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Abstract

We consider the problem of estimating the difference between two functional
undirected graphical models with shared structures. In many applications, data
are naturally regarded as high-dimensional random function vectors rather than
multivariate scalars. For example, electroencephalography (EEG) data are more
appropriately treated as functions of time. In these problems, not only can the
number of functions measured per sample be large, but each function is itself an in-
finite dimensional object, making estimation of model parameters challenging. We
develop a method that directly estimates the difference of graphs, avoiding separate
estimation of each graph, and show it is consistent in certain high-dimensional
settings. We illustrate finite sample properties of our method through simulation
studies. Finally, we apply our method to EEG data to uncover differences in
functional brain connectivity between alcoholics and control subjects.

1 Introduction

Undirected graphical models are widely used to compactly represent pairwise conditional indepen-
dence in complex systems. Let G = {V,E} denote an undirected graph where V is the set of vertices
with |V | = p and E ⊂ V 2 is the set of edges. For a random vector X = (X1, . . . , Xp)

T , we say that
X satisfies the pairwise Markov property with respect to G if Xv 6 ⊥⊥ Xw|{Xu}u∈V \{v,w} implies
{v, w} ∈ E. When X follows a multivariate Gaussian distribution with covariance Σ = Θ−1, then
Θvw 6= 0 implies {v, w} ∈ E. Thus, recovering the structure of the undirected graph is equivalent to
estimating the support of the precision matrix, Θ [10, 13, 4, 24, 25].

We consider a setting where we observe two samples X and Y from (possibly) different distributions,
and the primary object of interest is the difference between the conditional dependencies of each
population rather than the conditional dependencies in each population. For example, in Section 4.3
we analyze neuroscience data sampled from a control group and a group of alcoholics, and seek to
understand how the brain functional connectivity patterns in the alcoholics differ from the control
group. Thus, in this paper, the object of interest is the differential graph, G∆ = {V,E∆}, which is
defined as the difference between the precision matrix of X , ΘX and the precision matrix of Y , ΘY ,
∆ = ΘX −ΘY . When ∆vw 6= 0, it implies {v, w} ∈ E∆. This type of differential model has been
adopted in [30, 22, 3].

In this paper, we are interested in estimating the differential graph in a more complicated setting.
Instead of observing vector valued data, we assume the data are actually random vector valued
functions (see [5] for a detailed exposition of random functions). Indeed, we aim to estimate the
difference between two functional graphical models and the method we propose combines ideas from
graphical models for functional data and direct estimation of differential graphs.
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Multivariate observations measured across time can be modeled as arising from distinct, but similar
distributions [9]. However, in some cases, it may be more natural to assume the data are measurements
of an underlying continuous process [31, 18, 11, 28]. [31, 18] treat data as curves distributed according
to a multivariate Gaussian process (MGP). [31] shows that Markov properties hold for Gaussian
processes, while [18] shows how to consistently estimate underlying conditional independencies.

We adopt the functional data point of view and assume the data are curves distributed according
to a MGP. However, we consider two samples from distinct populations with the primary goal of
characterizing the difference between the conditional cross-covariance functions of each population.
Naively, one could apply the procedure of [18] to each sample, and then directly compare the resulting
estimated conditional independence structures. However, this approach would require sparsity in both
of the underlying conditional independence graphs and would preclude many practical cases; e.g.,
neither graph could contain hub-nodes with large degree. We develop a novel procedure that directly
learns the difference between the conditional independence structures underlying two MGPs. Under
an assumption that the difference is sparse, we can consistently learn the structure of the differential
graph, even in the setting where individual graphs are dense and separate estimation would suffer.

Our paper builds on recent literature on graphical models for vector valued data, which suggests
that direct estimation of the differences between parameters of underlying distributions may yield
better results. [12] considers data arising from pairwise interaction exponential families and propose
the Kullback-Leibler Importance Estimation Procedure (KLIEP) to explicitly estimate the ratio of
densities. [21] uses KLIEP as a first step to directly estimate the difference between two directed
graphs. Alternatively, [30, 26] consider two multivariate Gaussian samples, and directly estimate the
difference between the two precision matrices. When the difference is sparse, it can be consistently
estimated even in the high-dimensional setting with dense underlying precision matrices. [22] extends
this approach to Gaussian copula models.

The rest of the paper is organized as follows. In Section 2 we introduce our method for Functional
Differential Graph Estimation (FuDGE). In Section 3 we provide conditions under which FuDGE
consistently recovers the true differential graph. Simulations and real data analysis are provided
in Section 41. Discussion is provided in Section 5. Appendix contains all the technical proofs and
additional simulation results.

We briefly introduce some notation used throughout the rest of the paper. Let | · |p denote vector p-
norm and ‖·‖p denote the matrix/operator p-norm. For example, for a p×pmatrixA with entries ajk,
|A|1 =

∑
j,k |ajk|, ‖A‖1 = maxk

∑
j |ajk|, |A|∞ = maxj,k |ajk|, and ‖A‖∞ = maxj

∑
k |ajk|.

Let an � bn denote that z1 ≤ infn |an/bn| ≤ supn |an/bn| ≤ z2 for some positive constants z1 and
z2. Let λmin(A) and λmax(A) denote the minimum and maximum eigenvalues, respectively. For a
bivariate function g(s, t), we define the Hilbert-Schmidt norm of g(s, t) (or equivalently, the norm of
the integral operator it corresponds to) as ‖g‖2HS =

∫ ∫
{g(s, t)}2dsdt.

2 Methodology

2.1 Functional differential graphical model

Let Xi(t) = (Xi1(t), . . . , Xip(t))
T , i = 1, . . . , nX , and Yi(t) = (Yi1(t), . . . , Yip(t))

T , i =
1, . . . , nY , be iid p-dimensional multivariate Gaussian processes with mean zero and common
domain T from two different, but connected population distributions, where T is a closed subset
of the real line.2 Also, assume that for j = 1, . . . , p, Xij(t) and Yij(t) are random elements of a
separable Hilbert space H. For brevity, we will generally only explicitly define notation for Xi(t);
however, the reader should note that all notations for Yi(t) are defined analogously.

Following [18], we define the conditional cross-covariance function for Xi(t) as
CXjl (s, t) = Cov (Xij(s), Xil(t) | {Xik(·)}k 6=j,l) . (2.1)

If CXjl (s, t) = 0 for all s, t ∈ T , then the random functions Xij(t) and Xil(t) are conditionally
independent given the other random functions. The graph GX = {V,EX} represents the pairwise

1The code for this part is on https://github.com/boxinz17/FuDGE
2Both Xi(t) and Yi(t) are indexed by i, but they are not paired observations and are completely independent.

Also, we assume mean zero and a common domain T to simplify the notation, but the methodology and theory
generalize to non-zero means and different time domains TX and TY when fixing some bijection TX 7→ TY .
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Markov properties of Xi(t) if

EX = {(j, l) ∈ V 2 : j 6= l and ∃{s, t} ∈ T 2 such that CXjl (s, t) 6= 0}. (2.2)

In this paper, the object of interest is C∆(s, t) where C∆
jl (s, t) = CXjl (s, t)− CYjl (s, t). We define

the differential graph to be G∆ = {V,E∆}, where

E∆ = {(j, l) ∈ V 2 : j 6= l and ‖C∆
jl ‖HS 6= 0}. (2.3)

Again, we include an edge between j and l, if the conditional dependence between Xij(t) and Xil(t)
given all the other curves differs from that of Yij(t) and Yil(t) given all the other curves.

2.2 Functional principal component analysis

Since Xi(t) and Yi(t) are infinite dimensional objects, for practical estimation, we reduce the
dimensionality using functional principal component analysis (FPCA). Similar to the way principal
component analysis provides an L2 optimal lower dimensional representation of vector valued data,
FPCA provides an L2 optimal finite dimensional representation of functional data. As in [18], for
simplicity of exposition, we assume that we fully observe the functions Xi(t) and Yi(t). However,
FPCA can also be applied to both densely and sparsely observed functional data, as well as data
containing measurement errors. Such an extension is straightforward, cf. [23] and [20] for a recent
overview. Let KX

jj (t, s) = Cov(Xij(t), Xij(s)) denote the covariance function for Xij . Then, there
exists orthonormal eigenfunctions and eigenvalues {φjk(t), λXjk}k∈N such that for all k ∈ N [5]:∫

T
KX
jj (s, t)φ

X
jk(t)dt = λXjkφ

X
jk(s). (2.4)

Without loss of generality, assume λXj1 ≥ λXj2 ≥ · · · ≥ 0. By the Karhunen-Loève expansion
[5, Theorem 7.3.5], Xij(t) can be expressed as Xij(t) =

∑∞
k=1 a

X
ijkφ

X
jk(t) where the principal

component scores satisfy aXijk =
∫
T Xij(t)φ

X
jk(t)dt and aXijk ∼ N(0, λXjk) with E(aXijka

X
ijl) = 0 if

k 6= l. Because the eigenfunctions are orthonormal, the L2 projection of Xij onto the span of the
first M eigenfunctions is

XM
ij (t) =

M∑
k=1

aXijkφ
X
jk(t). (2.5)

Functional PCA constructs estimators φ̂Xjk(t) and âXijk through the following procedure. First, we
form an empirical estimate of the covariance function:

K̂X
jj (s, t) =

1

nX

nX∑
i=1

(Xij(s)− X̄j(s))(Xij(t)− X̄j(t)),

where X̄j(t) = n−1
X

∑nX

i=1Xij(t). An eigen-decomposition of K̂X
jj (s, t) then directly provides the

estimates λ̂Xjk and φ̂Xjk which allow for computation of âXijk =
∫
T Xij(t)φ̂

X
jk(t)dt. Let aX,Mij =

(aXij1, . . . , a
X
ijM )T ∈ RM and aX,Mi = ((aX,Mi1 )T , . . . , (aX,Mip )T )T ∈ RpM with corresponding

estimates âX,Mij and âX,Mi . Since XM
i (t) are p-dimensional MGP, aX,Mi will have a multivariate

Gaussian distribution with pM × pM covariance matrix which we denote as ΣX,M = (ΘX,M )−1.
In practice, M can be selected by cross validation as in [18].

For (j, l) ∈ V 2, let ΘX,M
jl be the M ×M matrix corresponding to (j, l)th submatrix of ΘX,M . Let

∆M = ΘX,M − ΘY,M be the difference between the precision matrices of the first M principal
component scores where ∆M

jl denotes the (j, l)th submatrix of ∆M . In addition, let

E∆M := {(j, l) ∈ V 2 : j 6= l and ‖∆M
jl ‖F 6= 0}, (2.6)

denote the set of non-zero blocks of the difference matrix ∆M . In general E∆M 6= E∆; however, we
will see that for certain M , by constructing a suitable estimator of ∆M we can still recover E∆.
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2.3 Functional differential graph estimation

We now describe our method, FuDGE, for functional differential graph estimation. Let SX,M and
SY,M denote the sample covariances of âX,Mi and âY,Mi . To estimate ∆M , we solve the following
problem with the group lasso penalty, which promotes blockwise sparsity in ∆̂M [27]:

∆̂M ∈ arg min
∆∈RpM×pM

L(∆) + λn
∑

{i,j}∈V 2

‖∆ij‖F , (2.7)

where L(∆) = tr
[

1
2S

Y,M∆TSX,M∆−∆T
(
SY,M − SX,M

)]
. Note that although the true ∆M is

symmetric, we do not enforce symmetry in ∆̂M .

The design of the loss function L(∆) in equation (2.7) is based on [15], where in order to construct
a consistent M-estimator, we want the true parameter value ∆M to minimize the population loss
E [L(∆)]. For a differentiable and convex loss function, this is equivalent to selecting L such that
E
[
∇L(∆M )

]
= 0. Since ∆M =

(
ΣX,M

)−1 −
(
ΣY,M

)−1
, it satisfies ΣX,M∆MΣY,M − (ΣY,M −

ΣX,M ) = 0. By this observation, a choice for∇L(∆) is

∇L(∆M ) = SX,M∆MSY,M −
(
SY,M − SX,M

)
, (2.8)

for which E
[
∇L(∆M )

]
= ΣX,M∆MΣY,M − (ΣY,M − ΣX,M ) = 0. Using properties of the

differential of the trace function, this choice of ∇L(∆) yields L(∆) in (2.7). The chosen loss is
quadratic (see (B.10) in supplement) and leads to an efficient algorithm. Such loss has been used in
[22, 26, 14] and [30].

Finally, to form Ê∆, we threshold ∆̂M by εn > 0 so that:

Ê∆ = {(j, l) ∈ V 2 : j 6= l and ‖∆̂M
jl ‖F > εn or ‖∆̂M

lj ‖F > εn}. (2.9)

2.4 Optimization algorithm for FuDGE

Algorithm 1 Functional differential graph estimation
Input: SX,M , SY,M , λn, η.
Output: ∆̂M .

Initialize ∆(0) = 0pM .
repeat
A = ∆− η∇L(∆) = ∆− η

[
S

(M)
X ∆S

(M)
Y − (S

(M)
Y − S(M)

X )
]

for 1 ≤ i, j ≤ p do
∆jl ←

(
‖Ajl‖F−λnη
‖Ajl‖F

)
+
·Ajl

end for
until Converge

The optimization problem (2.7) can be solved by a proximal gradient method [17], summarized in
Algorithm 1. Specifically, in each iteration step, we update the current value of ∆, denoted as ∆old,
by solving the following problem:

∆new = arg min
∆

1

2

∥∥∆−
(
∆old − η∇L

(
∆old))∥∥2

F
+ η · λn

p∑
j,l=1

‖∆jl‖F

 , (2.10)

where ∇L(∆) is defined in (2.8) and η is a user specified step size. Note that ∇L(∆) is Lipschitz
continuous with the Lipschitz constant ‖SY,M ⊗ SX,M‖2 = λmax(SY,M )λmax(SX,M ). Thus, for
any η such that 0 < η ≤ 1/λSmax, the proximal gradient method is guaranteed to converge [1], where
λSmax = λmax(SY,M )λmax(SX,M ) is the largest eigenvalue of SX,M ⊗ SY,M .

The update in (2.10) has a closed-form solution:

∆new
jl =

[(
‖Aold

jl ‖F − λnη
)
/‖Aold

jl ‖F
]
+
·Aold

jl , 1 ≤ j, l ≤ p, (2.11)
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where Aold = ∆old − η∇L(∆old) and x+ = max{0, x}, x ∈ R represents the positive part of x.
Detailed derivations are given in the appendix.

After performing FPCA, the proximal gradient descent method converges in O
(
λSmax/tol

)
iterations,

where tol is error tolerance, each iteration takes O((pM)3) operations. See [19] for convergence
analysis of proximal gradient descent algorithm.

3 Theoretical properties

In this section, we present theoretical properties of the proposed method. Again, we state assumptions
explicitly for Xi(t), but also require the same conditions on Yi(t).
Assumption 3.1. Recall that λXjk and φXjk(t) are the the eigenvalues and eigenfunctions of KX

jj (t),
the covariance function for Xij(t), and λXjk > λXjk′ for all k′ > k.

(i) Assume maxj∈V
∑∞
k=1 λ

X
jk < ∞ and there exists some constant βX > 1 such that for

each k ∈ N, λXjk � k−βX and dXjkλ
X
jk = O(k) uniformly in j ∈ V , where dXjk =

2
√

2 max

{(
λXj(k−1) − λ

X
jk

)−1

,
(
λXjk − λXj(k+1)

)−1
}

.

(ii) Assume for all k ∈ N, φXjk(t)’s are continuous on the compact set T and satisfy
maxj∈V sups∈T supk≥1 |φXjk(s)| = O(1).

The parameter βX controls the decay rate of the eigenvalues and dXjkλ
X
jk = O(k) controls the decay

rate of eigen-gaps (see [2] for more details).

To recover the exact functional differential graph structure, we need further assumptions
on the difference operator C∆ = {CXjl (s, t) − CYjl (s, t)}j,l∈V . Let ν = ν(M) =

max(j,l)∈V 2

∣∣∣‖C∆
jl ‖HS − ‖∆M

jl ‖F
∣∣∣, and let τ = min(j,l)∈E∆

‖C∆
jl ‖HS, where τ > 0 by the definition

in (2.3). Roughly speaking, ν(M) measures the bias due to using an M -dimensional approximation,
and τ measures the strength of signal in the differential graph. A smaller τ implies that the graph is
harder to recover, and in Theorem 3.1, we require the bias to be small compared to the signal.
Assumption 3.2. Assume that limM→∞ ν(M) = 0.

We also require Assumption 3.3 which assumes sparsity in E∆. Again, this does not preclude the
case where EX and EY are dense, as long as the difference between the two graphs is sparse. This
assumption is common in the scalar setting; e.g., Condition 1 in [30].
Assumption 3.3. There are s edges in the differential graph; i.e., |E∆| = s.

Before we give conditions for recovering the differential graph with high probability, we first
introduce some additional notation. Let n = min{nX , nY }, σmax = max{|ΣX,M |∞, |ΣY,M |∞},
β = min{βX , βY }, and λ∗min = λmin

(
ΣX,M

)
× λmin

(
ΣY,M

)
. Given positive constant c1, denote

δ = (1/
√
c1)M1+β

√
2 (log p+ logM + log n) /n (3.1)

and

Γ =
9λ2

ns

κ2
L

+
2λn
κL

(ω2
L + 2p2ν), (3.2)

where
λn = 2M

[(
δ2 + 2δσmax

) ∣∣∆M
∣∣
1

+ 2δ
]
,

κL = (1/2)λ∗min − 8M2s
(
δ2 + 2δσmax

)
, and

ωL = 4Mp2ν
√
δ2 + 2δσmax.

(3.3)

Note that Γ implicitly depends on n through λn, κL, ωL and δ.
Theoreom 3.1. There exist positive constants c1 and c2, such that for n and M large enough to
simultaneously satisfy

0 < Γ < (1/2)τ − ν(M) and

δ < min

{
(1/4)

√
(λ∗min + 16M2s(σmax)2) / (M2s)− σmax, c1

}
,

(3.4)
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setting εn ∈ (Γ + ν(M), τ − (Γ + ν(M))) ensures that

P
(
Ê∆ = E∆

)
≥ 1− 2c2/n

2.

[18] assumed for some finite M , for all j ∈ V , λXjm′ = 0 for all m′ > M . Under this assumption,
Xij(t) = XM

ij (t), and EX will correspond exactly to (j, l) ∈ V 2 such that ‖ΘX,M
jl ‖F 6= 0 [18,

Lemma 1]. If the same eigenvalue condition holds for Yi(t), then in our setting E∆ = E∆M . When
this holds and we can fix M , we obtain consistency even in the high-dimensional setting since ν = 0

and min{s log(pn)|∆M |21/n, s
√

log(pn)/n} → 0 implies consistent estimation. However, even
with an infinite number of positive eigenvalues, high-dimensional consistency is still possible for
quickly decaying ν; e.g, if ν = o(p−2M−1) the same rate is achievable as when v(M) = 0.

4 Experiments

4.1 Simulation study

In this section, we demonstrate properties of our method through simulations. In each setting, we
generate nX × p functional variables from graph GX via Xij(t) = b(t)T δXij , where b(t) is a five
dimensional basis with disjoint support over [0, 1] with

bk(t) =

{
cos (10π (x− (2k − 1)/10)) + 1 (k − 1)/5 ≤ x < k/5;
0 otherwise, k = 1, . . . , 5.

δXi = ((δXi1)T , · · · , (δXip)T )T ∈ R5p follows a multivariate Gaussian distribution with precision
matrix ΩX . Yij(t) was generated in a similar way with precision matrix ΩY . We consider three
models with different graph structures, and for each model, data are generated with nX = nY = 100
and p = 30, 60, 90, 120. We repeat this 30 times for each p and model setting.

Model 1: This model is similar to the setting considered in [30], but modified to the functional
case. We generate support of ΩX according to a graph with p(p − 1)/10 edges and a power-law
degree distribution with an expected power parameter of 2. Although the graph is sparse with only
20% of all possible edges present, the power-law structure mimics certain real-world graphs [16]
by creating hub nodes with large degree. For each nonzero block, ΩXjl = δ′I5, where δ′ is sampled
uniformly from ±[0.2, 0.5]. To ensure positive definiteness, we further scale each off-diagonal block
by 1/2, 1/3, 1/4, 1/5 for p = 30, 60, 90, 120 respectively. Each diagonal element of ΩX is set to
1 and the matrix is symmetrized by averaging it with its transpose. To get ΩY , we first select the
largest hub nodes in GX (i.e., the nodes with largest degree), and for each hub node we select the
top (by magnitude) 20% of edges. For each selected edge, we set ΩYjl = ΩXjl +W where Wkm = 0

for |k −m| ≤ 2, and Wkm = c otherwise, where c is generated in the same way as δ′. For all other
blocks, ΩYjl = ΩXjl .

Model 2: We first generate a tridiagonal block matrix Ω∗X with Ω∗X,jj = I5, Ω∗X,j,j+1 = Ω∗X,j+1,j =
0.6I5, and Ω∗X,j,j+2 = Ω∗X,j+2,j = 0.4I5 for j = 1, . . . , p. All other blocks are set to 0. We
then set Ω∗Y,j,j+3 = Ω∗Y,j+3,j = W for j = 1, 2, 3, 4, and let Ω∗Y,jl = Ω∗X,jl for all other blocks.
Thus, we form GY by adding four edges to GX . We let Wkm = 0 when |k − m| ≤ 1, and
Wkm = c otherwise, with c = 1/10 for p = 30, c = 1/15 for p = 60, c = 1/20 for p = 90,
and c = 1/25 for p = 120. Finally, we set ΩX = Ω∗X + δI , ΩY = Ω∗Y + δI , where δ =
max {|min(λmin(Ω∗X), 0)|, |min(λmin(Ω∗Y ), 0)|}+0.05.

Model 3: We generate Ω∗X according to an Erdös-Rényi graph. We first set Ω∗X,jj = I5. With
probability .8, we set Ω∗X,jl = Ω∗X,lj = 0.1I5, and set it to 0 otherwise. Thus, we expect 80% of all
possible edges to be present. Then, we formGY by randomly adding s new edges toGX , where s = 3
for p = 30, s = 4 for p = 60, s = 5 for p = 90, and s = 6 for p = 120. We set each corresponding
block Ω∗Y,jl = W , where Wkm = 0 when |k −m| ≤ 1 and Wkm = c otherwise. We let c = 2/5 for
p = 30, c = 4/15 for p = 60, c = 1/5 for p = 90, and c = 4/25 for p = 120. Finally, we set ΩX =
Ω∗X + δI , ΩY = Ω∗Y + δI , where δ > max {|min(λmin(Ω∗X), 0)|, |min(λmin(Ω∗Y ), 0)|}+0.05.

Although the theory assumes fully observed functional data, in order to mimic a realistic setting, we
use noisy observations at discrete time points, such that the actual data corresponding to Xij are

hXijk = Xij(tk) + eijk, eijk ∼ N(0, 0.52),
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Figure 1: Average ROC curves across 30 simulations. Different columns correspond to different
models, different rows correspond to different dimensions.

for 200 evenly spaced time points 0 = t1 ≤ · · · ≤ t200 = 1. hYijk are obtained in a similar way. For
each observation, we first estimate a function by fitting an L-dimensional B-spline basis. We then use
these estimated functions for FPCA and our direct estimation procedure. Both M and L are chosen
by 5-fold cross-validation as discussed in [18]. Since εn in (2.9) is usually very small in practice,
we simply let Ê∆ = {(j, l) ∈ V 2 : j 6= l and ‖∆̂M

jl ‖F + ‖∆̂M
lj ‖F > 0}. We can form a receiver

operating characteristics (ROC) curve for recovery of E∆ by using different values of the group lasso
penalty λn defined in (2.7).

We compare FuDGE to three competing methods. The first two competing methods separately
estimate two functional graphical models using fglasso from [18]. Specifically, we use fglasso to
estimate Θ̂X,M and Θ̂Y,M . We then set Ê∆ to be all edges (j, l) ∈ V 2 such that ‖Θ̂X,M

jl −Θ̂Y,M
jl ‖F >

ζ. For each separate fglasso problem, the penalization parameter is selected by maximizing AIC in
first competing method and maximizing BIC in second competing method. We define the degrees of
freedom for both AIC and BIC to be the number of edges included in the graph times M2. We form
an ROC curve by using different values of ζ.

The third competing method ignores the functional nature of the data. We select 15 equally spaced
time points and implement a direct estimation method at each time point. Specifically, for each t,
Xi(t) and Yi(t) are simply p-dimensional random vectors, and we use their sample covariances in
(2.7) to obtain a p× p matrix ∆̂. This produces 15 differential graphs, and we use a majority vote to
form a single differential graph. The ROC curve is obtained by changing λn, the L1 penalty used for
all time points.
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Figure 2: Average ROC curves across 30 simulations of example that multiple network strategy
works better

For each setting and method, the ROC curve averaged across the 30 replications is shown in Figure 1.
We see that FuDGE clearly has the best overall performance in recovering the support of differential
graph. Among the competing methods, ignoring the functional structure and using a majority vote
generally performs better than separately estimating two functional graphs. A table with the average
area under the ROC curve is given in the appendix.

4.2 Example that combination of multiple networks at discrete time points works better

By construction, the simulations presented in Section 4.1 are estimating E∆ defined in (2.3), which
is not equivalent to

Ẽ∆(t) =
{

(j, l) ∈ V 2 : j 6= l, |C̃Xjl (t)− C̃Yjl (t)| 6= 0
}
, (4.1)

where
C̃Xjl (t) = Cov (Xij(t), Xil(t) | {Xik(t)}k 6=j,l) , (4.2)

and C̃Yjl (t) defined similarly. However, when Ẽ∆(t) = E∆,∀t, then the differential structure can be
recovered by considering individual time points. Since considering time points individually requires
estimating fewer parameters than the functional version, the multiple networks strategy performs
better than FuDGE.

Here, data are generated with nX = nY = 100, and p = 30, 60, 90, 120. We repeat the simulation 30
times for each p. The model setting here is similar to model 2 in Section 4.1. However, we make two
major changes. First, when we generate the functional variables, we use a 5-dimensional Fourier basis,
so that all basis are supported over the entire interval, rather than disjoint support as in Section 4.1.
Second, we set matrix W to be diagonal. Specifically, we let Wkk = c for k = 1, 2, · · · , 5 and
Wkm = 0 for k 6= m, where c is drawn uniformly from [0.6, 1], and scaled by 1/2 for p = 30, 1/3
for p = 60, and 1/4 for p = 90. All other settings are the same. The average ROC curves are shown
in Figure 2, and the mean area under the curves are shown in Table 2 in section D.2 of supplementary
material.

In Section 4.1 we considered extreme settings where the data must be treated as functions, and here
we consider an extreme setting where the functional nature is irrelevant. In practice, however, the
data may often lie between these two settings, and the method which performs better should depend
on the variation of the differential structure across time. However, as it may be hard to measure this
variation in practice, treating the data as functional objects should be a more robust choice.
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Figure 3: Estimated differential graph for EEG data. The anterior region is the top of the figure and
the posterior region is the bottom of the figure.

4.3 Neuroscience application

We apply our method to electroencephalogram (EEG) data obtained from an alcoholism study
[29, 6, 18] which included 122 total subjects; 77 in an alcoholic group and 45 in the control group.
Specifically, the EEG data was measured by placing p = 64 electrodes on various locations on the
subject’s scalp and measuring voltage values across time. We follow the preprocessing procedure in
[8, 31], which filters the EEG signals at α frequency bands between 8 and 12.5 Hz.

[18] separately estimate functional graphs for both groups, but we directly estimate the differential
graph using FuDGE. We choose λn so that the estimated differential graph has approximately 1% of
possible edges. The estimated edges of the differential graph are shown in Figure 3.

We see that edges are generally between nodes located in the same region–either the anterior region or
the posterior region–and there is no edge that crosses between regions. This observation is consistent
with the result in [18] where there are no connections between frontal and back regions for both
groups. We also note that electrode CZ, lying in the central region has a high degree in the estimated
differential graph. While there is no direct connection between anterior and posterior regions, the
central region may play a role in helping the two parts communicate.

5 Discussion

In this paper, we propose a method to directly estimate the differential graph for functional graphical
models. In certain settings, direct estimation allows for the differential graph to be recovered
consistently, even if each underlying graph cannot be consistently recovered. Experiments on
simulated data also show that preserving the functional nature of the data rather than treating the data
as multivariate scalars can also result in better estimation of the difference graph.

A key step in the procedure is first representing the functions with an M -dimensional basis using
FPCA, and Assumption 3.2 ensures that there exists some M large enough so that the signal, τ ,
is larger than the bias due to using a finite dimensional representation, ν. Intuitively, ν is tied to
the eigenvalue decay rate; however, we defer derivation of the explicit connection for future work.
Finally, we have provided a method for direct estimation of the differential graph, but development of
methods which allow for inference and hypothesis testing in functional differential graphs would be
fruitful avenues for future work. For example, [7] has developed inference tools for high-dimensional
Markov networks, future works may extend their results to functional graph setting.
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