We thank the reviewers for their clear and valuable comments on our work.

2 Reviewer 1

- Question: Similarity to Zhang et al. [24] and explanation for loss guarantee at some iterate $k \in [K]$.
- 4 Response: As the reviewer notes, Zhang et al. focus on optimization and not generalization, and they study the squared
- 5 loss for regression while we examine cross entropy for classification. Extending an optimization result to generalization
- 6 requires a careful analysis that balances the training loss and the generalization gap, and therefore must depend on
- 7 the labels of the data. Zhang et al.'s analysis applies equally to data with labels randomly assigned, and thus a simple
- 8 Rademacher complexity argument based on their analysis cannot provide a meaningful generalization result.
- 9 The explanation for why we can only derive the guarantee for the loss at some iterate of the trajectory comes from the
- difference in loss functions considered. A special property of the squared loss is that its derivative can be related to
- the loss itself in a direct way: for a given sample (x_i, y_i) , the derivative of the loss for a prediction results in a term of
- the form $(f_W(x_i) y_i) \cdot \nabla f_W(x_i)$, where $f_W(\cdot)$ denotes the neural network output. By applying Jensen inequality,
- this allows for the change in the empirical loss over a gradient descent step to be directly related to a function of the
- 14 empirical loss itself, while the cross-entropy loss analysis requires working with a surrogate loss defined in terms of its
- derivative. This simplification is key to the analysis of the squared loss present in e.g. [1, 7] in addition to [24], and
- allows for convergence at a linear rate and a straightforward formula for the empirical loss at a given iteration. For the
- cross entropy, it is possible to show that the empirical loss is monotone decreasing (e.g. using line 287), but because the
- derivative of the cross entropy loss is not as simply related to the loss itself, we are only able to get a guarantee that the
- surrogate loss is sufficiently small at some point in the gradient descent trajectory, rather than its last iterate, by using
- the telescoping argument described in lines 288–292. In short, there are some significant technical differences in the
- 21 analysis of optimization under the squared loss and generalization under cross entropy.
- 22 Question: Removal of logarithmic dependence on depth.
- Response: We would like to note that Zhang et al.'s optimization result is not entirely independent of the depth L. They
- require that $m \ge \max(L, \Omega(n^{24}\delta^{-8}d\log^2 m))$, and thus when $L \le Cn^{24}\delta^{-8}d\log^2 m$ for some absolute constant C,
- their result does not depend on L. We can derive a similar property if we assume $L \leq Cd \log m$.

26 Reviewer 2

- 27 Question: Fixing top layer weights and intuition for benefit for residual networks.
- 28 Response: In the revision, we will be clearer in explaining that our analysis can be extended to a trainable final layer
- 29 with a suitable random initialization, but that we chose to consider a fixed final layer for simplicity of exposition.
- 30 Additionally, we will be sure to emphasize that a key insight of our analysis is that the Lipschitz constant of deep
- 31 residual networks is independent of the depth, while all known analyses of fully connected networks have Lipschitz
- $_{32}$ constants growing at least polynomially in L, and that this is responsible for the simpler analysis and reduced depth
- 33 dependence in the residual architecture.
- ³⁴ Question: Is super-logarithmic depth dependence necessary for fully connected networks?
- Response: We are unaware of any results proving this necessity and we will be more careful to note this in the revision
- of the paper.
- Question: Context for Assumption 3.2 and Surrogate Loss.
- 38 Response: We will give additional context regarding these items in the revision of the paper.

39 Reviewer 3

- 40 Question: Comparison to the 'Generalization Bounds of SGD for Wide and Deep Neural Networks' paper.
- Response: We thank the reviewer for pointing out the cited paper which recently appeared on arXiv. The 'Wide and
- Deep' paper concerns optimization and generalization results for deep fully connected networks trained by stochastic
- 43 gradient descent, while ours concerns residual networks trained with gradient descent. The chief contribution of our
- paper is a theoretically grounded explanation as to why deep residual networks are preferable to ones without residual
- 45 connections, and thus the consideration of a different architecture is a key component of our paper. From a technical
- standpoint, the 'Wide and Deep' paper is based on a kernel/random feature method more similar to [3, 7, 8, 10]
- 47 rather than a direct trajectory analysis as in ours. The key generalization analysis in the 'Wide and Deep' paper is an
- online-to-batch conversion that is specific to analyses of SGD, while ours is a uniform convergence argument for GD.
- 49 From the optimization perspective, our result is more similar to that of GD under smoothness assumptions rather than
- 50 SGD under Lipschitz and convexity assumptions. We will be sure to provide a comparison of our paper to the 'Wide
- and Deep' paper in the revision.