
We sincerely thank all the three reviewers for their valuable comments, and what follow are our itemized responses.1

To Reviewer 1:2

Table 1: Performance comparison on Charades-STA (%).

Method R@1,
IoU@0.5

R@1,
IoU@0.7

R@5,
IoU@0.5

R@5,
IoU@0.7

Ours-SCDM 54.44 33.43 74.43 58.08
Ours-DF 45.63 25.45 70.47 48.52

1. Regarding the differences between our SCDM and condi-3

tional BN or dynamic filter: Conditional BN is exploited in4

style transfer and text-to-image synthesis, where the normaliza-5

tion vectors γ and β are shared across batch or instance. However,6

it is not easily amenable to the video grounding task. For ground-7

ing, the input sentences need to make detailed interactions with8

different video temporal units and thereby determine accurate temporal boundaries. As such we proposed SCDM, in9

which the modulation parameters are explicitly generated, based on the sentence semantics, to manipulate temporal10

video features. The modulation procedure also dynamically evolves by attending to different words in sentences with11

respect to different temporal feature units, in order to establish detailed and accurate multimodal semantic interactions12

over time. Regarding dynamic filter, all the convolutional kernels are generated based on the inputs, which requires13

careful optimization tuning. Meanwhile, it also leads to larger model size and memory footprint. In contrast, our SCDM14

is more lightweight by controlling only the parameters of sentence-guided feature normalization. We also replace15

SCDM by dynamic filters, leading to inferior results, as shown in Table 1 above.16

2. Regarding the engineering part for this task: For tackling the video grounding task, we follow previous work to17

determine the feature types. The setting of temporal dimensions follows the spirit of decaying them layer by layer (by18

half). For other hyper-parameters, we empirically set the filter number to 512, and also find that the performance is19

insensitive to this hyper-parameter. The trade-off hyper-parameters of the two loss terms are determined by balancing20

the numerical scales of them. As such, our model does not require too much tuning effort.21

3. Regarding missing related works: Thanks for your reminding. We will include this work in our revised paper.22

4. Regarding feature types in Table 1: In Table 1 of the main paper, CTRL, MCF, ACRN, ACL, TGN, and Xu et23

al. use C3D features, while SAD uses VGG16 features, and MAN uses I3D features. We adopt C3D features for the24

TACoS dataset following most methods. Since MAN achieves the best performance on the Charades-STA dataset, we25

also use I3D features on this dataset for fair comparisons. We will clarify the feature types in our revised paper.26

To Reviewer 2:27

1. Regarding SCDM results under different IoUs: The lower results for low IoUs on Charades-STA and TACoS are28

mainly due to the biased annotations. For example, in Charades-STA, the annotated ground-truth segments are 10s on29

average while the video duration is only 30s on average. Randomly selecting one candidate segment can also achieve30

high R@5, IoU@0.5 value as 0.5435 (even comparable with CTRL), but the R@5,IoU@0.7 is much lower as 0.2065. It31

indicates that the Recall values under higher IoUs are more stable and convincing even considering the dataset biases.32

2. Regarding computing word attention in the multimodal fusion: We also tried computing word attention in the33

multimodal fusion but found no improvements. Since the multimodal fusion aims to let each video clip meet and34

interact with the general sentence semantics and does not directly serve for temporal boundary predictions, using35

globally averaged word features seems to be enough for this stage.36

3. Regarding SCDM only performed on several temporal convolutional layers: The performance degenerates if37

SCDM is only performed on several temporal convolutional layers. Since each temporal convolutional layer corresponds38

to one specific temporal scale, discarding SCDM in any layer will compromise the prediction accuracy of that scale.39

To Reviewer 3:40

1. Regarding missing related works: Thanks for your reminding. We will include this work in our revised paper.41

Table 2: Comparison of model running efficiency and model size.
Method Run-Time Model Size Memory Footprint
CTRL 3.75s 22M 1214MB
ACRN 5.29s 128M 8432MB
ACL 4.52s 23M 1458MB

Ours-SCDM 0.81s 15M 4481MB

2. Regarding run-time, model size and memory footprint: Ta-42

ble 2 shows the average run-time to localize one sentence, model43

size (#param) and memory footprint. The methods with released44

codes are compared on one Tesla M40 GPU. It can be observed45

that ours-SCDM achieves the fastest run-time with the smallest46

model size. We will release the code if accepted.47

3. Regarding original contributions of the proposed approach: Temporal sentence grounding in video differs from48

the traditional action detection in the sense that the former provides an explicit sentence guidance for determining target49

video segments. Therefore, how to fully establish the semantic interactions between video and sentence, and fully50

leverage the sentence semantics to detect and link corresponding video contents over time are very crucial. To solve51

these issues, our model is not one trivial extension of SSD. The proposed SCDM leverages the sentence information to52

control the modulation parameters of the feature normalization procedure in the hierarchical convolution architecture,53

instead of simply fusing the sentence features and video features. Such a sentence guided temporal feature modulation54

stimulates the temporal convolution operation to link sentence-related video contents over time. The modulation of55

temporal features also dynamically evolves for different video contents, enabling better multimodal alignment over56

time to support more precise boundary predictions. Moreover, our proposed SCDM is lightweight, and achieves the57

superior performance compared against the state-of-the-art approaches.58


