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Abstract

We propose in this paper a general framework for deriving loss functions for
structured prediction. In our framework, the user chooses a convex set including
the output space and provides an oracle for projecting onto that set. Given that
oracle, our framework automatically generates a corresponding convex and smooth
loss function. As we show, adding a projection as output layer provably makes the
loss smaller. We identify the marginal polytope, the output space’s convex hull,
as the best convex set on which to project. However, because the projection onto
the marginal polytope can sometimes be expensive to compute, we allow to use
any convex superset instead, with potentially cheaper-to-compute projection. Since
efficient projection algorithms are available for numerous convex sets, this allows
us to construct loss functions for a variety of tasks. On the theoretical side, when
combined with calibrated decoding, we prove that our loss functions can be used as
a consistent surrogate for a (potentially non-convex) target loss function of interest.
We demonstrate our losses on label ranking, ordinal regression and multilabel
classification, confirming the improved accuracy enabled by projections.

1 Introduction

The goal of supervised learning is to learn a mapping that links an input to an output, using examples
of such pairs. This task is noticeably more difficult when the output objects have a structure, i.e., when
they are not mere vectors. This is the so-called structured prediction setting [4] and has numerous
applications in natural language processing, computer vision and computational biology.

We focus in this paper on the surrogate loss framework, in which a convex loss is used as a proxy for
a (potentially non-convex) target loss of interest. Existing convex losses for structured prediction
come with different trade-offs. On one hand, the structured perceptron [[16] and hinge [52] losses
only require access to a maximum a-posteriori (MAP) oracle for finding the highest-scoring structure,
while the conditional random field (CRF) [29] loss requires access to a marginal inference oracle,
for evaluating the expectation under a Gibbs distribution. Since marginal inference is generally
considered harder than MAP inference, for instance containing #P-complete counting problems, this
makes the CRF loss less widely applicable. On the other hand, unlike the structured perceptron
and hinge losses, the CRF loss is smooth, which is crucial for fast convergence, and comes with a
probabilistic model, which is important for dealing with uncertainty. Unfortunately, when combined
with MAP decoding, these losses are typically inconsistent, meaning that their optimal estimator does
not converge to the target loss function’s optimal estimator. Recently, several works [15} 126} 139, |31]
showed good results and obtained consistency guarantees by combining a simple squared loss with
calibrated decoding. Since these approaches only require a decoding oracle at test time and no
oracle at train time, this questions whether structural information is even beneficial during training.

In this paper, we propose loss functions for structured prediction using a different kind of oracle:
projections. Kullback-Leibler projections onto various polytopes have been used to derive online
algorithms [24} 156, |49 [1]] but it is not obvious how to extract a loss from these works. In our
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framework, the user chooses a convex set containing the output space and provides an oracle for
projecting onto that set. Given that oracle, we automatically generate an associated loss function. As
we show, incorporating a projection as output layer provably makes the loss smaller. We identify
the marginal polytope, the output space’s convex hull, as the best convex set on which to project.
However, because the projection onto the marginal polytope can sometimes be expensive to compute,
we allow to use instead any convex superset, with potentially cheaper-to-compute projection. When
using the marginal polytope as the convex set, our loss comes with an implicit probabilistic model.
Our contributions are summarized as follows:

e Based upon Fenchel-Young losses [11,112], we introduce projection-based losses in a broad setting.
We give numerous examples of useful convex polytopes and their associated projections.

e We study the consistency w.r.t. a target loss of interest when combined with calibrated decoding,
extending a recent analysis [38]] to the more general projection-based losses. We exhibit a trade-off
between computational cost and statistical estimation.

e We demonstrate our losses on label ranking, ordinal regression and multilabel classification,
confirming the improved accuracy enabled by projections.

Notation. We denote the probability simplex by AP = {q € R : ||q]y = 1}, the domain
of 2: RP — R U {oo} by dom(2) = {u € RP: Q(u) < oo}, the Fenchel conjugate of Q by
Q(0) = supP,edom(a) (U, 0) — Q(u). We denote [k] == {1,...,k}.

2 Background and related work

Surrogate loss framework. The goal of structured prediction is to learn a mapping f: X — ),
from an input z € X to an output y € ), minimizing the expected target risk

L(f) =Exyy~p L(f(X),Y),

where p € A(X x )) is a typically unknown distribution and L: ) x ) — R is a potentially
non-convex target loss. We focus in this paper on surrogate methods, which attack the problem in
two main phases. During the training phase, the labels y € ) are first mapped to ¢(y) € O using an
encoding or embedding function ¢: ) — O. In this paper, we focus on © = RP, but some works
consider general Hilbert spaces [13} 26} 31]]. In most cases, ¢(y) will be a zero-one encoding of the
parts of y, i.e., ¢(y) € {0, 1}P. Given a surrogate loss S: © x © — R;,amodel g: X — © (e.g., a
neural network or a linear model) is then learned so as to minimize the surrogate risk

S(9) = E(x,y)~p S(9(X), o(Y)).

This allows to leverage the usual empirical risk minimization framework in the space ©. During the
prediction phase, given an input € X, a model prediction § = g(z) € O is “pulled back” to a valid
output j € ) using a decoding function d: © — ). This is summarized in the following diagram:

reXx 2s0co L s5e. (1)

model decoding

Commonly used decoders include the pre-image oracle [55,[17,25] § + argmin, ¢y, S(6, ¢(y)) and
the maximum a-posteriori inference oracle [16, 52} 29]], which finds the highest-scoring structure:

MAP(6) = argmax(0, o(y)). )
yey

In the remainder of this paper, for conciseness, we will use use S(6, y) as a shorthand for S (6, ©(y))
but it is useful to bear in mind that surrogate losses are always really defined over vector spaces.

Examples of surrogate losses. We now review classical examples of loss functions that fall within
that framework. The structured perceptron [16] loss is defined by

Ssp(0,y) = max 0,0(y") — (0, ¢(y))- 3)

Clearly, it requires a MAP inference oracle at training time in order to compute subgradients w.r.t. 6.
The structured hinge loss used by structured support vector machines [52] is a simple variant of
using an additional loss term. Classically, it is assumed that this term satisfies an affine decomposition,
so that we only need a MAP oracle. The conditional random fields (CRF) [29] loss, on the other
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Figure 1: Proposed framework in the Euclidean geometry. Left. Each black point represents the
vector encoding ¢(y) of one possible structure y € ). We require to choose a convex set C including
the encoded output space, ¢()). The best choice is M, the convex hull of ¢ ()’), but we can use any
superset C’ of it with potentially cheaper-to-compute projection. Setting C = R?, our loss S¢ (6, y)
(omitting the superscript ¥) recovers the squared loss (i.e., no projection). Right. When 6 belongs to
the interior of NV (v), the normal cone of C at a vertex v, the projection P (6) := argmin,,c¢ [[u—0||2
hits the vertex v and the angle formed by 6, P¢ () and ¢(y) is obtuse. In this case, S¢ (0, y) is a strict
upper-bound for £¢ (6, y) == £[/¢(y) — Pe(6)]|3. When 6 is not in the normal cone of C at any vertex,
then the angle is right and the two losses coincide, S¢(0,y) = ¢ (0, y).

hand, requires a so-called marginal inference oracle [54], for evaluating the expectation under the
Gibbs distribution p(y; 8) o e!?¥®)) The loss and the oracle are defined by

Serf(0,y) = log Z e<9’9”(y/)>—<9,<p(y)> and marginal(f) := Ey.,[0(Y)] x Z el0e W po(y).
y'ey yey

When ¢(y) is a zero-one encoding of the parts of y (i.e., a bit vector), marginal () can be interpreted
as some marginal distribution over parts of the structures. The CRF loss is smooth and comes with a
probabilistic model, but its applicability is hampered by the fact that marginal inference is generally
harder than MAP inference. This is for instance the case for permutation-prediction problems, where
exact marginal inference is intractable [53} 50, |44] but MAP inference can be computed exactly.

Consistency. When working with surrogate losses, an important question is whether the surrogate
and target risks are consistent, that is, whether an estimator g* minimizing S(g) produces an estimator
d o g* minimizing £(f). Although this question has been widely studied in the multiclass setting
[58L 6L 51, 135]] and in other specific settings [21}435]], it is only recently that it was studied in a fully
general structured prediction setting. The structured perceptron, hinge and CRF losses are generally
not consistent when using MAP as decoder d [38]. Inspired by kernel dependency estimation
[55 117} 125]], several works [[15} 126l 31]] showed good empirical results and proved consistency by
combining a squared loss Sq(6,y) == %|¢(y) — 0|3 with calibrated decoding (no oracle is needed
during training). A drawback of this loss, however, is that it does not make use of the output space )
during training, ignoring precious structural information. More recently, the consistency of the CRF
loss in combination with calibrated decoding was analyzed in [38]].

3 Structured prediction with projection oracles

In this section, we build upon Fenchel-Young losses [[11,[12] to derive a class of smooth loss functions
leveraging structural information through a different kind of oracle: projections. Our losses are
applicable to a large variety of tasks (including permutation problems, for which CRF losses are
intractable) and have consistency guarantees when combined with calibrated decoding (cf. §3)).

Fenchel-Young losses. The aforementioned perceptron, hinge and CRF losses all belong to the
class of Fenchel-Young losses [[11}[12]. The Fenchel-Young loss generated by {2 is defined by

Sa(0,y) = Q7(0) + Qe(y)) — (0, (y))- €y
As shown in [11L[12]], Sq (0, y) satisfies the following desirable properties:
e Non-negativity: Sq(6,y) > 0,
e Zero loss: Sq(6,y) =0 < VQ*(0) = o(y),



e Convexity: Sq(6,y) is convex in 6,
e Smoothness: If Q is %-strongly convex, then Sq (6, y) is S-smooth,

e Gradient as residual (generalizing the squared loss): V.S (6,y) = VQ*(0) — ¢(y).

In the Fenchel duality perspective, § = g(x) belongs to the dual space dom(Q2*) = © = RP and is
thus unconstrained. This is convenient, as this places no restriction on the model outputs 6 = g(z).
On the other hand, (¢ (y) belongs to the primal space dom(£2), which must include the encoded output
space p(}), i.e., () C dom(Q), and is typically constrained. The gradient VQ* is a mapping
from dom(Q2*) to dom(Q2) and S, can be seen as loss with mixed arguments, between these two
spaces. The theory of Fenchel-Young loss was recently extended to infinite spaces in [34].

Projection-based losses. Let the Bregman divergence generated by ¥ be defined as Dy (u, v) :=
U(u) — ¥(v) — (V¥(v),u — v). The Bregman projection of V¥*(6) onto a closed convex set C is

PY(0) = argmin Dy (u, VI*(0)). %)
u€eC

Intuitively, V¥* maps the unconstrained predictions § = g(x) to dom(¥), ensuring that the Breg-
man projection is well-defined. Let us define the Kullback-Leibler divergence by KL(u,v) =
doiuilog ot — 37 ui + Y2, vi. Two examples of generating function ¥ are W(u) = 3 lull3
with dom(¥) = RP and V¥*(¢) = 6, and ¥(u) = (u,logu) with dom(¥) = RE and
VU*(0) = e~1. This leads to the Euclidean projection argmin, ¢ ||u — 6|2 and the KL pro-
jection argmin,, .- KL(u, e?~1), respectively.

Our key insight is to use a projection onto a chosen convex set C as output layer. If C contains the
encoded output space, i.e., ¢()) C C, then p(y) € C for any ground truth y € ). Therefore, if
VU*(6) & C, then PY(6) is necessarily a better prediction than V¥*(6), since it is closer to ¢ (y)
in the sense of Dy. If V¥*(6) already belongs to C, then P¥ (0) = V¥*(6) and thus P¥ (0) is as
good as V¥*(6). To summarize, we have Dy (p(y), PY (0)) < Dy (p(y), VI*(0)) forall € ©
and y € Y. Therefore, it is natural to choose 6 so as to minimize the following compeositional loss

62 (0,y) = Du(o(y), PZ(0)).

Unfortunately, £} is non-convex in 6 in general, and Vy/g (6, y) requires to compute the Jacobian
of PY(6), which could be difficult, depending on C. Other works have considered the output of an
optimization program as input to a loss [48), 20, 8] but these methods are non-convex too and typically
require unrolling the program’s iterations. We address these issues, using Fenchel-Young losses.

Convex upper-bound. We now set the generating function Q2 of the Fenchel-Young loss (@) to
Q = U + I¢, where I denotes the indicator function of C. We assume that ¥ is Legendre type
(46,154, meaning that it is strictly convex and V¥ explodes at the boundary of the interior of dom ().
This assumption is satisfied by both W (u) = ||ul|3 and ¥(u) = (u,logw). With that assumption,
as shown in [T1L[12]], we obtain VQ*(0) = P¥ () for all § € ©, allowing us to use Fenchel-Young

losses. For brevity, let us define the Fenchel-Young loss generated by 2 = W + I as

S(‘fll(evy) = S‘P+Ic (eay) (6)

From the properties of Fenchel-Young losses, we have S¥ (0,y) = 0 < P¥(0) = ¢(y) and

VoSZ(0,y) = P¥(0,y) — ¢(y). Moreover, as shown in [T1L[12]l, S (6, y) upper-bounds £ (6, y):

(Z(0,y) < S (0.y) Y0e€O,ye. (M

Note that if C = dom (V) (largest possible set), then S¥ (6, y) = Dy (¢(y), V¥*(0)). In particular,
with O = 1| - || and C = R?, SZ (0, y) recovers the squared loss Sy (0,y) = 3¢ (y) — 0|13

Choosing the projection set. Recall that C should be a convex set such that ¢()) C C. The next
new proposition, a simple consequence of @), gives an argument in favor of using smaller sets.

Proposition 1 Using smaller sets results in smaller loss

Let C,C’ be two closed convex sets such that C C C' C dom(W¥). Then,

S¢(0,y) <S¢/ (0,y) Vo€O,ye.




As a corollary, combined with , we have

02 (0,y) <S¢ (0,y) < Du(e(y), VI*(6))

and in particular when ¥ (u) = 1 ||u||3, noticing that S, = Sg§,, we have

1 1
(e (0,y) = S lely) = P (0)]3 < S (0,y) < 3 le@) =015 = Sw(6,9).

Therefore, the Euclidean projection PY () always achieves a smaller squared loss than § = g(x).
This is intuitive, as C is a smaller region than RP and C is guaranteed to include the ground-truth (y).
Our loss S is a convex and structurally informed middle ground between /¢ and S,

How to choose C? The smallest convex set C such that ¢()) C C is the convex hull of ¢())
M = conv(p(Y)) = {Ey~qlp(Y)]: ¢ € AP} C O. (8)

When ¢(y) is a zero-one encoding of the parts of y, M is also known as the marginal polytope [54],
since any point inside it can be interpreted as some marginal distribution over parts of the structures.
The loss S¢ with C = M and ¥(u) = 1|u|3 is exactly the sparseMAP loss proposed in [37]. More
generally, we can use any superset C' of M, with potentially cheaper-to-compute projections. For
instance, when (y) uses a zero-one encoding, the marginal polytope is always contained in the unit
cube, i.e., M C [0, 1], whose projection is very cheap to compute. We show in our experiments
that even just using the unit cube typically improves over the squared loss. However, an advantage of
using C = M is that P/‘\I’/l (0) produces a convex combination of structures, i.e., an expectation.

Smoothness. The well-known equivalence between strong convexity of a function and the smooth-
ness of its Fenchel conjugate implies that the following three statements are all equivalent:

e U is%-strongly convex w.r.t. anorm | - || over C,

e PY is B-Lipschitz continuous w.r.t. the dual norm || - ||, over R?,

e SY is B-smooth in its first argument w.r.t. || - ||, over RP.

With the Euclidean geometry, since W (u) = 1 ||ul|3 is 1-strongly-convex over R? w.r.t. || - ||2, we have
that S is 1-smooth w.r.t. || - ||2 regardless of C. With the KL geometry, the situation is different.
The fact that U(u) = (u,logu) is 1-strongly convex w.r.t. || - ||; over C = AP is well-known (this is

Pinsker’s inequality). The next proposition, proved in §C.I] shows that this straightforwardly extends
to any bounded C and that the strong convexity constant is inversely proportional to the size of C.

Proposition 2 Strong convexity of ¥(u) = (u,log u) over a bounded set

Let C C RY and B = sup,cc ||ull1. Then, ¥ is%-strongly convex w.rt. || - ||1 over C.

This implies that S¥ is 8-smooth W.r.t. || - || Since smaller 3 is smoother, this is another argument
for preferring smaller sets C. With the best choice of C = M, we obtain 8 = sup,cy [|¢(y)||1-

Computation. Assuming C is compact (closed and bounded), the Euclidean projection can always
be computed using Frank-Wolfe or active-set algorithms, provided access to a linear maximization ora-
cle LMO¢(v) := argmax,, . (u, v). Note that in the case C = M, assuming that ¢ is injective, mean-
ing that is has a left inverse, MAP inference reduces to an LMO, since MAP(6) = ¢~ 1(LMO (6))
(the LMO can be viewed as a linear program, whose solutions always hit a vertex ¢(y) of M). The
KL projection is more problematic but Frank-Wolfe variants have been proposed [7}27]. In the next
section, we focus on examples of sets for which an efficient dedicated projection oracle is available.

4 Examples of convex polytopes and corresponding projections

Probability simplex. For multiclass classification, we set ) = [k], where k is the number of
classes. With p(y) = e,, the one-hot encoding of y, MAP inference (Z) becomes MAP(0) =
argmax;c ) 0x. The marginal polytope defined in @®) is now M = AF, the probability simplex.
The Euclidean and KL projections onto C = M then correspond to the sparsemax [32]] and softmax
transformations. We therefore recover the sparsemax and logistic losses as natural special cases of
S¢ . Note that, although the CRF loss [29] also comprises the logistic loss as a special case, it no
longer coincides with our loss in the structured case.
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Figure 2: Examples of convex polytopes.

Unit cube. For multilabel classification, we choose )V = 2¥1, the powerset of [k]. Let us set

oly) = Z‘Zy:ll e,, € {0,1}*, the label indicator vector of y (i.e., p(y); = 1 if i € y and 0 otherwise).
MAP inference corresponds to predicting each label independently. More precisely, for each label
i € [k], if ; > 0 we predict 4, otherwise we do not. The marginal polytope is now M = [0, 1]¥, the
unit cube. Each vertex is in bijection with one possible subset of [k]. The Euclidean projection of 8
onto M is equal to a coordinate-wise clipping of 6, i.e., max(min(6;, 1), 0) for all ¢ € [k]. The KL
projection is equal to min(1, % ~1) for all i € [k]. More generally, whenever ¢ for the task at hand
uses a 0-1 encoding, we can use the unit cube as superset with computationally cheap projection.

Knapsack polytope. We now set ) = {y € 2[¥: | < |y| < u}, the subsets of [k] of bounded size.
We assume 0 < [ < u < k. This is useful for multilabel classification with known lower bound
I € N and upper bound u € N on the number of labels per sample. Setting again ¢(y) = Zlyzll ey, €
{0,1}*, MAP inference is equivalent to the integer linear program argmax,(, e 0,13+ (0, 9(y)) s-t.

I <{p(y),1) < u. Let w be a permutation sorting # in descending order. An optimal solution is
{ 1 ifl>0andié€ {m,...,m},

1 elseifi € {m,...,m,}and6; >0,
0 else.

(y)i =

The marginal polytope is an instance of knapsack polytope [2]. It is equal to M = {u € [0,1]¥: [ <
(11, 1) < u} and is illustrated in Figure 2 with k& = 3, = 0 and u = 2 (i.e., we keep all elements of
2031 except {1,2,3}). The next proposition, proved in shows how to efficiently project on M.

Proposition 3 Efficient Euclidean and KL projections on M
o Let v be the projection of VU*(0) onto the unit cube (cf. “unit cube” paragraph,).
o Ifl <{v,1) <, then v is optimal.

e Otherwise, return the projection of VU*(0) onto {u € [0,1]%: (i, 1) = m}, where m = u
if (v,1) > wand m = [ otherwise.

The total cost is O(k) in the Euclidean case and O(k log k) in the KL case (cf. §C.2|for details).

Birkhoff polytope. We view ranking as a structured prediction problem and let Y be the set of
permutations 7 of [k]. Setting () € {0, 1}*** as the permutation matrix associated with 7, MAP

inference becomes the linear assignment problem MAP(6) = argmax, ., Zf: 1 0i,~, and can be
computed exactly using the Hungarian algorithm [28]. The marginal polytope M becomes the



Birkhoff polytope [10], the set of doubly stochastic matrices
M={PcR"”* PT1=1P1=1,0< P<1}.

Noticeably, marginal inference is known to be #P-complete [53} 150, §3.5], since it corresponds to
computing a matrix permanent. In contrast, the KL projection on the Birkhoff polytope can be
computed using the Sinkhorn algorithm [47, [18]]. The Euclidean projection can be computed using
Dykstra’s algorithm [[19] or dual approaches [[13]. For both projections, the cost of obtaining an
e-precise solution is O(k?/¢). To obtain cheaper projections, we can also use [13} 38] the set A***
of row-stochastic matrices, a strict superset of the Birkhoff polytope and strict subset of the unit cube

[0, 1]k 5 ARXE = AR o AF={PecRM*. PT1=1,0<P<1}D>M.

Projections onto A*** reduce to k row-wise projections onto AF, for a worst-case total cost of
O(k?log k) in the Euclidean case and O(k?) in the KL case.

Permutahedron. We again consider ranking and let ) be the set of permutations 7 of [k] but
use a different encoding. This time, we define ¢(7) = (wy,, ..., ws,) € R¥, where w € R* is a
prescribed vector of weights, which without loss of generality, we assume sorted in descending order.

MAP inference becomes MAP(f)) = argmax, ., Zle Oiwy, = Zf:l Hﬂi_lwi, where 7! denotes
the inverse permutation of 7. The MAP solution is thus the inverse of the permutation sorting 6 in
descending order, and can be computed in O(k log k) time. When w = (k, ..., 1), which we use
in our experiments, M is known as the permutahedron. For arbitrary w, we follow [30] and call
M the permutahedron induced by w. Its vertices correspond to the permutations of w. Importantly,
the Euclidean projection onto M reduces to sorting, which takes O(k log k), followed by isotonic
regression, which takes O(k) [57} [36]]. Bregman projections reduce to isotonic optimization [30].

Order simplex. We again set )) = [k] but now consider the ordinal regression setting, where
there is an intrinsic order 1 < --- < k. We need to use an encoding ¢ that takes into account that
order. Inspired by the all-threshold method [42] 38], we set p(y) = > ;<€ € RE=1. For
instance, with k& = 4, we have p(1) = [0,0,0], »(2) = [1,0,0], »(3) = [1,1,0] and p(4) = [1, 1, 1].
This encoding is also motivated by the fact that it enables consistency w.r.t. the absolute loss (§A).
As proved in §C.3] with that encoding, the marginal polytope becomes the order simplex [22]].

Proposition 4 Vertices of the order simplex

M = conv(0, e, e1+ea, ... e14 - Fep_1) ={p R 1>y > pgp >0 > oy > 0}

Note that without the upper bound on 13, the resulting set is known as monotone nonnegative cone
[14]. The scores ({0, ap(y)))gzl can be calculated using a cumulated sum in O(k) time and therefore
so do MAP and marginal inferences. The Euclidean projection is equivalent to isotonic regression

with lower and upper bounds, which can be computed in O(k) time [9].
5 Consistency analysis of projection-based losses
‘We now study the consistency of S&I’ as a proxy for a possibly non-convex targetloss L: Y x ) — R..

Affine decomposition. We assume that the target loss L satisfies the decomposition

L@, y) = (¢(@), Veo(y) + b) + c(y). ©)
This is a slight generalization of the decomposition of [15]], where we used an affine map u — Vu+b
instead of a linear one and where we added the term ¢: ) — R, which is independent of 3. This
modification allows us to express certain losses L using a zero-one encoding for ¢ instead of a signed
encoding [38]]. The latter is problematic when using KL projections and does not lead to sparse
solutions with Euclidean projections. Examples of target losses satisfying (9) are discussed in §A]

Calibrated decoding. A drawback of the classical inference pipeline (I) with decoder d = MAP
is that it is oblivious to the target loss L. In this paper, we propose to use instead

pPY 7 3
reX 21 50cO=R — s yueCc— 7€), (10)
model projection calibrated decoding



where we define the decoding calibrated for the loss L by

yr(u) == argmin{p(y'), Vu + b) = MAP(—Vu — b). (11)

y' ey

Under the decomposition (9), calibrated decoding therefore reduces to MAP inference with pre-
processed input. It is a “rounding” to ) of the projection u = P¥ () € C, that takes into account
the loss L. Recently, [15} 26} 139} 131]] used similar calibrated decoding in conjunction with a squared
loss (i.e., without an intermediate layer) and [38] used it with a CRF loss (with marginal inference as
intermediate layer). To our knowledge, we are the first to use a projection layer (in the Euclidean or
KL senses) as an intermediate step.

Calibrating target and surrogate excess risks. Given a (typically unknown) joint distribution
p € A(X x Y), let us define the target risk of f: X — ) and the surrogate risk of g: X — © by

L(f) =Ex,yy~p L(f(X),Y) and SF(g) :==E(x,y)~p S¢ (9(X),Y).
The quality of estimators f and g is measured in terms of the excess of risks
OL()=L(S)—  inf L(f) and 08 (g) =S (9)— ~inf SE(9).
: —

f! y g’ X—0©

The following proposition shows that §£(f) and §S¥ (g) are calibrated when using our proposed
inference pipeline (T0), i.e., when f =3, o P¥ o g.

Proposition 5 Calibration of target and surrogate excess risks

Let S (0,y) and L(y,y) be defined as in (6) and Q), respectively. Assume ¥ is %-strongly
convex w.r.t. || - || over C, Legendre-type, and C is a closed convex set such that p())) C C C
dom(W). Let o := supgey ||V " 0(9) |+, where || - ||.. is the dual norm of || - ||. Then,

(S‘C(@\LOPC\IIOQ)Q <6S\Il(g)

Vg: X :
g — 0 8ﬁ0’2 = C

The proof, given in §C.4] is based on the calibration function framework of [40] and extends a recent
analysis [38]] to projection-based losses. Our proof covers Euclidean projection losses, not covered by
the previous analysis. Propositionimplies Fisher consistency, i.e., £(7r, o P¥ 0g*) = L(f*), where
f* = argmin;. y_,y £(f) and g* := argmin,, y_,o SZ (9). Consequently, any optimization
algorithm converging to ¢g* will also recover an optimal estimator 7, o P¥ o g* of £. Combined with
Propositions[T]and 2} Proposition 5| suggests a trade-off between computational cost and statistical
estimation, larger sets C enjoying cheaper-to-compute projections but leading to slower rates.

6 Experimental results

We present in this section our empirical findings on three tasks: label ranking, ordinal regression
and multilabel classification. In all cases, we use a linear model § = g(x) := Wa and solve
IS S¥(Way,y;:) + 5[|[W||% by L-BFGS, choosing A against the validation set. A Python
implementation is available at https://github.com/mblondel/projection-losses.

Label ranking. We consider the label ranking setting where supervision is given as full rankings
(e.g., 2 = 1 > 3 > 4) rather than as label relevance scores. Note that the exact CRF loss is intractable
for this task. We use the same six public datasets as in [26]]. We compare different convex sets for
the projection PY and the decoding g, For the Euclidean and KL projections onto the Birkhoff
polytope, we solve the semi-dual formulation [13|] by L-BFGS. We report the mean Hamming loss,
for which our loss is consistent, between the ground-truth and predicted permutation matrices in the
test set. Results are shown in Table[I]and Table 2] We summarize our findings below.

e For decoding, using [0, 1]*** or AF*¥ instead of the Birkhoff polytope considerably degrades
accuracy. This is not surprising, as these choices do not produce valid permutation matrices.

e Using a squared loss 3[l¢(y) — 0]|* (C = R***, no projection) works relatively well when
combined with permutation decoding. Using supersets of the Birkhoff polytope as projection set
C, such as [0, 1]¥** or AF*¥improves accuracy substantially. However, the best accuracy is
obtained when using the Birkhoff polytope for both projections and decoding.


https://github.com/mblondel/projection-losses

Table 1: Hamming loss (lower is better) for label ranking with Euclidean projections. The first line
indicates the projection set C used in (3). The second line indicates the decoding set used in (TT)).
Using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

Projection [0, 1]**%  AFXE  RExk g q]kxk ARXE pg

Decoding [0, 1]¥*F ARk M M M M
Authorship 12.83 5.62 5.70 5.18 5.70 5.10
Glass 24.35 5.43 7.11 5.68 5.04 4.65
Iris 27.78 1037 19.26 4.44 1.48 2.96
Vehicle 26.36 7.43 9.04 7.57 6.99  5.88
Vowel 43.71 9.65 10.57 9.56 9.18 8.76
Wine 10.19 1.85 1.23 1.85 1.85 1.85

M: Birkhoff polytope

Projection Ak xk Rix k [O7 l]k xk Ak Xk M Rank 1- 0.00 0.06 0.00 0.00 0.00

Decoding Aka M M M M Rank z—ﬂ 0.34 0.00 0.00 0.00 0.06 08
Authorship 584 510  5.62 584 5.0  rews-017 01 0z 018 000 oo ffos
Glass 543 5.81 5.94 5.68 4.65 Rank 4- 0.23 0.18 0.10 0.00 0.00 04
Iris 11.11  18.52 4.44 148 296 0 oo 0_280_00 o0
Vehicle 7.57 8.46 7.43 7.21 6.25 02

Vowel 9.50 9.40 9.42 9.28 917  Renker 000 000 000 000 008
Wine 4.32 1.85 1.85 185 1.85 SIS FSEN

B
S S
FrFF S

Table 2: Same as Tablebut with KL projections instead. Figure 3: Example of soft
permutation matrix.

o The losses derived from Euclidean and KL projections perform similarly. This is informative, as
algorithms for Euclidean projections onto various sets are more widely available.

Beyond accuracy improvements, the projection y = P/‘\I’A (Wz) is useful to visualize soft permutation
matrices predicted by the model, an advantage lost when using supersets of the Birkhoff polytope.

Ordinal regression. We compared classical ridge regression to our order simplex based loss on
sixteen publicly-available datasets [23]]. For evaluation, we use mean absolute error (MAE), for which
our loss is consistent when suitably setting V' and b (cf. §A). We find that ridge regression performs
the worst with an average MAE of 0.72. Combining a squared loss (/¢ (y) — 6||? (no projection)
with order simplex decoding at prediction time improves the MAE to 0.47. Using a projection on
the unit cube, a superset of the order simplex, further improves the MAE to 0.45. Finally, using the
Euclidean projection onto the order simplex achieves the best MAE of 0.43, confirming that using the
order simplex for both projections and decoding works better. Detailed results are reported in Table 4]

Multilabel classification. We compared losses derived from the unit cube and the knapsack poly-
tope on the same seven datasets as in [32}[11]. We set the lower bound ! to 0 and the upper-bound u

to [E[|Y|] + +/V[|Y|]], where E and V are computed over the training set. Although the unit cube is
a strong baseline, we find that the knapsack polytope improves F} score on some datasets, especially
with few labels per sample (“birds”, “emotions”, “scene”). Results are reported in Tables [6|and[7]

7 Conclusion

We proposed in this paper a general framework for deriving a smooth and convex loss function
from the projection onto a convex set, bringing a computational geometry perspective to structured
prediction. We discussed several examples of polytopes with efficient Euclidean or KL projection,
making our losses useful for a variety of structured tasks. Our theoretical and empirical results
suggest that the marginal polytope is the convex set of choice when the projection onto it is affordable.
When not, our framework allows to use any superset with cheaper-to-compute projection.
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