38 53.2 83
50 0.577  0.144 0.138  0.145 57.9 65 98.4 139
75 0.468  0.122 0.116  0.124 83.9 90 138.2 173
100 0.404  0.098 0.109  0.096 109.6 115 179.2 227
Dataset: zip£1.5 (2.00 x 109 elements, 22.3 X 107 keys)
25 0.834  0.201 0.207  0.194 30.1 35 53.4 74
50 0.577  0.152 0.139  0.142 56.1 60 101.5 136
75 0.468  0.115 0.115  0.112 81.6 86 151.8 199
100 0.404  0.098 0.094  0.086 107.1 113 196.3 248
f(v) = In(1 4+ v), 200 reps
Dataset: abcnews (7.07 x 100 elements, 91.7 X 10° keys)
25 0.834  0.208 0.217 _ 0.194 29.5 34 9.1 71
50 0.577  0.138 0.136  0.142 54.9 60 80.9 110
75 0.468  0.130 0.099  0.117 80.0 85 111.1 152
100 0.404  0.102 0.115  0.103 104.9 109 140.7 184
Dataset: flickr (7.64 X 10 elements, 572.4 X 10 keys)
25 0.834 0.227 || 0.199  0.180 28.0 31 14 69
50 0.577  0.144 0.151  0.129 53.3 59 72.2 101
75 0.468  0.119 0.121  0.109 78.2 83 99.8 135
100 0.404  0.097 0.104  0.095 102.7 106 130.3 166
Dataset: zip£1.1 (2.00 x 10° elements, 652.2 x 10° keys)
25 0.834  0.201 0.204  0.234 29.2 34 188 71
50 0.577  0.127 0.132  0.129 54.4 58 80.4 119
75 0.468  0.116 0.122  0.110 79.6 84 110.9 142
100 0.404  0.107 0.106  0.104 104.5 109 139.8 165
Dataset: zip£1.2 (2.00 X 10° elements, 237.3 X 10° keys)
25 0.834  0.209 0.195  0.218 28.5 33 48.0 72
50 0.577  0.147 0.144  0.139 53.7 57 80.5 113
75 0.468  0.120 0.111  0.113 78.8 84 111.4 143
100 0.404  0.098 0.106  0.102 103.9 108 140.3 173
Dataset: zipf1.5 (2.00 x 10° elements, 22.3 X 107 keys)
25 0.834  0.210 0.197  0.226 27.2 30 45.2 66
50 0.577  0.141 0.146  0.149 52.1 55 78.9 104
75 0.468  0.124 0.112  0.106 76.9 79 110.5 146
100 0.404  0.100 0.101  0.099 101.9 104 139.1 173

lower than the worst-case bound. Furthermore, the error that our sketch gets is close to the error
achieved by the two benchmark sampling schemes. We can also see that the maximum number of
distinct keys stored in the sketch at any time is relatively close to the specified sample size of k£ and
that the total sketch size in terms of elements rarely exceeded 3k, with the relative excess seeming to
decrease with k. In comparison, the benchmark schemes require space that is the number of distinct
keys (for the aggregation), which is significantly higher than the space required by our sketch.

7 Conclusion

We presented composable sampling sketches for weighted sampling of unaggregated data tailored
to a concave sublinear function of the frequencies of keys. We experimentally demonstrated the
simplicity and efficacy of our design: Our sketch size is nearly optimal in that it is not much larger
than the final sample size, and the estimate quality is close to that provided by a weighted sample

computed directly over the aggregated data.
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