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Abstract

This paper studies statistical characteristics of multivariate observations with ir-
regular changes in their covariance structures across input space. We propose
a unified nonstationary modeling framework to jointly encode the observation
correlations to generate a piece-wise representation with a hyper-level Gaussian
process (GP) governing the overall contour of the pieces. In particular, we couple
the encoding process with automatic relevance determination (ARD) to promote
sparsity to account for the inherent redundancy. The hyper GP enables us to share
statistical strength among the observation variables over a collection of GPs de-
fined within the observation pieces to characterize the variables’ respective local
smoothness. Experiments conducted across domains show superior performances
over the state-of-the-art methods.

1 Introduction

In many real-world applications, multivariate observations exhibit critical irregular changes in their
covariance smoothness with sharp transitions. For example, a major challenge to accurately locate
a seizure-onset zone (SOZ) through intracranial electroencephalography (iEEG) recordings is to
detect different forms of sudden transient electrophysiologic events of SOZ signals [1, 2, 3]. Another
scenario is that regional outbursts and geographic features (e.g., parks, rivers) lead to complex
tempo-spatial variations of crime occurrences across regions over time [4, 5].

In these scenarios, some segments of the observations exhibit larger variability than others. The
stationary methods, assuming the same covariance structure throughout the entire input space, cannot
capture such change in covariance smoothness. Conventional nonstationary modeling methods are
limited to model univariate observation by two consecutive steps [6, 7, 8]. They first recursively
partition the input space into regions, and then define separate local Gaussian processes (GPs)
within each region. The GP inference step cannot capture long-range dependence or share statistical
information among the independent local GPs. A solution to alleviate the problem is to combine
the local GPs with a global GP which is fitted to the whole observation [9, 10]. However, it tends to
over-smooth the local covariance variability.

To address these challenges, we propose a novel nonstationary modeling framework that jointly
infers a piece-wise representation of the multivariate observations and a hyper-level GP governing
the overall contour of the pieces. In particular, we employ multilogit regression function to encode
the observation correlations coupled with automatic relevance determination (ARD) priors over the
coefficients to promote sparsity. This encoding process transforms the observations into a set of
disjoint pieces to model the variability in the covariance smoothness with the correlations providing
between-variable information. Since commonly only a portion of observations are informative for
such transformation, ARD shrinks the correlation dimensions towards zero to handle the inherent
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redundancy. Regulated by the hyper GP through their mean functions, a collection of variable-specific
local GPs are defined to model the variables’ respective smoothness within the pieces. The hyper GP
not only shares statistical strength across the local GPs while retaining their distinctive covariance
property, but also induces the observation variables’ conditional independence. The piece-wise
representation leads to efficient posterior computation with the conjugate priors.

We evaluate our nonstationary modeling method across domains: for seizure onset localization,
we achieve robustly better performances than the state-of-the-art competing methods; for crime
occurrence prediction, by modeling the evolving covariances of weekly crime rates among the 179
census tracts in Washington D.C between 2015-2019, we outperform the state-of-the-art methods.

2 Related work

Although iEEG recordings provide critical information to locate areas of the brain to remove for
epilepsy patients, pre-surgical examination of between-seizure iEEG signals is a labor-intensive and
error-prone process [1, 11]. It becomes increasingly essential to develop effective computational
methods to identify the iEEG channels that are most likely to be in the SOZs by identifying different
abrupt changes in neurophysiological events [2, 3, 12, 13]. Empirical studies focus on identifying
biomarkers (e.g., spectral features, high frequency oscillations (HFO)) related to sub-clinical epileptic
bursts [1, 12]. Classical modeling methods make stationary assumption without considering covari-
ance change over time. In [13], Markov switching process is coupled with a stochastic process prior
to analyze the iEEG signal dynamics. A factor graphical model is proposed to integrate temporal
and spatial information of iEEG channels to infer pathologic brain activity for SOZ localization
[3]. Specifically, the spatial property is defined as correlations between channels, and the temporal
function measures correlations between a channel’s current state and the linear combination of its
previous states. GP with stationary covariance is applied to model nonlinearity in neonatal EEG sig-
nals for seizure detection, and shows high level of prediction performance [14]. For crime prediction,
an autoregressive mixture model with Poisson processes is proposed [5]. Its most recent extension
PoINAR incorporates a stochastic process prior to group spatial correlation modes across multiple
time series, and achieves the state-of-the-art performance [15].

Nonstationary covariance function modeling methods with designed or learned kernels typically
assume the same covariance structure as a function of distances from observations throughout the
input space [16, 17]. This is a strong modeling assumption for the above applications where sharp
transitions in covariance smoothness play the key role. Partitioning including Bayesian trees, Voronoi
tessellation, and normalized cuts (N-cuts) is widely used for modeling nonstationarity with abrupt
changes [6, 7, 8, 9]. The local GPs defined within the recursively partitioned regions are independent.
To capture the long-range trend, some methods define a global stationary GP over the entire input
space, and combine it with the local GPs. This leads to over-smooth the complex covariances induced
by the local GPs, since the global GP is also independent of the partition inference procedure [9, 10].
Additionally, these methods are subject to some constraints such as partition points having to be at
observation locations, and balanced binary trees. A mixture of GP experts models nonstationary
univariate observations by defining each GP expert over the entire input space [18, 19].

3 Unified nonstationary modeling framework

Our framework encodes observation correlations into a trending piece-wise representation with both
ARD and hyper GP priors. By coupling the relevance vectors with the hyper GP, we are able to share
statistical information among the pieces. Given the hyper GP, each observation variable is modeled
by a conditionally independent GP within the pieces for its local covariance smoothness.

3.1 Sparse coding for observation correlations

Let Y = {y1, · · · , yN} denote a set of multivariate observations at locations {x1, · · · , xN} with
xi ∈ X as a non-random covariate in the input space X and an observation yi ∈ RD×1. We encode
Y into K pieces with the corresponding inputs X = ∪kXk and Xk ∩Xk′ = ∅, where k 6= k′.
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Let Z denote a N ×K indicator matrix. Its element zik = δ(xi ∈ Xk) is the one-of-K encoding of
xi, where zik turns on iff xi ∈ Xk. Its probability of being 1 is a multilogit regression function:

p(zik = 1|θk, Q) =
exp(θTkQ(·, yi))∑K
k′=1 exp(θTk′Q(·, yi))

(1)

where θk denotes a N × 1 coefficient vector for the k’th piece, and Q(·, yi) is the i’th column vector
of the observation correlation matrix Q.

We employ the sparse prior ARD to explore how the correlation between any two observations con-
tributes to the encoding. ARD eliminates the irrelevant correlations by encouraging their coefficients
go to zero. Specifically, we define independent, zero-mean, spherically symmetric Gaussian priors on
θk:

p(θk|αk) = N(θk|0, A−1
k ) (2)

where A−1
k = diag(α−1

k ) denotes a diagonal matrix with the components of vector α−1
k on the

diagonal. Each component of precision parameter αk is given a Γ(a, b) prior. ARD method penalizes
non-zero coefficient components by an amount determined by the precision parameters. Iterative
estimation of αk and θk leads to αk becoming large for components whose evidence in the correlations
is insufficient for overcoming the penalty induced by the prior. Having αk → ∞ drives θk → 0,
which implies that the corresponding correlations do not contribute to the encoding. Therefore, ARD
identifies a subset of the observations, known as relevance vectors, with non-zero coefficients for
each piece.

Let vk denote the input in Xk whose corresponding observation is the relevance vector with the
maximum absolute value of non-zero component of θk, where vk ∈ V ⊂ X . We define a function:
g : V → R which describes the overall contour of the observation pieces by sharing statistical
information among them:

g(v) ∼ GP (0, κg(v, v
′)) (3)

where κg is a covariance function defined on V . We use a squared-exponential kernel κg =
σ2
g exp(−lg||v− v′||22) to encourage a smooth profile of the pieces. We further define a local function
fk : Xk → R for each piece:

fk(x)|g ∼ GP (g(vk), κk(x, x′)) (4)
where g(vk) specifies the mean function of the GP prior for the local function fk. κk is a squared-
exponential kernel κk = σ2

k exp(−lk||x − x′||22) defining a covariance function. We assume lk =
lg

||Xk||22
to let the horizontal lengthscales of the local functions reflect the global smoothness.

3.2 Piece-wise GPs for univariate observations

Let g = g(V ) ∈ RK×1 and f = [f1(X1)T , · · · , fK(XK)T ]T ∈ RN×1, the hyper-level and local
GPs define two joint Gaussians for any finite set of observations, respectively:

p(g|V ) = N(g|0,Σg) p(f |g, Z) = N(f |Zg,Σf ) (5)
where Σg is the covariance matrix with κg(v, v

′) as the elements, and Σf is a diagonal block
covariance matrix in which the elements of the k’th block Σ

(k)
f are κk of the input pairs in the k’th

piece as [Σ
(k)
f ]ij = κk(x

(k)
i , x

(k)
j ), where x(k)

i , x
(k)
j ∈ Xk.

One can analytically marginalize g conditioned on the piece-wise representation Z yielding

p(f |Z) = N(f |0, ZΣgZ
T + Σf ) (6)

A univariate observation y ∈ RN×1 with noise is thus generated as:

p(y|f , σ2) = N(y|f , σ2I) (7)
where I is a N ×N identity matrix. Recalling (6), the marginal likelihood conditioned on Z yields

p(y|Z) =

∫
p(y|f)p(f |Z)df = N(y|0,Σy) (8)

where Σy = ZΣgZ
T + Σf + σ2I denotes the induced nonstationary covariance matrix. Σy captures

the varying covariance structures of the pieces, and the discontinuities between them.
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3.3 Piece-wise GPs for multivariate observations

To extend to multivariate observations Y = {y(1), · · · , y(D)} where y(d) ∈ RN×1 denotes the
observations of the dth variable (e.g., a feature of iEEG recording, a census tract’s crime occurrences),
we model each variable’s observations y(d) as a realization from a specific local function f (d) as

p(y(d)|f (d), σ2) = N(y(d)|f (d), σ2I) (9)

The variable-specific local functions {f (d)} are conditionally independent given g and Z:

p(f (1:D)|g, Z) =

D∏
d=1

p(f (d)|g, Z)

=
|2πΣf

D |
1
2

|2πΣf |
D
2

exp[−1

2
tr(

∑
d

(f (d) − f̄)TΣ−1
f (f (d) − f̄))]N(f̄ |Zg, Σf

D
)

(10)

where f̄ =
∑

d f (d)

D . The assumption allows to share statistical strength among the observation vari-
ables through g while retaining variable-specific covariance variability, as each variable’s observations
can be derived by marginalizing over f (d):

p(y(d)|g, Z, σ2) =

∫
p(y(d)|f (d), σ2I)p(f (d)|g, Z)df (d) = N(y(d)|Zg,Σy|g) (11)

where Σy|g = Σf + σ2I . By exploiting the conditional independence of Y , the marginal likelihood
for the multivariate observations is:

p(Y |Z, σ2) =

∫ D∏
d=1

p(y(d)|g, Z, σ2)p(g|V )dg

=
|2πΣy|g

D |
1
2

|2πΣy|g|
D
2

exp[−1

2
tr(

∑
d

(y(d) − ȳ)(y(d) − ȳ)T )Σ−1
y|g]N(ȳ|0,

Σy|g

D
+ ZΣgZ

T )

(12)

where ȳ =
∑

d y
(d)

D . The kth diagonal block of the covariance matrix is [Σ(k)]ij = κg(vk, vk) +

[κk(x
(k)
i , x

(k)
j ) + σ2δ(i, j)]/D. The multivariate case in (12) can be reduced to (8) when D = 1.

The computation complexity for (12) is O(KM3), where M denotes the rough size of each piece.
By optimizing (12), we can determine the settings of the hyperparameters {lg, σ2

g , σ
2
f} 1.

3.4 Efficient inference

We develop a Gibbs sampling solution to iteratively sample the GP functions and the piece-wise
representation given their priors and the observations, and then update the hyper-parameters given
the latent functions and the observations.

First, our model’s joint probability can be factorized as

p(Y, {f (1:D)},g, Z, {θk}, V,X, σ2, Q, α)

∝
D∏
d=1

[p(y(d)|f (d), σ2)p(f (d)|g, Z)]p(g|Z)

K∏
k=1

[

N∏
i=1

p(zik|θk, Q(·, yi))p(θk|αk)p(αk)]
(13)

We propose to adopt the Rao-Blackwellized sampling scheme through analytic marginalization from
the joint distribution of {f (1:D)} and g, and sample them from their respective posteriors. This
improves the efficiency of our Gibbs sampler by reducing the underlying sample space and the
variance of later estimates. The conjugate priors result in closed-form marginalization.

By Combining the likelihood marginalized over f (d) in (11) and the prior in (5), we sample g from
its posterior as

p(g|Y,Z) ∝ N(g|µg|y,Σg|y)

Σ−1
g|y = Σ−1

g + ZTΣ−1
y|gZ µg|y = Σg|yZ

TΣ−1
y|g ȳ

(14)

1See the supplementary material for the derivation of 12 and its gradients.
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(a) (b) (c)

Figure 1: (a) Plot of mean and ±1 std of the log marginal likelihood in (12) of the true positive
iEEG observations in the training set versus different K. (b) Empirical mean of the 8 PIB features
of a true positive iEEG observation’s heldout segment (blue), our method’s predictive mean of the
corresponding y(1:D)

∗ in (24) (red), and the predictive mean of Heinonen et al. method [16] (green).
(c) Boxplots of the cross-validation RMSEs summarizing the true positive observations in the training
set versus K.

By marginalizing over g, each f (d) has the following posterior distribution:

p(f (d)|y(d), f (−d), Z, σ2) ∝ p(y(d)|f (d), σ2)p(f (d)|f (−d), Z) (15)

where f (−d) denote the set {f (1:D)} other than f (d). The first term p(y(d)|f (d), σ2) is as in (9), and
for the second term, we have

p(f (d)|f (−d), Z) =

∫
p(f (d)|g, Z)p(g|f (−d), Z)dg (16)

Recalling (10) and (5), the conditional distribution of g in (16) is

p(g|f (−d), Z) ∝ p(f (−d)|g, Z)p(g|Z) = N(g|µg|f(−d) ,Σg|f(−d))

Σ−1
g|f(−d) = Σ−1

g + ZT (
Σf

D − 1
)−1Z µg|f(−d) = Σg|f(−d)ZT (

Σf
D − 1

)−1f̄ (−d)
(17)

where f̄ (−d) =
∑

d′ 6=d f (d
′)

D−1 . Thus, we have the conditional distribution of f (d) as

p(f (d)|f (−d), Z) =

∫
p(f (d)|g, Z)p(g|f (−d), Z)dg

= N(f (d)|Zµg|f(−d) ,Σf + ZΣg|f(−d)ZT )

(18)

and the posterior distribution of f (d) as

p(f (d)|y(d), f (−d), Z, σ2) = N(f (d)|µf(d)|f(−d) ,Σf(d)|f(−d))

Σ−1
f(d)|f(−d) = (Σf + ZΣg|f(−d)ZT )−1 + (σ2I)−1

µf(d)|f(−d) = Σf(d)|f(−d) [(σ2I)−1y(d) + (Σf + ZΣg|f(−d)ZT )−1Zµg|f(−d) ]

(19)

We marginalize over {f (1:D)} to sample zik from its posterior by combining the marginal likelihood
in (11) and the prior in (1):

p(zik = 1|Y,Z−ik,g, σ2, {θk}, Q) ∝ p(Y |g, Z, σ2)
∏
i

∏
k

p(zik = 1|θk, Q(·, yi))

∝
∏
d

N(y(d)|Zg,Σy|g)
∏
i

∏
k

exp(θTkQ(·, yi))
(20)

where Z−ik denotes the matrix Z other than element zik. For binary random variables, Metropolis-
Hastings (MH) algorithm is shown to mix faster and have greater statistical efficiency than standard
Gibbs samplers [20]. To update zik given Z−ik, we thus use the posterior of (20) to evaluate a MH
proposal which flips the binary variable zik with the current value z to its complement value z̄:

zik ∝ κ(z̄|z)δ(zik, z̄) + (1− κ(z̄|z))δ(zik, z)

κ(z̄|z) = min{p(zik = z̄|Y,Z−ik, σ2, {θk}, Q)

p(zik = z|Y,Z−ik, σ2, {θk}, Q)
, 1}

(21)
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(a) (b) (c)

Figure 2: (a) Absolute correlation matrix of a heldout iEEG observation with SOZ events. (b) The
corresponding posterior covariance matrix of f (1:D) with the diagonal blocks as the local covariance
matrices of the observation pieces averaged over the Gibbs samples. (c) The blue bands indicate the
epileptologist’s labels on the SOZ events of the iEEG signal (gray), and the red segments are the
encoded pieces predicted to be SOZ events.

To compute the conditional posterior of a coefficient vector θk, we fix the set {θ−k} other than θk
and have

p(θk|Z, {θ−k}, αk, Q) ∝
∏
i

p(zik|{θk}, Q)p(θk|αk) ∝ N(θk|0, A−1
k )

∏
i

η
δ(zi=k)
ik (1− ηik)δ(zi 6=k)

(22)

where ηik ∝ exp[θTkQ(·, yi)−log
∑
k′ 6=k exp(θTk′Q(·, yi)]. We adopt the logistic sampling technique

with auxiliary variable sampling for its efficiency [21].

Finally, given {θk} and recalling that each αk is gamma distributed, its posterior is

p(αk|θk, a, b) = Γ(a+
|Sk|

2
, b+

∑
i,k θ

2
ik

2
) (23)

The set Sk contains the indices for which θik has prior precision αk.

From (11) and (14), the predictive distribution of new observations y(d)
∗ for the d’th variable is

p(y
(d)
∗ |Y, Z) =

∫
p(y

(d)
∗ |g, Z, σ2)p(g|Y,Z)dg = N(y

(d)
∗ |Zµg|y, ZΣg|yZ

T + Σy|g) (24)

The computational complexity for the predictive is O(M2N) due to the block structure of the
covariance matrix. After precomputation, the per-iteration complexity is reduced to O(M2).

4 Experiments

We test our method across two domains. For seizure onset localization, we leverage our model to
detect early seizure discharges characterized by irregular covariance changes in iEEG recordings. For
crime occurrence prediction, our model captures the sharp transitions in regional crime occurrence
covariances.

4.1 iEEG data description

The dataset of iEEG recordings for SOZ detection are from 83 epilepsy patients 2. The patients
with different SOZs are surgically implanted with different numbers of iEEG sensors in potentially
epileptogenic regions in the brains. Among 4966 electrodes in total, 911 of them identified to be in
SOZs by clinical epileptologists are taken as true positive examples. The iEEG data are down-sampled
to 5 kHz, and filtered to remove artifacts. We adopt power-in-band (PIB) features measuring iEEG
data’s spectral power in the 8 frequency bands: Delta (0-3Hz), low-theta (3-6 Hz), high-theta (6-9
Hz), alpha (9-14 Hz), beta (14-25 Hz), low-gamma (30-55 Hz), high-gamma (65-115 Hz), and ripple
(125-150 Hz), as in [3]. The PIB features extracted from every second in a 2-hour iEEG recording
construct an observation Y with D = 8 feature variables and length of N = 7200.

4.2 MCMC settings

2The dataset is available in ftp://msel.mayo.edu/EEG_Data/
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Figure 3: The mean and
±1 std of AUROC scores
for different lengthscale
lg and K.

For each observation, we simulate 3 chains of 7000 Gibbs iterations,
and discard the first 3000 as burn-in phase. Each sampling chain is
initialized with parameters sampled from their priors. We set Γ(a, b)
prior on the ARD precisions as a = |Sk| and b = a/1000, where Sk is
defined in (23). This prior specification is equally informative for various
choices of effective coefficient number |Sk| by fixing the prior mean of
the prior distribution. Given the number of pieces K fixed, the marginal
likelihood in (12) is a function of the hyperparameters {lg, σ2

g , σ
2
f}. We

use empirical Bayes approach to determine the optimum hyperparameter
values by optimizing the log marginal likelihood 3. To determine K, we
evaluate the marginal likelihood of the true positive iEEG observations
in the training set as shown in Figure 1 (a). It suggests K ≈ 1010 is
sufficient to capture the covariance variability. We perform the Gelman-Rubin diagnostic [22] to
assess convergence by calculating the within-chain and between-chain variances on the Gibbs samples
of the posteriors.

4.3 SOZ localization

We evaluate SOZ localization as a binary classification task in terms of SOZ abnormal events predicted
to be present or absent in an iEEG channel’s observation, and use standard performance metrics to
compare with the state-of-the-art methods in Table 1.

We use 10-fold cross-validation (CV) to evaluate predictions with 30% test set while keeping the
same proportion of SOZ and non-SOZ observations in both sets. We first evaluate our model’s
regression performance as demonstrated in Figure 1 (b) and (c). Figure 1 (b) shows that both the
long-range trend and the changes in covariance smoothness are captured without over-smoothing
the local GPs. We summarize the regression performance to fine-tune K in Figure 1 (c) based on
the discussion in Section 4.2. Our method encodes each observation’s correlations into a covariance
matrix with diagonal block structures, as illustrated in Figure 2 (a)-(b). In Figure 2 (c) the pieces
capturing SOZ abnormal events are identified through a clinical epileptologist’s visual inspection
of the true positive iEEG signals. We utilize the local posterior covariance matrices, illustrated
in Figure 2 (b), associated with SOZ events as the features of the positive examples, and the
local covariances without SOZ events as the negative ones. The averaged similarities of the local
covariances in the test set to the positive and negative examples are calculated via the Wasserstein
metric: ||µf − µf ′ ||22 + tr(Σf + Σf ′ − 2(Σ

1
2

f ′ΣfΣ
1
2

f ′)
1
2 ), respectively, and the ratios are used to

predict whether an observation consists of SOZ related pieces.

Table 1: Performance evaluation of the SOZ channel detection

Methods AUROC Precision Recall (Sensitivity) F1 score
Our method 0.80± 0.05 0.41± 0.07 0.75± 0.06 0.51± 0.07

Factor graph model [3] 0.72± 0.03 0.39± 0.05 0.74± 0.03 0.46± 0.04
HFO biomarker [12] 0.66± 0.07 0.34± 0.05 0.53± 0.08 0.41± 0.04

Partition-based nonstationary models
N-cuts based mGP [9] 0.65± 0.03 0.61± 0.02 0.35± 0.07 0.43± 0.05
Tree based method [6] 0.64± 0.08 0.59± 0.03 0.38± 0.05 0.40± 0.03

Nonstationary covariance function models
Paciorek et al. [17] 0.63± 0.07 0.41± 0.05 0.43± 0.09 0.39± 0.04
Heinonen et al. [16] 0.67± 0.05 0.43± 0.03 0.58± 0.03 0.42± 0.07

Figure 3 further explores the interactions between K and lg around its optimum in terms of the
classification performances. The K leading to the best performance is consistent with the regression
performance in Figure 1 (c). In Table 1, the factor graphical model method heuristically divides the
iEEG recordings into non-overlapping three-second epochs to accommodate SOZ events [3], whereas
our method is more flexible by learning the SOZ pieces with various lengths. We implement the
other partition-based methods with the same settings as ours. Since these methods can only model

3See the supplementary material for the implementation.
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(a) (b) (c) (d)

Figure 4: (a) RMSE of prediction performance to fine-tune K. (b) Absolute correlation matrix of
the crime occurrence rates of 179 CTs in 2015-2019. (c) The corresponding posterior covariance
matrix of f (1:D) averaged over the Gibbs samples. (d) plots of observation mean (blue), our method’s
posterior and predictive mean (red), and N-cuts based mGP [9]’s mean (green).

univariate observations, we apply them on each PIB feature and take the average. For Heinonen et
al. method [16], we run 3 chains of 5000 samples of HMC-NUTS sampling to infer the three sets
of hyperparameters (noise variance, signal variance, and lengthscale), and initialize the method as
suggested. One key to the method is the balance between the signal variance and the nonstationary
lengthscale, which is intrinsically related to the partition-based idea. For Paciorek et al. method [17],
we use the Matern covariance function described in the paper. The Matern kernel leads to less smooth
functions, but it still assumes the covariance structure is the same throughout the entire input space.

4.4 Crime event prediction

Figure 5: 2019 monthly aver-
aged RMSE maps between the
ground truth and our model’s
predictive means of y(1:D)

∗ .

We apply our method to model the nonstationary evolution of crime
occurrence rates in the 179 census tracts (CTs) in Washington, D.C.
between 2015-2019 for crime occurrence prediction 4. We analyze
the crime rates on a weekly basis, with totally 227 weeks. By denot-
ing the crime rates in a CT with a variable, we have the multivariate
observation Y with D = 179 and N = 227.

We follow the model setting strategy as in Section 4.2. In particular,
We find K = 15 with lg = 0.5 sufficiently to account for the crime
rates’ nonstationary variations based on the predictive performance,
as shown in Figure 4 (a). The results in Figure 4 (b)-(d) indicate that
we are able to capture the abrupt changes in covariance structure of
the CTs’ crime rates over time via the posterior and the predictive
estimates of y(1:D)

∗ . Figure 4) (d) shows that the classic nonsta-
tionary method mGP [9] tends to over-smooth the local covariance
variability for combining a global GP with the local GPs.

We predict the one-week-ahead crime rates in each tract for the first
16 weeks in 2019 based on the posterior estimates in 2015-2018. We
estimate the posterior predictive of the 2019 weekly crime rate in
each CT y(d)

∗ as in (24) by averaging over the Gibbs samples. Table 2 shows the monthly-averaged
prediction RMSEs, conditioned on the observations in 2015-2018. For PoINAR, we use the same
setting as in [15]. The implementation of Paciorek et al. method [17] and Heinonen et al. method
[16] are the same as in Section 4.3. One major challenge to implement Paciorek et al. method is that
the number of its hyperparameters increases fast in multivariate cases. In particular, computation of
the kernel matrices at each input location is slow because of the matrix decomposition (O(D3)). In
contrast, our method is more computationally efficient by introducing the conditional independence
given the hyper-GP as in (10). The results indicate that our method produces lower RMSE. Figure 5
visualizes the RMSEs between our method’s predictions and the ground truth by CTs geographically.

4The crime data are available on http://opendata.dc.gov
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Table 2: Monthly average RMSE of one-week-ahead predictions of the crime rates in 2019.

RMSE ± error Jan. 2019 Feb. 2019 Mar. 2019 April 2019
Our method 0.638± 0.025 0.707± 0.023 0.815± 0.029 0.817± 0.027

N-cuts based mGP [9] 0.657± 0.023 0.818± 0.019 0.893± 0.033 1.071± 0.032
PoINAR [15] 0.839± 0.017 0.825± 0.014 0.912± 0.086 1.165± 0.006

Paciorek et al. [17] 0.949± 0.034 1.122± 0.055 1.176± 0.209 1.462± 0.147
Heinonen et al. [16] 0.704± 0.031 0.875± 0.118 0.931± 0.763 1.069± 0.014

5 Conclusions

Our unified nonstationary modeling framework integrates a sparse encoding process that transforms
the observations into a piece-wise representation with a hyper GP defined over its relevance vectors.
The hyper GP governs a set of local GPs fitted to the pieces through their mean functions. The
framework efficiently extends to multivariate observations by inducing conditional independence
among variables and between their respective local GPs. It achieves superior performance over the
state-of-the-art competitors by effectively capturing both sharp changes in covariance smoothness
and long-range trend.
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