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Abstract

Residual Network (ResNet) is undoubtedly a milestone in deep learning. ResNet is
equipped with shortcut connections between layers, and exhibits efficient training
using simple first order algorithms. Despite of the great empirical success, the
reason behind is far from being well understood. In this paper, we study a two-layer
non-overlapping convolutional ResNet. Training such a network requires solving
a non-convex optimization problem with a spurious local optimum. We show,
however, that gradient descent combined with proper normalization, avoids being
trapped by the spurious local optimum, and converges to a global optimum in
polynomial time, when the weight of the first layer is initialized at 0, and that of the
second layer is initialized arbitrarily in a ball. Numerical experiments are provided
to support our theory.

1 Introduction

Neural Networks have revolutionized a variety of real world applications in the past few years, such
as computer vision (Krizhevsky et al., 2012; Goodfellow et al., 2014; Long et al., 2015), natural
language processing (Graves et al., 2013; Bahdanau et al., 2014; Young et al., 2018), etc. Among
different types of networks, Residual Network (ResNet, He et al. (2016a)) is undoubted a milestone.
ResNet is equipped with shortcut connections, which skip layers in the forward step of an input.
Similar idea also appears in the Highway Networks (Srivastava et al., 2015), and further inspires
densely connected convolutional networks (Huang et al., 2017).

ResNet owes its great success to a surprisingly efficient training compared to the widely used
feedforward Convolutional Neural Networks (CNN, Krizhevsky et al. (2012)). Feedforward CNNs
are seldomly used with more than 30 layers in the existing literature. There are experimental results
suggest that very deep feedforward CNNs are significantly slow to train, and yield worse performance
than their shallow counterparts (He et al., 2016a). However, simple first order algorithms such as
stochastic gradient descent and its variants are able to train ResNet with hundreds of layers, and
achieve better performance than the state-of-the-art. For example, ResNet-152 (He et al., 2016a),
consisting of 152 layers, achieves a 19.38% top-1 error on ImageNet. He et al. (2016b) also
demonstrated a more aggressive ResNet-1001 on the CIFAR-10 data set with 1000 layers. It achieves
a 4.92% error — better than shallower ResNets such as ResNet-110.

Despite the great success and popularity of ResNet, the reason why it can be efficiently trained
is still largely unknown. One line of research empirically studies ResNet and provides intriguing
observations. Veit et al. (2016), for example, suggest that ResNet can be viewed as a collection
of weakly dependent smaller networks of varying sizes. More interestingly, they reveal that these
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smaller networks alleviate the vanishing gradient problem. Balduzzi et al. (2017) further elaborate
on the vanishing gradient problem. They show that the gradient in ResNet only decays sublinearly
in contrast to the exponential decay in feedforward neural networks. Recently, Li et al. (2018)
visualize the landscape of neural networks, and show that the shortcut connection yields a smoother
optimization landscape. In spite of these empirical evidences, rigorous theoretical justifications are
seriously lacking.

Another line of research theoretically investigates ResNet with simple network architectures. Hardt
and Ma (2016) show that linear ResNet has no spurious local optima (local optima that yield larger
objective values than the global optima). Later, Li and Yuan (2017) study using Stochastic Gradient
Descent (SGD) to train a two-layer ResNet with only one unknown layer. They show that the
optimization landscape has no spurious local optima and saddle points. They also characterize the
local convergence of SGD around the global optimum. These results, however, are often considered
to be overoptimistic, due to the oversimplified assumptions.

To better understand ResNet, we study a two-layer non-overlapping convolutional neural network,
whose optimization landscape contains a spurious local optimum. Such a network was first studied in
Du et al. (2017). Specifically, we consider

g(v,a,Z)=a'0o (ZTU) , (D

where Z € RP*F is an input, a € R¥, v € RP are the output weight and the convolutional weight,
respectively, and o is the element-wise ReLU activation. Since the ReLU activation is positive
homogeneous, the weights a and v can arbitrarily scale with each other. Thus, we impose the
assumption ||v||2 = 1 to make the neural network identifiable. We further decompose v = 1/,/p +w
with 1 being a vector of 1’s in RP, and rewrite (1) as

fw,a,2)=a"o (ZT(1/\/p+w)), )

Here 1/,/p represents the average pooling shortcut connection, which allows a direct interaction
between the input Z and the output weight a.

We investigate the convergence of training ResNet by considering a realizable case. Specifically,
the training data is generated from a teacher network with true parameters a*, v* with ||v*||2 = 1.
We aim to recover the teacher neural network using a student network defined in (2) by solving an
optimization problem:

(@,3) = argmin JE [f(w,a,2) - g(v",a*, 2)]%, @
w,a
where Z is independent Gaussian input. Although largely simplified, (3) is nonconvex and possesses
a nuisance — There exists a spurious local optimum (see an explicit characterization in Section 2).
Early work, Du et al. (2017), show that when the student network has the same architecture as the
teacher network, GD with random initialization can be trapped in a spurious local optimum with a
constant probability”. A natural question here is

Does the shortcut connection ease the training?

This paper suggests a positive answer: When initialized with w = 0 and a arbitrarily in a ball,
GD with proper normalization converges to a global optimum of (3) in polynomial time, under the
assumption that (v*) " (1/,/p) is close to 1. Such an assumption requires that there exists a w*
of relatively small magnitude, such that v* = 1/,/p 4+ w*. This assumption is supported by both
empirical and theoretical evidences. Specifically, the experiments in Li et al. (2016) and Yu et al.
(2018), show that the weight in well-trained deep ResNet has a small magnitude, and the weight for
each layer has vanishing norm as the depth tends to infinity. Hardt and Ma (2016) suggest that, when
using linear ResNet to approximate linear transformations, the norm of the weight in each layer scales
as O(1/D) with D being the depth. Bartlett et al. (2018) further show that deep nonlinear ResNet,
with the norm of the weight of order O(log D/ D), is sufficient to express differentiable functions
under certain regularity conditions. These results motivate us to assume w* is relatively small.

Our analysis shows that the convergence of GD exhibits 2 stages. Specifically, our initialization
guarantees w is sufficiently away from the spurious local optimum. In the first stage, with proper step

The probability is bounded between 1/4 and 3 /4. Numerical experiments show that this probability can be
as bad as 1/2 with the worst configuration of a, v.
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Figure 2: Illustrative examples of the teacher and student networks with £ = 3 and p = 4. BN notes
batch normalization.

sizes, we show that the shortcut connection helps the algorithm avoid being attracted by the spurious
local optima. Meanwhile, the shortcut connection guides the algorithm to evolve towards a global
optimum. In the second stage, the algorithm enters the basin of attraction of the global optimum.
With properly chosen step sizes, w and a jointly converge to the global optimum.

Our analysis thus explains why ResNet benefits training, when the weights are simply initialized at
zero (Li et al., 2016), or using the Fixup initialization in Zhang et al. (2019). We remark that our
choice of step sizes is also related to learning rate warmup (Goyal et al., 2017), and other learning
rate schemes for more efficient training of neural networks (Smith, 2017; Smith and Topin, 2018).
We refer readers to Section 5 for a more detailed discussion.

Notations: Given a vector v = (vy,...,v,,)| € R™, we denote the Euclidean norm ||v[|3 = v " v.
T

Given two vectors u, v € R%, we denote the angle between them as /(u, v) = arccos m, and

the inner product as (u,v) = u'v. We denote 1 € R? as the vector of all the entries being 1. We
also denote By (r) € R as the Euclidean ball centered at 0 with radius 7.

2 Model and Algorithm Z
Model. We consider the realizable setting where the label is ,\
generated from a noiseless teacher network in the following form Convolution Average Pooling
Layer W Shortcut
—_\Vk T
g(v*,a*,Z) = ijl ajo (Zj v*) . “4)
Here v*,a*, Z;’s are the true convolutional weight, true output
weight, and input. o denotes the element-wise ReLLU activation. Batch Norm ReLU
Our student network is defined in (2). For notational convenience, Layer
we expand the second layer and rewrite (2) as

f(w, a,”Z) = Z§:1 ajo (Z]T(]l/\/["i_ w)) ) &) Y +— LZ::MCL

where w € RP, a; € R,and Z; € RP forall j = 1,2,...,k. We Figure 1: The non-overlapping
assume the input data Z;’s are identically independently sampled  two layer residual network with
from A(0,I). Note that the above network is not identifiable, normalization layer.

because of the positive homogeneity of the ReL.U function, that is

1,/p + w and a can scale with each other by any positive constant without changing the output value.
Thus, to achieve identifiability, instead of (5), we propose to train the following student network,

k 1/v/ptw
f(w,a, Z) = Zj:l aja (Z;Wﬁ) ’ (6)

An illustration of (6) is provided in Figure 1. An example of the teacher network (4) and the student
network (6) is shown in Figure 2.

We then recover (v*, a*) of our teacher network by solving a nonconvex optimization problem

min £(w, a) = %Ez[g(v*,a*,Z) — f(w,a, Z))% )

w,a



Recall that we assume ||v*||2 = 1. One can easily verify that (7) has global optima and spurious local
optima. The characterization is analogous to Du et al. (2017), although the objective is different.

Proposition 1. For any constant o > 0, (w, a) is a global optimum of (7), if 1/,/p +w = av* and
a = a*; (w, a) is a spurious local optimum of (7), if 1/\/p+w = —av* and a = (117 + (7 —
HH~YALT - Ia*.

The proof is adapted from Du et al. (2017), and the details are provided in Appendix B.1.

Now we formalize the assumption on v* in Section 1, which is supported by the theoretical and

empirical evidence in Li et al. (2016); Yu et al. (2018); Hardt and Ma (2016); Bartlett et al. (2018).
Assumption 1 (Shortcut Prior). There exists a w* with ||w* ||z < 1, such that v* = w* + 1/,/p.

Assumption 1 implies (1/ \/[9)Tv* > 1/2. We remark that our analysis actually applies to any w*

satisfying ||w*||o < c for any positive constant ¢ € (0, v/2). Here we consider ||w*||s < 1 to ease the
presentation. Throughout the rest of the paper, we assume this assumption holds true.

GD with Normalization. We solve the optimization problem (7) by gradient descent. Specifically,
at the (¢ + 1)-th iteration, we compute

Wip1 = Wi — NV L(we, at),
1//p+ i1 1
[1//P+ Wesall2 /P
atr1 = ar — 1aVaL(wy, ar).
Note that we normalize 1/,/p 4 w in (8), which essentially guarantees Var (Z," (1/y/p + wi11))

1. As Z; is sampled from N (0, I'), we further have E (ZJT(]I/\/pT + wy41)) = 0. The normalization
step in (8) can be viewed as a population version of the widely used batch normalization trick to
accelerate the training of neural networks (Ioffe and Szegedy, 2015). Moreover, (7) has one unique
optimal solution under such a normalization. Specifically, (w*, a*) is the unique global optimum,
and (w, a) is the only spurious local optimum along the solution path, where w = —(1/,/p) — v*

anda = (117 + (7 — 1))~ (A1LT — Ia*.

We initialize our algorithm at (wg, ag) satisfy- _ 1 .
o T x = ¢ = (% +w,v%)
ing: wo = 0 and ag € Bo(|1"Ta*|/VE). We set S < e
ao with a magnitude of O(1/v/k) to match com- it

®)

Wiyl = |

~
N ’ \

mon initialization techniques (Glorot and Ben-
gio, 2010; LeCun et al., 2012; He et al., 2015).
We highlight that our algorithm starts with an
arbitrary initialization on a, which is different
from random initialization. The step sizes 7,
and 7, will be specified later in our analysis.

3 Convergence Analysis

We characterize the algorithmic behavior of the
gradient descent algorithm. Our analysis shows
that under Assumption 1, the convergence of
GD exhibits two stages. In the first stage, the
algorithm avoids being trapped by the spurious
local optimum. Given the algorithm is suffi-
ciently away from the spurious local optima, the
algorithm enters the basin of attraction of the
global optimum and finally converge to it.
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Figure 3: The left panel shows random initializa-
tion on feedforward CNN can be trapped in the
spurious local optimum with probability at least
1/4 (Duetal., 2017). The right panel demonstrates:
1). Under the shortcut prior, our initialization of
(w, a) avoids starting near the spurious local opti-
mum; 2). Convergence of GD exhibits two stages
(I. improvement of a and avoid being attracted by
(w, a) IL. joint convergence).

To present our main result, we begin with some notations. Denote

¢ = Z(1//p +wi, 1//p +w7)

as the angle between 1 /,/p + w; and the ground truth at the ¢-th iteration. Throughout the rest of

the paper, we assume ||a* |5 is a constant. The notation O(-) hides poly(]

|a* ”2): p01}7( Ha1||2 ), and

polylog(]|la*||2) factors. Then we state the convergence of GD in the following theorem.



Theorem 2 (Main Results). Let the GD algorithm defined in Section 2 be initialized with wy =
0 and arbitrary ag € Bo(|1"a*|/V'k). Then the algorithm converges in two stages:

Stage I: Avoid the spurious local optimum (Theorem 4): We choose 1, = O(1/k?) and 1, =
O(1/k*). Then there exists Ty = O(1/n,), such that m < ag, a* < M and ¢, < 37 hold for
some constants M > m > 0.

Stage I1: Converge to the global optimum (Theorem 13): After T\ iterations, we restart the counter,

and choose 11 = ng = Ny, = O(1/k?). Then for any § > 0, any t > Ty = O(%log%), we have
|lwe —w*||2 < 6 and ||a; — a*||3 < 50.

Note that the set {(wy,a;) | af a* € [m, M],¢; < 57/12} belongs to be the basin of attraction
around the global optimum (Lemma 11), where certain regularity condition (partial dissipativity)
guides the algorithm toward the global optimum. Hence, after the algorithm enters the second stage,
we increase the step size 7,, of w for a faster convergence. Figure 3 demonstrates the initialization of
(w, a), and the convergence of GD both on CNN in Du et al. (2017) and our ResNet model.
We start our convergence analysis with the definition of partial dissipativity for L.
Definition 3 (Partial Dissipativity). Given any 6 > 0 and a constant ¢ > 0, V., L is (¢, §)-partially
dissipative with respect to w* in a set Ks, if for every (w, a) € Ks, we have

(~VwL(w,a), 0" —w) 2 clw — w3 - &
V. L is (¢, 0)-partially dissipative with respect to a* in a set As, if for every (w, a) € As, we have

(=VoL(w,a),a* —a) > clla—a*|? -6

Moreover, If Ks N As # 0, VL is (¢, 28)-jointly dissipative with respect to (w*, a*) in K5 N Asg, Le.,
Sor every (w,a) € Ks N As, we have

(~Vuwl(w,a),w" —w) + (~Val(w,a),a" = a) > c(|Jw — w*[3 + [|a — a”[3) - 26.

The concept of dissipativity is originally used in dynamical systems (Barrera and Jara, 2015), and
is defined for general operators. It suffices to instantiate the concept to gradients here for our
convergence analysis. The partial dissipativity for perturbed gradients is used in Zhou et al. (2019) to
study the convergence behavior of Perturbed GD. The variational coherence studied in Zhou et al.
(2017) and one point convexity studied in Li and Yuan (2017) can be viewed as special examples of
partial dissipativity.

3.1 Stage I: Avoid the Spurious Local Optimum

We first show with properly chosen step sizes, GD algorithm can avoid being trapped by the spurious
local optimum. We propose to update w, a using different step sizes. We formalize our result in the
following theorem.

Theorem 4. Initialize with arbitrary ag € Bo(|1"a*|/Vk) and wy = 0. We choose step sizes
B 71'
20(k+7m—1)2

for some constant C > 0. Then, we have

¢y <57/12 and 0<m <a/a* <M, )

Na =0(1/k*), and n,=Clla*|3n2 =012

forallt € [Th,T), where
Ty = O(1/n), T=O0(1/n2), m = |la|3/5, and M =3ja*|3+2 (17a")".

Proof Sketch. Due to the space limit, we only provide a proof sketch here. The detailed proof is
deferred to Appendix B.2. We prove the two arguments in (9) in order. Before that, we first show our
initialization scheme guarantees an important bound on a, as stated in the following lemma.

Lemma 5. Given ag € Bo(|17a*|/Vk), we choose 1, < % Then for any t > 0,

—3(17a")’ <1717, — (17a%)” <0. (10)



Under the shortcut prior assumption 1 that wyq is close to w*, the update of w should be more
conservative to provide enough accuracy for a to make progress. Based on Lemma 5, the next lemma
shows that when 7, is small enough, ¢; stays acute (¢; < g), i.e., w is sufficiently away from

W= —(1//p) — v* .

Lemma 6. Given wy = 0 and ag € Bo(|17a*|/Vk), we choose n, < % and 1, =
Clla*|12n2 = O(n?) for some absolute constant C' > 0. Then for all t < T = O(1/n?2),
¢r < 5m/12. (11

We want to remark that (10) and (11) are two of the key conditions that define the partially dissipative
region of V, L , as shown in the following lemma.

Lemma 7. For any (w,a) € A, VL satisfies
(=VoL(w,a),a* —a) > (1/107)||a — a*|)3, (12)

where A = {(w,a) [a"a* < Fla*[For la—a*/23 > [la*[I3, |lw+1/\/pl2 =1, ¢ <
Zr, =31Ta*)? <17a*1Ta— (17a*)? <0}.

Please refer to Appendix B.2.3 for a detailed proof. Note that with arbitrary initialization of a,
a'a* < &%|la*||3 or la — a*/2||3 > ||a*||3 possibly holds at ao. In this case, (wo, ao) falls in A,
and (12) ensures the improvement of a.

Lemma 8. Given (wg,ag) € A, we choose 1, < m. Then there exists 711 = O(1/1,),

|a*]13 < af, 0" < 2]a*|3.

such that s |
One can easily verify that a " a* < 2||a*||3 holds for any a € Bo(|1"a*|/Vk). Together with Lemma
8, we claim that even with arbitrary initialization, the iterates can always enter the region with a " a*
positive and bounded in polynomial time. The next lemma shows that with proper chosen step sizes,
a'a* stays positive and bounded.

Lemma 9. Suppose 5|la*[|3 < aga* < 2|a*|3, ¢¢ < 57 and —3 (1Ta*)2 <1Ta*l1Ta; —
(]l—ra"k)2 < 0 holds for all t. Choose 1, < %, then we have for all t > 115 = O(1/1,),

la*3/5 < ' a* < 3lla’[3 + 2 (17a")"
Take T7 = 11 + 712, and we complete the proof. O

In Theorem 4, we choose a conservative 7),,. This brings two benefits to the training process: 1). w
stays away from w. The update on w is quite limited, since 7,, is small. Hence, w is kept sufficiently
away from w, even if w moves towards w in every iteration); 2). a continuously updates toward a*.

Theorem 4 ensures that under the shortcut prior, GD with adaptive step sizes can successfully
overcome the optimization challenge early in training, i.e., the iterate is sufficiently away from the
spurious local optima at the end of Stage I. Meanwhile, (9) actually demonstrates that the algorithm
enters the basin of attraction of the global optimum, and we next show the convergence of GD.

3.2 Stage II: Converge to the Global Optimum

Recall that in the previous stage, we use a conservative step size 7, to avoid being trapped by the
spurious local optimum. However, the small step size 7,, slows down the convergence of w in
the basin of attraction of the global optimum. Now we choose larger step sizes to accelerate the
convergence. The following theorem shows that, after Stage I, we can use a larger 7,,, while the
results in Theorem 4 still hold, i.e., the iterate stays in the basin of attraction of (w*, a*).

5

57 We choose

Theorem 10. We restart the counter of time. Suppose m < a(—)r a* < M, and ¢g <

N < §fz = 6(1%2) and ng < % Then for all t > 0, we have

¢y < 57/12 and Ogmgaja*SM.



Proof Sketch. To prove the first argument, we need the partial dissipativity of V,, L.
Lemma 11. For any m > 0, V,, L satisfies

(~Vullw,a),w* = w) > Zlw - w3,
forany (w,a) € Ky, where
Ky = {(w,a) | ala* > m, (w+ ]l/\/f))—rv* >0, lw+1/ypl2= 1}.

This condition ensures that when a " a* is positive, w always makes positive progress towards w*, or
equivalently ¢, decreasing. We need not worry about ¢, getting obtuse, and thus a larger step size 7,,
can be adopted. The second argument can be proved following similar lines to Lemma 9. Please see
Appendix B.3.2 for more details. O

Now we are ready to show the convergence of our GD algorithm. Note that Theorem 10 and Lemma
11 together show that the iterate stays in the partially dissipative region K,,, which leads to the
convergence of w. Moreover, as shown in the following lemma, when w is accurate enough, the
partial gradient with respect to a enjoys partial dissipativity.

Lemma 12. Forany § > 0, VL satisfies
N m—1 N 1
(=V.L(w,a),a" —a) > 7”(1 —a ||§ — 567
forany (w,a) € Ay, a5, where
A s = {(w,a) ’ ala* € [m, M], ||jw— w*||§ <94, |lw+1/\/pl2 = 1}.

As a direct result, a converges to a*. The next theorem formalize the above discussion.
Theorem 13 (Convergence). Suppose & ||a*[|3 =m < a/ a* < M = 3|ja*||3 + 2 (]lTa*)2 hold for

allt > 0. Forany § > 0, choose g, = 1,y =1 = min{zMQ,WE_’ﬁ} = O(%) then we have

lw, —w*||3 < 8 and ||a; — a*||3 < 56

foranyt > T, = 6(% log %)

Proof Sketch. The detailed proof is provided in Appendix B.4. Our proof relies on the partial
dissipativity of V,,£ (Lemma 11) and that of V,£ (Lemma 12).

Note that the partial dissipative region .A,;,, as,s5, depends on the precision of w. Thus, we first show
the convergence of w.

Lemma 14 (Convergence of w;). Suppose l||a*||§ =m<ala* <M=3a*}+4(1Ta *)

hold for all t > 0. For any § > 0, choose n < 53 = O ) then we have
Jwy —w ||2 <6

foranyt > 191 = minlog% = 6(%10g%).

Lemma 14 implies that after 7o; iterations, the algorithm enters A, /5. Then we show the conver-
gence property of a in next lemma.

Lemma 15 (Convergence of az). Suppose m < a] a* < M and ||w; — w*||3 < 6 holds for all t. We

choose n < = O(7%). Then forall t > 75 = 2 o log M = O(% log 3 ), we have

4(k+7r 1
|la: — a*H% < 54.

Combine the above two lemmas together, take 75 = 791 + 792, and we complete the proof. O

Theorem 13 shows that with larger 7, than in Stage I, GD converges to the global optimum in
polynomial time. Compared to the convergence with constant probability for CNN (Du et al., 2017),
Assumption 1 assures convergence even under arbitrary initialization of a. This partially justifies the
importance of shortcut in ResNet.
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Figure 4: Success rates of converging to the global optimum for GD training ResNet with and without
SSW and CNN with varying k£ and and p = 8.

4 Numerical Experiment

We present numerical experiments to illustrate the convergence of the GD algorithm. We first
demonstrate that with the shortcut prior, our choice of step sizes and the initialization guarantee
the convergence of GD. We consider the training of a two-layer non-overlapping convolutional
ResNet by solving (7). Specifically, we set p = 8 and k € {16, 25, 36, 49, 64, 81, 100}. The teacher
network is set with parameters a* satisfying 1" a* = 1||a*||3, and v* satisfying v} = cos(77/10),
vy = sin(77/10), and v = 0 for j = 3,..., p.3 More detailed experimental setting is provided
in Appendix C. We initialize with wo = 0 and ag uniformly distributed over Bo (|1 " a*|/vk). We
adopt the following learning rate scheme with Step Size Warmup (SSW) suggested in Section
3: We first choose step sizes 1, = 1/k? and 7,, = 12, and run for 1000 iterations. Then, we
choose 1, = 17, = 1/k?. We also consider learning the same teacher network using step sizes
Nw = N = 1/k? throughout, i.e., without step size warmup.

We further demonstrate learning the aforementioned teacher network using a student network of
the same architecture. Specifically, we keep a*, v* unchanged. We use the GD in Du et al. (2017)
with step size n = 0.1, and initialize vy uniformly distributed over the unit sphere and a uniformly

distributed over Bo (|1 " a*|/Vk).

For each combination of k£ and a*, we repeat 5000 simulations for aforementioned three settings,
and report the success rate of converging to the global optimum in Table 1 and Figure 4. As can be
seen, our GD on ResNet can avoid the spurious local optimum, and converge to the global optimum
in all 5000 simulations. However, GD without SSW can be trapped in the spurious local optimum.
The failure probability diminishes as the dimension increase. Learning the teacher network using a
two-layer CNN student network (Du et al., 2017) can also be trapped in the spurious local optimum.

Table 1: Success rates of converging to the global optimum for GD training ResNet with and without
SSW and CNN with varying k and and p = 8.

k 16 25 36 49 64 81 100

ResNet w/ SSW  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ResNet w/o SSW  0.7042 0.7354 0.7776 0.7848 0.8220 0.8388 0.8426
CNN 0.5348 0.5528 0.5312 0.5426 0.5192 0.5368 0.5374

We then demonstrate the algorithmic behavior of our GD. We set k = 25 for the teacher network,
and other parameters the same as in the previous experiment. We initialize wy = 0 and ag €
Bo(|17a*|/Vk). We start with , = 1/k? and n,, = 12. After 1000 iterations, we set the step
sizes 7, = 1w = 1/k?. The algorithm is terminated when ||a; — a*||3 + |Jw; — w*||3 < 107,
We also demonstrate the GD algorithm without SSW at the same initialization. The step sizes are
Na = Nw = 1/k? throughout the training.

One solution path of GD with SSW is shown in the first row of Figure 5. As can be seen, the algorithm
has a phase transition. In the first stage, we observe that w; makes very slow progress due to the

Jv* essentially satisfies Z(v*, 1//p) = 0.45.



small step size 7,,, while a, a* gradually increases. This implies the algorithm avoids being attracted
by the spurious local optimum. In the second stage, w; and a; both continuously evolve towards the
global optimum.

The second row of Figure 5 illustrates the trajectory of GD without SSW being trapped by the
spurious local optimum. Specifically, (w;, a;) converges to (w, a) as we observe that ¢; converges to
7, and ||w; — w*||3 converges to 4||v*||3.
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shortcut connection. They also suggest that

the training is dominated by the shallow s
smaller networks. We are interested in in-
vestigating whether these shallow smaller
networks possesses similar benign proper- Figure 5: Algorithmic behavior of GD on ResNet. The

ties to ease the training as our two-layer horizontal axis corresponds to the number of iterations.
model.

Moreover, our student network and the teacher network have the same degree of freedom. We have
not considered deeper and wider student networks. It is also worth an investigation that what is the
role of shortcut connections in deeper and wider networks.

From GD to SGD. A straightforward extension is to investigate the convergence of SGD with
mini-batch. We remark that when the batch size is large, the effect of the noise on gradient is limited
and SGD mimics the behavior of GD. When the batch size is small, the noise on gradient plays a
significant role in training, which is technically more challenging.

Related Work. Li and Yuan (2017) study ResNet-type two-layer neural networks with the output
weight known (a = 1), which is equivalent to assuming a, a* > 0 for all ¢ in our analysis. Thus,
their analysis does not have Stage I (a] a* < 0). Moreover, since they do not need to optimize a,
they only need to handle the partial dissipativity of V.L,, with § = 0 (one-point convexity). In our
analysis, however, we also need to handle the the partial dissipativity of VL, with § # 0, which
makes our proof more involved.

Initialization. Our analysis shows that GD converges to the global optimum, when w is initialized
at zero. Empirical results in Li et al. (2016) and Zhang et al. (2019) also suggest that deep ResNet
works well, when the weights are simply initialized at zero or using the Fixup initialization. We are
interested in building a connection between training a two-layer ResNet and its deep counterpart.

Step Size Warmup. Our choice of step size 7,, is related to the learning rate warmup and layerwise
learning rate in the existing literature. Specifically, Goyal et al. (2017) presents an effective learning
rate scheme for training ResNet on ImageNet for less than 1 hour. They start with a small step size,
gradually increase (linear scale) it, and finally shrink it for convergence. Our analysis suggests that in
the first stage, we need smaller 7, to avoid being attracted by the spurious local optimum. This is
essentially consistent with Goyal et al. (2017). Note that we are considering GD (no noise), hence,
we do not need to shrink the step size in the final stage. While Goyal et al. (2017) need to shrink the
step size to control the noise in SGD. Similar learning rate schemes are proposed by Smith (2017).

On the other hand, we incorporate the shortcut prior, and adopt a smaller step size for the inner layer,
and a larger step size for the outer layer. Such a choice of step size is shown to be helpful in both
deep learning and transfer learning (Singh et al., 2015; Howard and Ruder, 2018), where it is referred
to as differential learning rates or discriminative fine-tuning. It is interesting to build a connection
between our theoretical discoveries and these empirical observations.
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