
[Related work] We agree our work is related to MC methods on augmented spaces and will add a more discussion of1

this to the paper. One distinction is that augmented MC methods traditionally use particle-based estimators where the2

choice of coupling is “obvious”, but the proof much less so (as we briefly allude on lines 41-44, 112 and 138-145), and3

require case-by-case derivations if a new estimator is introduced. We start with an arbitrary estimator R, for which is is4

not clear a priori that a coupling exists, and provide a systematic approach to finding estimator-coupling pairs.5

In more detail, the closest MCMC work is "Particle Independent Metropolis Hastings" (Andrieu et al. JRSSB). It says (in6

our terminology): take an estimator for p(x) defined by Q(ω) and R(ω) that also comes with an “obvious” distribution7

a(z|ω) for sampling z (i.e., select one particle or trajectory in proportion to its weight). Define the extended proposal8

distribution Q(z, ω) = Q(ω)a(z|ω) and the (unnormalized) extended target PMC(z, ω, x) = R(ω)Q(ω)a(z|ω). Run9

independent Metropolis-Hastings (MH) with extended target and proposal to sample from PMC(z, ω|x). The acceptance10

probability is min(1, R(ω′)/R(ω)), so can be computed as simple byproduct of generating the proposal. Further, one11

can show using properties of particle-based estimators that the "obvious" distribution a(z|ω) is indeed a coupling, i.e.,12

p(z|x) is a marginal of PMC(z, ω|x), so by discarding the ω variables we have a valid MCMC sampler for p(z|x). The13

underlying reasoning is the same as in our Theorem 2: R is the ratio of the extended proposal and target densities used14

within MH. Our work can be viewed as the "VI side" of this work — what happens if we use extended proposals and15

targets within VI? In MCMC, dropping auxiliary variables automatically yields a valid marginal sampler. In VI, it16

introduces the conditional divergence in the ELBO decomposition (Theorem 2).17

R2 also mentions the recent ICLR workshop paper of Lawson et al. (which appeared in early May and is concurrent to18

our work) and augmented VI more broadly. Our paper has strong roots in augmented VI and we certainly think of it as19

such. We hint at this in a few places (lines 8, 11, 122, 156) this but can (and will) make the point more explicitly. We20

build most closely on ref [7], which clearly articulates the special case of Theorem 2 for IWAEs (i.e., “IID Mean” in our21

Table 2) as augmented VI. Lawson et al. arrive at a decomposition of log p(x) analogous to our Theorem 2 but from a22

very different standpoint. They assert that “many unbiased estimators can be justified as performing simple importance23

sampling on an extended state space”, and assume knowledge of the relevant extended and conditional distributions (cf.24

the form of p̂(x) at the end of Sec 2.2) — essentially a coupling in our terminology. They then derive the distributions25

(only) for IWAEs, as was done in ref [7] (also [6], [14]). The details for other objectives are left unstated and require26

case-by-case derivations. In contrast, we provide general tools to find estimator-coupling pairs without case-by-case27

derivations. We also believe that our framework of estimator-coupling pairs much more explicitly and clearly articulates28

the ingredients needed for such an approach to work.29

[Experiments] We accept the view of the reviewers that our experiments did not make our points convincingly enough.30

We will start by reformatting the presentation. Our primary point was that better likelihood bounds (E logR) correspond31

to better posterior approximations, thus the two axes in Fig. 8. However, due to the large amount of model-to-model32

variability in these two metrics, it is difficult to see the differences due to methods. We plan to move Fig. 8 to the33

appendix and instead show results like Fig. 6 for more models — several examples are shown below (for likelihood34

bounds). These show differences due to sampling strategies and numbers of replicates. We would like to emphasize that35

iid sampling consistently improves on naive VI (equivalent to M=1) and that the alternative sampling methods offer a36

further consistent improvement at near-zero computational cost. (Often, M=8 or M=16 with iid sampling is needed to37

equal the performance of antithetic sampling with M=2.) We will also create analogous plots that aggregate across38

models by normalizing/standardizing the two metrics (likelihood bound improvement, posterior error).39

[Writing] The reviewers made many helpful points regarding the organization and writing of the paper, as well as40

pointing out typos. We will revise the paper with these in mind, focusing especially on providing details and summary41

of experimental findings, and de-emphasizing some of the current content in Sec. 5.42

Figure 7: Different sampling methods applied to Gaussian VI. Top row: Different methods to sample
from the unit cube. Middle row: these samples transformed using the “Cartesian” mapping. Bottom
row: Same samples transformed using the “Elliptical” mapping.

Figure 8: Across all 70 models, improvements in likelihood bounds correlate strongly with
improvements in posterior accuracy. Better sampling methods can improve both. How much
do methods improve over naive VI in likelihood bound (x-axis) and in estimating posterior variance
(y-axis)? Each point corresponds to a model from the Stan library, with a random shape. Each plot
compares iid sampling against some other strategy. The left three compare to antithetic (anti) with
for M = 2, 4 and 8. The right three compare to Quasi-Monte Carlo, either using an elliptical mapping
(qmc), a Cartesian mapping (qmc-cart), or antithetic pairs after an elliptical mapping (anti-qmc).
The two improvements are correlated. Improvements converge to those of iid for larger M , as all
errors decay towards zero. Different sampling methods are best on different datasets. A few cases are
not plotted where the measured “improvement” was in negative (if naive VI has near-zero error, or
due to local optima).

chain Monte Carlo (MCMC) method. For tractability, we restrict to the 70 models where profiling255

indicates MCMC would take at most 10 hours, and evaluating the posterior for 10,000 settings256

Figure 6: The likelihood bound (left) and covari-
ance error (right) for a site-occupancy model for
different sampling methods and M . The relative
ordering of methods by likelihood bound and error
is the same, but varies across models.

of the latent variables would take at most 2 sec-257

onds. It was infeasible to tune stochastic gradi-258

ent methods for all models. Instead we used a259

fixed batch of 50,000 batches !1, · · · , !M and260

optimized the empirical ELBO using BFGS, ini-261

tialized using Laplace’s method. A fresh batch262

of 500,000 samples was used to compute the263

final likelihood bound and covariance estima-264

tor. Fig. 6 shows a trace for a single dataset.265

Fig. 9 visualizes how the approximate density266

improves. Fig. 8 aggregates statistics across all267

datasets.268
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