® N o o N

22

23

24
25

26

27

28
29
30
31
32
33

34

35
36

37

38

39

40

41
42
43
44
45
46
47
48
49
50
51

We thank the reviewers for their clear and valuable comments on our work.
Reviewer 1
Question: Similarity to Zhang et al. [24] and explanation for loss guarantee at some iterate k € [K].

Response: As the reviewer notes, Zhang et al. focus on optimization and not generalization, and they study the squared
loss for regression while we examine cross entropy for classification. Extending an optimization result to generalization
requires a careful analysis that balances the training loss and the generalization gap, and therefore must depend on
the labels of the data. Zhang et al.’s analysis applies equally to data with labels randomly assigned, and thus a simple
Rademacher complexity argument based on their analysis cannot provide a meaningful generalization result.

The explanation for why we can only derive the guarantee for the loss at some iterate of the trajectory comes from the
difference in loss functions considered. A special property of the squared loss is that its derivative can be related to
the loss itself in a direct way: for a given sample (z;, y;), the derivative of the loss for a prediction results in a term of
the form (fyw (x;) — v:) - V fw (x;), where fy (-) denotes the neural network output. By applying Jensen inequality,
this allows for the change in the empirical loss over a gradient descent step to be directly related to a function of the
empirical loss itself, while the cross-entropy loss analysis requires working with a surrogate loss defined in terms of its
derivative. This simplification is key to the analysis of the squared loss present in e.g. [1, 7] in addition to [24], and
allows for convergence at a linear rate and a straightforward formula for the empirical loss at a given iteration. For the
cross entropy, it is possible to show that the empirical loss is monotone decreasing (e.g. using line 287), but because the
derivative of the cross entropy loss is not as simply related to the loss itself, we are only able to get a guarantee that the
surrogate loss is sufficiently small at some point in the gradient descent trajectory, rather than its last iterate, by using
the telescoping argument described in lines 288—292. In short, there are some significant technical differences in the
analysis of optimization under the squared loss and generalization under cross entropy.

Question: Removal of logarithmic dependence on depth.

Response: We would like to note that Zhang et al.’s optimization result is not entirely independent of the depth L. They

require that m > max(L, Q(n?*0~8dlog? m)), and thus when L < Cn2?*6~3dlog® m for some absolute constant C,
their result does not depend on L. We can derive a similar property if we assume L < C'dlog m.

Reviewer 2
Question: Fixing top layer weights and intuition for benefit for residual networks.

Response: In the revision, we will be clearer in explaining that our analysis can be extended to a trainable final layer
with a suitable random initialization, but that we chose to consider a fixed final layer for simplicity of exposition.
Additionally, we will be sure to emphasize that a key insight of our analysis is that the Lipschitz constant of deep
residual networks is independent of the depth, while all known analyses of fully connected networks have Lipschitz
constants growing at least polynomially in L, and that this is responsible for the simpler analysis and reduced depth
dependence in the residual architecture.

Question: Is super-logarithmic depth dependence necessary for fully connected networks?

Response: We are unaware of any results proving this necessity and we will be more careful to note this in the revision
of the paper.

Question: Context for Assumption 3.2 and Surrogate Loss.

Response: We will give additional context regarding these items in the revision of the paper.

Reviewer 3

Question: Comparison to the ‘Generalization Bounds of SGD for Wide and Deep Neural Networks’ paper.

Response: We thank the reviewer for pointing out the cited paper which recently appeared on arXiv. The “Wide and
Deep’ paper concerns optimization and generalization results for deep fully connected networks trained by stochastic
gradient descent, while ours concerns residual networks trained with gradient descent. The chief contribution of our
paper is a theoretically grounded explanation as to why deep residual networks are preferable to ones without residual
connections, and thus the consideration of a different architecture is a key component of our paper. From a technical
standpoint, the “Wide and Deep’ paper is based on a kernel/random feature method more similar to [3, 7, 8, 10]
rather than a direct trajectory analysis as in ours. The key generalization analysis in the “Wide and Deep’ paper is an
online-to-batch conversion that is specific to analyses of SGD, while ours is a uniform convergence argument for GD.
From the optimization perspective, our result is more similar to that of GD under smoothness assumptions rather than
SGD under Lipschitz and convexity assumptions. We will be sure to provide a comparison of our paper to the ‘Wide
and Deep’ paper in the revision.



