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[Related work] We agree our work is related to MC methods on augmented spaces and will add a more discussion of
this to the paper. One distinction is that augmented MC methods traditionally use particle-based estimators where the
choice of coupling is “obvious”, but the proof much less so (as we briefly allude on lines 41-44, 112 and 138-145), and
require case-by-case derivations if a new estimator is introduced. We start with an arbitrary estimator R, for which is is
not clear a priori that a coupling exists, and provide a systematic approach to finding estimator-coupling pairs.

In more detail, the closest MCMC work is "Particle Independent Metropolis Hastings" (Andrieu et al. JRSSB). It says (in
our terminology): take an estimator for p(z) defined by Q(w) and R(w) that also comes with an “obvious” distribution
a(z|w) for sampling z (i.e., select one particle or trajectory in proportion to its weight). Define the extended proposal
distribution Q(z,w) = Q(w)a(z|w) and the (unnormalized) extended target PMC(2,w, ) = R(w)Q(w)a(z|w). Run
independent Metropolis-Hastings (MH) with extended target and proposal to sample from PMC(z, w|z). The acceptance
probability is min(1, R(w’)/R(w)), so can be computed as simple byproduct of generating the proposal. Further, one
can show using properties of particle-based estimators that the "obvious" distribution a(z|w) is indeed a coupling, i.e.,
p(z|x) is a marginal of PMC(z, w|x), so by discarding the w variables we have a valid MCMC sampler for p(z|z). The
underlying reasoning is the same as in our Theorem 2: R is the ratio of the extended proposal and target densities used
within MH. Our work can be viewed as the "VI side" of this work — what happens if we use extended proposals and
targets within VI? In MCMC, dropping auxiliary variables automatically yields a valid marginal sampler. In VI, it
introduces the conditional divergence in the ELBO decomposition (Theorem 2).

R2 also mentions the recent ICLR workshop paper of Lawson et al. (which appeared in early May and is concurrent to
our work) and augmented VI more broadly. Our paper has strong roots in augmented VI and we certainly think of it as
such. We hint at this in a few places (lines 8, 11, 122, 156) this but can (and will) make the point more explicitly. We
build most closely on ref [7], which clearly articulates the special case of Theorem 2 for IWAEs (i.e., “IID Mean” in our
Table 2) as augmented VI. Lawson et al. arrive at a decomposition of log p(x) analogous to our Theorem 2 but from a
very different standpoint. They assert that “many unbiased estimators can be justified as performing simple importance
sampling on an extended state space”, and assume knowledge of the relevant extended and conditional distributions (cf.
the form of p(x) at the end of Sec 2.2) — essentially a coupling in our terminology. They then derive the distributions
(only) for IWAES, as was done in ref [7] (also [6], [14]). The details for other objectives are left unstated and require
case-by-case derivations. In contrast, we provide general tools to find estimator-coupling pairs without case-by-case
derivations. We also believe that our framework of estimator-coupling pairs much more explicitly and clearly articulates
the ingredients needed for such an approach to work.

[Experiments] We accept the view of the reviewers that our experiments did not make our points convincingly enough.
We will start by reformatting the presentation. Our primary point was that better likelihood bounds (E log R) correspond
to better posterior approximations, thus the two axes in Fig. 8. However, due to the large amount of model-to-model
variability in these two metrics, it is difficult to see the differences due to methods. We plan to move Fig. 8 to the
appendix and instead show results like Fig. 6 for more models — several examples are shown below (for likelihood
bounds). These show differences due to sampling strategies and numbers of replicates. We would like to emphasize that
iid sampling consistently improves on naive VI (equivalent to M/=1) and that the alternative sampling methods offer a
further consistent improvement at near-zero computational cost. (Often, M=8 or M=16 with iid sampling is needed to
equal the performance of antithetic sampling with M/=2.) We will also create analogous plots that aggregate across
models by normalizing/standardizing the two metrics (likelihood bound improvement, posterior error).

[Writing] The reviewers made many helpful points regarding the organization and writing of the paper, as well as
pointing out typos. We will revise the paper with these in mind, focusing especially on providing details and summary
of experimental findings, and de-emphasizing some of the current content in Sec. 5.
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