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Abstract

Motivated by Fisher divergence, in this paper we present a new set of information
quantities which we refer to as gradient information. These measures serve as
surrogates for classical information measures such as those based on logarithmic
loss, Kullback-Leibler divergence, directed Shannon information, etc. in many
data-processing scenarios of interest, and often provide significant computational
advantage, improved stability, and robustness. As an example, we apply these
measures to the Chow-Liu tree algorithm, and demonstrate remarkable performance
and significant computational reduction using both synthetic and real data.

1 Introduction

A standard step in data fitting and statistical model selection is the application of a loss function
(sometimes referred to as scoring function) of the form s : (y, p) — s(y, p), where y is the observed
data and p(-) is a density function. In this context, it is assumed that the smaller s(y, p), the better y
fits p. A class of such functions that exhibit desirable statistical properties has been studied in the
context of proper scoring functions [1]. As a special case, the logarithmic loss sz, (y, p) = — log p(y)
has served as the cornerstone of classical statistical analysis because of the intimate relation between
logarithmic loss and the Kullback-Leibler (KL) divergence. In fact, the KL divergence from a density
function p to the true data-generating density function p,. can be written as E{s, (y,p)} + ¢, where
the expectation of sy, (y, p) is taken under p,), and c is a constant that only depends on p... Therefore,
minimizing the sample average n~' >_"" | s1(y;,p) over a set of candidates density functions p
asymptotically amounts to finding the closest candidate p to p, in KL divergence.

A notable use of the logarithmic loss function is in maximum likelihood estimation for parametric

models. By minimizing n=! > | s1,(y;, pp) over 6 € © for some parameter space ©, an estimate 6
is obtained to represent the data generating model. Some commonly used objective loss function such
as cross-entropy loss for classification and squared loss for regression can be regarded as special cases
of the logarithmic loss function. Another important use of the logarithmic loss is in model comparison
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and model selection. In the presence of multiple candidate models, data analysts have to follow a
model selection principle to select the most appropriate model for interpretation or prediction. The
log-likelihood function, which can be regarded as logarithmic loss evaluated at observed data, play a
crucial role in most state-of-the-art principles, including information criteria, Bayesian likelihood,
Bayes factors (see, e.g., [2,3] and the references therein). The logarithmic loss and KL divergence
are also foundational in inference and information processing, exemplified by their use in variational
inference [4], contrastive divergence learning [5], learning with information gains [6-8], etc.

Is the logarithmic loss always the best choice? In a series of recent works, a new loss function (also
referred to as the Hyvarinen scoring function) [9] has been proposed as a surrogate for logarithmic
loss function for statistical inference and machine learning. It is defined by

1
su(yp) = 5[Vylogp)II* + Ay log p(y), (1)

where V denotes the gradient and A denotes the Laplacian, and p is defined over an unbounded
domain. It was first proposed in the context of parameter inference, which can produce (in a way
similar to the logarithmic loss) a consistent estimation of 6 of a probability density function pg(y) [9].
It was shown that sy (y, p) is computationally simpler to calculate in most cases, particularly in the
case of intractable normalizing constants. This enables a richer class of models for prediction given
the same amount of computational resources. It was discovered that the Hyvarinen loss also enjoys
desirable properties in Bayesian model comparison and provides better interpretability for Bayesian
model selection in the presence of vague or improper priors, compared with classical Bayesian
principles based on marginal likelihoods or Bayes factors [10, 11].

On the other hand, from an information theoretic view, the differential entropy (for a random variable)
is the expectation of its logarithmic loss, the mutual information (between two random variables) is
the KL divergence from the product density function to the joint density function, and the mutual
information is linked to differential entropy through the chain rule. This view is crucial to motivate
our new information measures. Motivated by the definition of Shannon’s differential entropy, it is
natural to define the “entropy” for the Hyvarinen loss. This turns out to be intimately related to Fisher
divergence. In fact the classical mutual information may be re-defined based on Fisher divergence
instead of KL divergence. It turns out that these quantities still can be interpreted in information
theoretic manner.

The main contributions of our work are described next. First, motivated by some recent advances in
scoring functions, we propose a set of information quantities to measure the uncertainty, dependence,
and stability of random variables. We study their theoretical properties, resemblance and difference to
the existing counterpart measures widely used in machine learning. Second, we provide interpretations
and applications of the proposed gradient information, e.g. to fast tree approximation and community
discovery. Third, we point out some interesting directions enabled by gradient information, including
a new form of causality for predictive modeling, channel coding where the stability of channel
capacity is of a major concern, and general inequalities that could have been highly nontrivial from
an algebraic point of view.

The paper is outlined as follows. In Section 2, we introduce the Hyvarinen loss function and extend
its scope from unbounded to bounded continuous random variables. We introduce a set of quantities
in Section 2.3 referred to as gradient information measures, and study their properties, interpretations,
and implications for machine learning. In Section 3, we provide some applications of the proposed
concepts, including a new algorithm for graphical modeling that parallels the classical Chow-Liu tree
algorithm (but from an alternative perspective that can enjoy computational benefit), a new supervised
learning algorithm, and a community discovery algorithm. Proofs and three additional applications
of gradient information are included in the supplementary material.

2 Gradient Information and Its Properties

2.1 Fisher divergence and Hyvarinen loss

We focus on multidimensional continuous random variables (often denoted by Y € R?) in this paper
unless otherwise stated. We use p and E to denote the density function and expectation with respect
to the distribution of Y, respectively. The jth entry of Y is denoted by Y; (j = 1,...,d). Let [Y, Z]
denote the joint vector that consists of Y and Z. We often use upper and a lower case letters to
respectively denote a random variable and its realizations. We consider a class of distributions P over



R that consists of distributions whose Lebesgue density p(-) is a twice continuously differentiable
function. We use A (u, V') to denote a Gaussian distribution of mean p and covariance V. We
use ||-|| to denote the Euclidean norm. For a joint density function p(-) of (Y, Z), let pz|y denote
(y,2) — p(z | ), a function of both y and z.

Suppose p denotes the true-data generating distribution that is usually unknown. Given observed
data yq, ..., yn, a typical machine learning problem is to search for a density function ¢ (usually
parameterized) over some space that is the most representative of the data. For that purpose, a
measure of difference between probability distributions are needed. The existing literature largely
replies on the KL divergence, which is defined by Dxr(p,q) = E{logp(Y)/logq(Y)} (to log
base ¢), where p(-), q(+) are two probability density functions and E is with respect to p. Note that
Dx1(p,q) = —E{log q(Y)} + E{logp(Y)} and it is only minimized at ¢ = p (almost everywhere).
This implies that —E{log ¢(Y") } is minimized at ¢ = p. A direct consequence of the above observation
is the use of maximum likelihood estimation that minimizes — > _-_; log ¢(y;). By the law of large
numbers, the estimator ¢ can be proved to be close to p for large n. A possible alternative to KL
divergence is the following. The Fisher divergence from a probability density function ¢(+) to another

p(-)is
De(p.q) = /HV log 4(y) — Vy log p() |2p(y)dy,

where V is the gradient. It is also referred to as generalized Fisher information distance in physics,
and has found application in statistical inference (see, e.g., [12]), with the difference that the V
operator is with respect to the parameter instead of data. By similar argument as in the KL divergence,
the following result was proved in [9].

Proposition 1. Suppose that the following regularity conditions hold: 1) p(-) and V ,logq(-) on
(—00,00) are continuously differentiable, 2) E|log V,p(y)||* and E|log V,q(y)||* are finite, 3)
limy |00 P(y) - 95logq(y) =0, (j = 1,...,d). Then we have

1
De(p.q) = E{su(y,0)} + 5E[Vy loga(y)|* 2
where s (y, q), referred to as the Hyvarinen loss function, is defined in (1).

Suppose that a set of observations vy, ..., y, are drawn from some unknown p, a sample analog
of E{sy(y,q)} can be used to search for the ¢ from a space of density functions to approximate
p (just like the maximum likelihood estimation). Hyvarinen loss function is particularly powerful
when the probability density function is only known up to a multiplicative normalization constant.
This is because (1) is invariant under a constant multiplication of p(y). There has been an extension
to discrete random variables (see, e.g., [13, 14]). We refer to [9, 11] for more details of Hyvarinen
loss in the context of i.i.d. and time series settings. Also, an interesting relationship between Fisher
divergence and Stein’s operator was pointed out in [15], where the Hyvarinen loss is cast as a specific
Stein’s operator.

2.2 Extension of Hyvarinen loss to partially bounded random variables

The definition in (1) only applies to unbounded random variables. Following an extension to
nonnegative variables [16], we further extend the Hyvarinen loss to general continuous variables
including unbounded, partially-bounded, and fully bounded cases. Suppose that y; € [a;, b;], where
aj,b; (j = 1,...,d) may be at infinity (unbounded case). Suppose there exist nonnegative integers
o, B; such that

p(y) - 9y, loga(y) - (y; — a;)** (y; — b;)*" =0 3)
asy — a;r ory — bj_ for all densities ¢ within the specified model class and true data-generating
density p. In the above condition, when a; = —oo (resp. b; = 00), it is understood that o;; = 0,

(y; —a;)?* =1 (resp. B; = 0, (y; —b;)*% = 1). Note that the assumption made in [9] corresponds
to the unbounded case with a; = 3; = 0. For any two vectors u, v € R%, and a vector of nonnegative
integers w € N9, let u o v and u® denote vectors in R? whose jth entry is U;jvj, u;l’ , respectively.

As a special case, v° = 1 for any scalar v. Clearly, the operation o is associative. Let a, b, o, 3 € R?,
and consider

Dy (p.q) / 1{Vloga(y) — Viegp(y)} o {(y — a)} o {(y — B} *p(y)dy. (&)



Table 1: Examples of gradient entropy versus Shannon entropy for common distributions

DISTRIBUTION PARAMETER DENSITY SUPPORT G-ENTROPY S-ENTROPY
; 2 2
GAUSSIAN MEAN (1, VARTANCE o2 1L~ (y=n)*/20 (=00, 00) -1 Liog(2nec?)
2ng 20 2
BY a—1_—By 1 () _
GAMMA SHAPE o AND RATE 3 @y Y e [0, o) 3(ax+1) a + log 5+ (1 - a)y(a)
EXPONENTIAL RATE \ P [0, o) -1 1 — log(X)
1 .
UNIFORM RANGE a, b ﬁ [a, b] 0 log(b — a)
qal_ _ 14y ,a 1
PARETO SCALE a, SHAPE ~y ST [a, co) Ty log 5+ 14 5

Theorem 1. Dv (p, q) defined as above equals zero if and only if p equals q almost everywhere.
Moreover, assume condition (3) holds, p(-) and V, log q(-) are continuously differentiable, and
aj+fB5 9. 2 —
Jmax Ely® "% 9;logh(y)l” <oco, forh=p.q.

Then Dy (p, q) can be written as sv (y, q) + cp, where ¢, is a constant that only depends on p, and
sv(y, q) is defined as

d
ST Ioga)} o (= Yo (= VP + 32 04, { 04, Towatu)) 0y — 07 (3~ 1) .
j=1

The regularity conditions made in Theorem 1 are mild and hold for many commonly used distributions
such as sub-Gaussian and sub-exponential families. By Theorem 1, the extended sv (¥, ¢) inherits
the properties of (1) and is applicable to a wide range of continuous random variables. To summarize
its desirable properties, sv (y, q) is

(P1) only a function of y, Vq(y), V2q(y), which usually has an analytic form to evaluate (for
parametric q);

(P2) invariant under scaling of ¢, which can be quite favorable when the parameterized density q is
known up to a normalizing constant;

(P3) statistically proper [1] in the sense that its expectation is only minimized at ¢ = p (almost
everywhere) where q is the true data generating density;

(P4) applicable to a wide range of continuous random variables whose entries may be bounded or
unbounded or a mixture of them.

2.3 Information quantities and properties

The classical information quantities largely rely on KL divergence. For instance, the Shannon entropy
is the expectation of the log loss function, and the mutual information is the KL divergence between
the product of marginal densities and joint density. Likewise, starting from the Hyvarinen loss, we
define the following entropy, conditional entropy and mutual information that are generally referred
to as gradient information.

Definition 1 (Gradient information). For a continuous random variable Y = [Y1, Y] we define the
following information quantities:

e Entropy: Hy(Y) = E{sv (Y, py)};
e Conditional entropy: Hy(Z | Y) = Ep{sv([Y, Z],pzv)}:
e Mutual information: Iv(Y,Z) = Dy (py z,pyDz)-
where py , pz denotes the marginal densities and py z denotes the joint density of variables Y, Z.

For partially bounded random variables in Subsection 2.2, we let «, 5 be the smallest nonnegative
integers such that (3) holds. The above definition can be extended to discrete random variables but
we leave this extension to a future work. The gradient entropy (denoted by ‘G-entropy’) along with
the Shannon entropy (‘S-entropy’) for some common distribution families are tabulated in Table 1.

Let ¢ = p in Theorem 1, it is not difficult to observe the following identity.

Ho(¥) =~ 5J(Y) 0



where J(Y) = |[{Vlogp(y)} o {(y — a)®} o {(y — b)?}||%. For unbounded Y and zero vectors
o, B, J(Y) reduces to [, p(y)||V, log p(y)||*dy which is sometimes called the Fisher information
of Y that has many implications in physics (see, e.g. [17]). A related but different definition of
Fisher information is the variance of the partial derivative with respect to the parameter of a log-
likelihood function. As a consequence of (5), we have Hy (Y') < 0. Its interpretation is elaborated in
Subsection 2.4. Also, Iy (Y, Z) equals to zero if and only if Y and Z are independent.

Next we show that the above information quantities enjoy desirable quantities such as chain rule and
conditioning reduces entropy that are reminiscent of the properties of Shannon Information. However,
they can be more suitable for machine learning due to computational and interpretation advantages
we shall point out.

Theorem 2. Suppose the assumptions in Theorem I hold. We have the chain rules
Iv(Y;Z) = Hy(Y) + Hv(Z) — Hy(Y, Z) (6)
Hy(Y,Z)=Hv(Y)+ Hv(Z|Y) (7
As a by product of Theorem 2, Iv(Y, Z) = Hy(Z) — Hy(Z | Y) > 0 (i.e. conditioning reduces
entropy), with equality if and only if Y, Z are independent.
We may also define the following “generalized association”:
Iv(Y;2)
Hy(Y,Z)

between two random variables Y, Z. It can be proved that I. € [0,1), and I. = 0 if and only if Y, Z
are independent. In the bivariate Gaussian case, I, = p? where p is the usual correlation.

1.(Y; Z) = (®)

It is worth mentioning that not all properties of gradient information are counterparts of those in
classical Shannon information. Examples are given in the following proposition that are used in
proving our results in the supplementary material.

Proposition 2. For any two unbounded random variables Y, Z whose joint distribution exists and
satisfies conditions of Proposition 1, we have

Hy(Z|Y)<E{Hv(Z|Y =y)} 9
where the expectation on the right hand side is with respect to Y .

Suppose further that Y and Z are independent, then
Hy(Y+Z|Z)=2Hy(Y). (10)

The Shannon differential entropy of a random variable measures its descriptive complexity. The
Fano’s inequality also gives lower bounds of model selection or message decoding error, where
a larger bound implies more complexity in description. In contrast, the entropy and conditional
entropy in Definition 1 measure the uncertainty in prediction. The following Proposition 3 serves as a
continuous analog of Fano’s inequality that bounds the mean-squared prediction error, and is also
intimately related to the Cramér-Rao bound. It can be extended to multidimensional case but we do
not pursue the details here.

Proposition 3. Suppose that Y is an unbounded scalar random variable to predict, and X is a
variable (providing side information about Y) such that the joint distribution of (X,Y) exists.

Suppose that Y(X) is any estimate of Y which is only a function of X. Then the expected 1.2
prediction error satisfies
- 1
E(Y - Y(X))? >

= oHe(Y | X) an

with equality if and only if' Y is Gaussian and independent with X, and Y(X) =FEY.

2.4 Stability interpretation

In modern machine learning systems with uncertainty in data generating processes, stability is a key
issue of concern. We introduce a relationship between the gradient information and KL divergence
based information that is widely used in machine learning. For brevity, we narrow our scope to
unbounded continuous random variables and introduce the following definition and results. Its proof
follows from the de Bruijn’s identity, Theorem 1 of [18], and Theorem 2 in Section 2.



Algorithm 1 Generic tree approximation based on gradient information

input Observations of Y7,...,Y),
output A first-order dependence trees 7, and (optlonally) a joint density p(y1, . . ., yp) built on 7
1: Estimate I'v(Y;,Y;) foreach i # j,4,5 = 1,.
2: Build an undirected weighted graph with p Vertlces representing Y1, ..., Y),, where the weight between

vertices 4, j is Iv (Y3, Y;).

3: Apply Kruskal’s algorithm [21] (or alternative algorithms) to obtain a maximum spanning tree 7.

4: Derive or approximate the conditional distribution p(y: | 4/;(;)) that corresponds to each edge (4, j(¢)), and
thus obtain p(y1, ..., Yp)-

Definition 2 (Perturbed random variable). Let Y be any random variable with a finite variance with
density p(-). Let e be an standard Gaussian random variable independent of Y. Let Y, =Y + /ve
with density p, (-).

Proposition 4. We have

d d
HV(Y) = _%H(Yv) |U:07 DV(p7 q) = _%DKL(panU) |v:0
d d
HV(Z | Y) = _%H(Z’U | YU) ‘v:O IV(Y7Z) = _%I(Y'mzv) IU:O

The identities in Proposition 4 indicates that gradient information describes the non-equilibrium
dynamics of the its counterpart under KL divergence. It further indicates that minimizing gradient
information is intimately related to enhancing stability. We refer to [18, 19] for more discussions on
this. Moreover, the non-negativeness of Iy (Y'; Z) means that perturbing Y and Z with independent
noises will decrease their mutual information. Similar interpretations apply to other three identities.

3 Applications of Gradient Information

3.1 Tree approximation of joint distributions

Many machine learning tasks involve high dimensional data where the number of observations is
large compared to the number of variables. One approach that we often undertake is divide and
conquer (e.g. grouping different dimensions in smaller subsets, removing irreverent connections).
We then bootstrap the models we learn for the subsets or sparse graphs to the entire data dimensions.
An effective approach is to assume a tree dependence structure among the variables to simplify the
learning, compress data, or to find good initial states for more complex graphical models. In light of
the properties (P1)-(P4) of sp(y, p) (in Subsection 2.2), we expect to develop faster and more stable
algorithms for approximating high-dimensional data distributions based on gradient information.
In particular, given an nth-order probability distribution p(X1, ..., X,) with X, being continuous
random variables, we wish to find the following optimal first-order dependence tree p..

Definition 3. A distribution p,,(X1,...,Xy) (10 € T),) follows the optimal first-order dependence
tree, if Dv(p,pr,) < Dv(p,p:) for all T € T,, where T,, is the set of all possible first-order
dependence trees (see Fig. la for an illustration).

An analogous definition is given in the pioneering work of Chow [20], but we use Dy instead of
Dkt here to measure the discrepancy of approximation. Exhaustive search is a not computationally
feasible for any moderately large n, since there are n"~2 dependence trees in 7}, (by Cayley’s
formula). Motivated by the Chow-Liu algorithm [20] (based on the KL divergence), we provide the
following theorem that enables tree approximation of joint distributions using a fast greedy algorithm
with O(n)-complexity. The problem is formulated as the search for a maximum spanning tree. The
procedure is outlined in Algo. 1.

Theorem 3. Under the assumptions made in Theorem 2, the best tree approximation of a joint
distribution p(y1, . ..,yn) under Fisher divergence Dy (-,-) is the maximum spanning tree with
weight Iy (Y, Yj@i)), where (i, (1)) is an edge that denotes p(Y; | Yj(;)).

We apply our algorithm to a protein signaling flow cytometry dataset. The dataset encodes the
presence of p = 11 proteins in n = 7466 cells. It was first analyzed using Bayesian networks
in [22] who fit a directed acyclic graph to the data, later studied in [23] using different methods. The
tree can be used as a graphical visualization tool to highlight the most highly correlated genes in
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Figure 1: (a) A joint distribution with tree structure p(z1,...,2g) = p(x1) p(as | 1) p(zs | 22)
p(xs | z2) p(xe | x5) p(xs | x1) p(ag | x3), and (b) the tree discovered from the protein data.

the correlation network. We suppose that any pair of random variables Y7, Y5 follow the following
exponential family distribution p(y1, y2) o< exp{01y3y3 + 0237 + 0393 + O4y1y2 + O5y1 + Oy}
Note that the constant is a function of # and it does not have a closed form. The above distribution is
a special case of a class of exponential family distributions with normal conditionals. This family is
intriguing from the perspective of graphical modeling as, in contrast to the Gaussian case, conditional
dependence may also express itself in the variances [23]. To estimate the density, we minimize the
sample average of (1), and obtain a closed form solution 0 (to be elaborated in the supplement). Based
on the estimates, we can obtain a consistent estimator of the entropy Hy (Y1, Y2) by a sample analog
of (5), using Monte Carlo samples generated from the estimated density. To calculate Hy (Y7) and
Hy (Y3), we calculate the marginal distributions in closed form, and obtain a consistent estimation of
entropy and mutual information by sample analogs. The details are elaborated in the “derivations
for exponential family example” section in the supplement. Figure 1b shows the network structure
after applying our method to the data using the proposed approach. Our result is consistent with the
estimated graph structure in [22]. We record the computational time by running different number of
variables (p from 2 to 11) in Fig 2a, which shows the gradient information based algorithm is more
than 100 times faster than Shannon information based algorithm.

It is worth noting that the method of Algo. 1 can also be used to perform supervised classification.
Given features X, ..., X, and their corresponding label Y, we calculate the tree distribution that
approximates the joint distribution of p(x1, . . ., x,) for each class of Y. We then perform a likelihood

——Gradient information
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Figure 2: (a) Comparison of computational costs of Chow-Liu tree approximation using classical
Shannon information [20] and gradient information (proposed here), depicted in logarithmic scale;
(b) The communities of states detected from quarterly growth rates of payroll employment for the
U.S. states (the number of communities is set to be four).



Table 2: Classification accuracy of three methods for data with different levels of correlation

p=03 p=05 p=07 p=09

CHOW-LIU TREE 0.610 0.829 0.965 0.994
RANDOM FOREST 0.607 0.759 0.886 0.953
ELASTIC NET 0.535 0.537 0.541 0.526

Algorithm 2 Community discovery based on mutual information

input Observations of Y7, . .., Y}, number of communities k£ (1 < k < p)

output A partition of {1,...,p} into k subsets
1: Apply Algo. 1 to obtain the spanning tree 7 (with weights being the mutual information).
2: Remove the k edges that have the smallest weights from 7.
3: The output partition is represented by the connected components of the current 7.

ratio test to decide which class a given feature vector x1, . .., x, is associated with. In calculating
the joint density, we let the spanning tree be rooted at a node with the largest geodesic distance
and the rest of the nodes are ranked according to the height directed preorder (HDP) traversal of
the tree [24]. In a synthetic data experiment, we generate two classes of data from an independent
Gaussian vector [X1, ..., X,]. The covariance Cov(X;, X;) of the first class of data is pl*~7|, and
the covariance of the second class is (—p)‘i*j | (for i, 7 =1,...,p). We generated 100 data in each
of the 1000 replications and record the cross validation accuracy (with 30% test data) in Table 2. We
also compared our method (denoted by “Chow-Liu tree”) with two popular classification methods,
random forest [25] and elastic net [26]. The results indicate the superior performance of our method.
Elastic net does not work well mainly because the two classes of data here are not linearly separable.

3.2 Community discovery

Many real-world networks of data exhibit a community structure: the vertices of the network are
partitioned into groups such that the statistical dependence is high among vertices in the same group
and low otherwise. Most of the community detection methods (e.g. stochastic block models [27])
focus on the concentration of linkages in random graphs. Here we provide an alternative perspective
using gradient mutual information. More precisely, we do not perform communities discovery from
edge connections, but from dependence among variables/vertices (assuming multiple observations at
each vertex). Such dependence is quantified by mutual information. And the obtained communities
can be understood as disjoint subsets of variables that exhibit large within-community dependence
and small inter-community dependence. We propose a fast community discovery approach based on
Algo. 1. The main idea, summarized in Algo. 2, is to first obtain a spanning tree that best represents
the joint distribution, and then construct communities by removing weak-dependence connections.

In a data study, we considered a dataset constructed in [28]. The data was also studied in [29] using
an algorithm that recovers the communities using the eigenvectors of the sample covariance matrix.
The data consists of quarterly growth rates of payroll employment for the U.S. states (excluding
Alaska and Hawaii) from the second quarter of 1956 to the fourth of 2007, which results in a panel of
n = 48 time series over T' = 207 periods. The data are seasonally adjusted and annualized. We show
the results of applying our clustering algorithm to the sample in Figure 2b. The communities roughly
match the clusters of Fig. 3 in [29] using a partial correlation network model.

4 Conclusion

Most existing methods for determining randomness, conditional randomness, causality, discrepancy,
information gains, etc. in data representation and modeling largely depend the on KL divergence and
logarithmic loss. To facilitate interpretability and reduce computation, at least in some occasions, we
introduced gradient information as an alternative to classical information measures widely used in
machine learning. A future work is to apply the gradient information to community detection with
more complicated graph structures instead of tree structures. Another future work is to apply gradient
information to evaluate information gains and information bottleneck with a reduced computational
complexity. An anonymous reviewer also pointed out the possibility of defining cross entropy as
another analogy to the classical KL divergence based cross entropy.
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Supplementary material

The supplementary material includes proofs of theoretical results, and two additional applications
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derivation of some general inequalities using gradient information (which are otherwise highly
nontrivial to establish).
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