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Abstract

We present a new algorithm (ASEBO) for optimizing high-dimensional blackbox
functions. ASEBO adapts to the geometry of the function and learns optimal
sets of sensing directions, which are used to probe it, on-the-fly. It addresses the
exploration-exploitation trade-off of blackbox optimization with expensive black-
box queries by continuously learning the bias of the lower-dimensional model used
to approximate gradients of smoothings of the function via compressed sensing and
contextual bandits methods. To obtain this model, it leverages techniques from the
emerging theory of active subspaces [8] in a novel ES blackbox optimization con-
text. As aresult, ASEBO learns the dynamically changing intrinsic dimensionality
of the gradient space and adapts to the hardness of different stages of the optimiza-
tion without external supervision. Consequently, it leads to more sample-efficient
blackbox optimization than state-of-the-art algorithms. We provide theoretical
results and test ASEBO advantages over other methods empirically by evaluating
it on the set of reinforcement learning policy optimization tasks as well as functions
from the recently open-sourced Nevergrad library.

1 Introduction

Consider a high-dimensional function F' : R? — R. We assume that querying it is expensive.
Examples include reinforcement learning (RL) blackbox functions taking as inputs vectors 6 encoding
policies 7 : S — .4 mapping states to actions and outputting total (expected/discounted) rewards
obtained by agents applymg 7 in given environments [6]. For this class of functions evaluations
usually require running a simulator. Other examples include wind configuration design optimization
problems for high speed civil transport aircrafts, optimizing computer codes (e.g. NASA synthetic
tool FLOPS/ENGENN used to size the aircraft and propulsion system [2]), crash tests, medical and
chemical reaction experiments [37].

Evolution strategy (ES) methods have traditionally been used in low-dimensional regimes (e.g.
hyperparameter tuning), and considered ill-equipped for higher dimensional problems due to poor
sampling complexity [27]]. However, a flurry of recent work has shown they can scale better than
previously believed [33l [11} 29} 257,130, 121]]. This is thanks to a couple of reasons.

First of all, new ES methods apply several efficient heuristics (filtering, various normalization
techniques as in [25]] and new exploration strategies as in [11]) in order to substantially improve
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sampling complexity. Other recent methods [29,[7] are based on more accurate Quasi Monte Carlo
(MC) estimators of the gradients of Gaussian smoothings of blackbox functions with theoretical
guarantees. These approaches provide better quality gradient sensing mechanisms. Additionally,
in applications such as RL, new compact structured policy architectures (such as low-displacement
rank neural networks from [7]] or even linear policies [14]) are used to reduce the number of policies’
parameters and dimensionality of the optimization problem.

Recent research also shows that ES-type blackbox optimization in RL leads to more stable policies
than policy gradient methods since ES methods search for parameters that are robust to perturbations
[19]. Unlike policy gradient methods, ES aims to find parameters maximizing expected reward (rather
than just a reward) in respect to Gaussian perturbations.

Finally, pure ES methods as opposed to state-of-the-art policy optimization techniques (TRPO, PPO
or ARS [32}[15/ 131} 25]]), can be applied also for blackbox optimization problems that do not exhibit
MDP structure required for policy gradient methods and cannot benefit from state normalization
algorithm central to ARS. This has led to their recent popularity for non-differentiable tasks [17, [14].

In this paper we introduce a new adaptive sample-efficient blackbox optimization algorithm. ASEBO
adapts to the geometry of blackbox functions and learns optimal sets of sensing directions, which
are used to probe them, on-the-fly. To do this, it leverages techniques from the emerging theory of
active subspaces [8} 110,19, 20] in a novel ES blackbox optimization context. Active subspaces and
their extensions are becoming popular as effective techniques for dimensionality reduction (see for
instance: active manifolds [5] or ResNets for learning isosurfaces [36]]). However, to the best of our
knowledge we are the first to apply active subspace ideas for ES optimization.

ASEBO addresses the exploration-exploitation trade-off of blackbox optimization with expensive
function queries by continuously learning the bias of the lower-dimensional model used to approx-
imate gradients of smoothings of the function with compressed sensing and contextual bandits
methods. The adaptiveness is what distinguishes it from some recently introduced guided ES methods
such as [24] that rely on fixed hyperparameters that are hard to tune in advance (e.g. the length of
the buffer defining lower dimensional space for gradient search). We provide theoretical results and
empirically evaluate ASEBO on a set of RL blackbox optimization tasks as well as non-RL blackbox
functions from the recently open-sourced Nevergrad library [34]], showing that it consistently learns
optimal inputs with fewer queries to a blackbox function than other methods.

ASEBO versus CMA-ES: There have been a variety of works seeking to reduce sampling complexity
for ES methods through the use of metric learning. The prominent class of the covariance matrix
adaptation evolution strategy (CMA-ES) methods derives state-of-the-art derivative free blackbox
optimization algorithms, which seek to learn and maintain a fully parameterized Gaussian distribution.
CMA-ES suffers from quadratic time complexity for each evaluation which can be limiting for high
dimensional problems. As such, a series of attempts have been made to produce scalable variants
of CMA-ES, by restricting the covariance matrix to the diagonal (sep-CMA-ES [28]]) or a low rank
approximation as in VD-CMA-ES [3] and LM-CMA-ES [22]. Two recent algorithms, VKkD-CMA-ES
[4] and LM-MA-ES [23]], seek to combine the above ideas and have been shown to be successful in
large-scale settings, including RL policy learning [26]. Although these methods are able to quickly
learn and adapt the covariance matrix, they are heavily dependent on hyperparameter selection [4}[35]
and lack the means to avoid learning a bias. As our experiments show, this can severely hurt their
performance. The best CMA-ES variants often struggle with RL tasks of challenging objecive
landscapes, displaying inconsistent performance across tasks. Furthermore, they require careful
hyperparameter tuning for good performance (see: analysis in Section[d] Fig. [3).

2 Adaptive Sample-Efficient Blackbox Optimization

Before we describe ASEBO, we explain key theoretical ideas behind the algorithm. ASEBO uses
online PCA to maintain and update on-the-fly subspaces which we call ES-active subspaces LES.
accurately approximating the gradient data space at a given phase of the algorithm. The bias of the

obtained gradient estimators is measured by sensing the length of its component from the orthogonal

ES, L
complement £,

via compressed sensing or computing optimal probabilities for exploration (e.g.
sensing from Efcst’iéc) via contextual bandits methods [1]. The algorithm corrects its probabilistic
distributions used for choosing directions for gradient sensing based on these measurements. As

we show, we can measure that bias accurately using only a constant number of additional function
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Figure 1: The motivation behind ASEBO. Two first plots: ES baseline for HalfCheetah and
Swimmer tasks from the OpenAI Gym library for 212-dimensional policies - the plot shows how
the dimensionality of the space capturing a given percentage of variance of approximate gradient data
depends on the iteration of the algorithm. This information is never exploited by the algorithm, even
though 99.5% of the variance resides in the much lower-dimensional space (100 dimensions). Two
last plots: ASEBO taking advantage of this information (# of sample/sensing directions reflects the
hardness of the optimization at each iteration and is strongly correlated with the PCA dimensionality.

queries, regardless of the dimensionality. This in turn determines an exploration strategy, as we
explain later. Estimated gradients are then used to update parameters.

2.1 Preliminaries

Consider a blackbox function F' : RY — R. We do not assume that F' is differentiable. The
Gaussian smoothing [27] F, of F parameterized by smoothing parameter ¢ > 0 is given as:

2
F,(0) = EgeN(on)[ (0 +og)] fRd (0+og)e -l dg. The gradient of the Gaussian
smoothing of F'is given by the formula

1
VFE,(0) = EEgNN(O,Id)[F(a +og)g]. (D

Formula|l on VF, () leads straightforwardly to several unbiased Monte Carlo (MC) estimators
of VF,(6), Where the most popular ones are: the forward finite difference estimator [7|] defined

as: VE/IDCF =+ Z _(F (9 + o0g;) — F(0))g;, and an antithetic ES gradient estimator [30]

given as: VMCF (9) = 5= ZZ (F(0 + 0gi) — F(0 — 0g;))g:, where typically g1, .. - 8k are
taken independently at random from N (0, I;) of from more complex J01nt distributions for variance
reduction (see: [7]). We call samples g1, ..., gk the sensing directions since they are used to sense
gradients V F,,(6). The antithetic formula can be alternatively rationalized as giving the renormalized
gradient of F' (if F' is smooth), if not taking into account cubic and higher-order terms of the Taylor
expansion F(6 +v) = F(0) + VF v + iv " H(6)v (where H(0) stands for the Hessian of F in 6).

Standard ES methods apply different gradient-based techniques such as SGD or Adam, fed with
the above MC estimators of V F,, to conduct blackbox optimization. The number of samples % per
iteration of the optimization procedure is usually of the order O(d). This becomes a computational
bottleneck for high-dimensional blackbox functions F' (for instance, even for relatively small RL
tasks with policies encoded by compact neural networks we still have d > 100 parameters).

2.2 ES-active subspaces via online PCA with decaying weights

The first idea leading to the ASEBO algorithm is that in practice one does not need to estimate the
gradient of F' accurately (after all ES-type methods do not even aim to compute the gradient of F', but
rather focus on V Fy,). Poor scalability of ES-type blackbox optimization algorithms is caused by high-
dimensionality of the gradient vector. However, during the optimization process the space spanned
by gradients may be locally well approximated by a lower-dimensional subspace £ and sensing
the gradient in that subspace might be more effective. In some recent papers such as [24] such a
subspace is defined simply as £ = span{VAT F,(60;), VAT Fy(0i-1), .. VAT F,(0i—s+1)}, where
{VAT F,(6;), VAT Fy(6i-1), .. VAT F,(0i—s+1)} stands for the batch of last s approximated
gradients during the optlmlzatlon process and s is a fixed hyperparameter. Even though £ will
dynamically change during the optimization, such an approach has several disadvantages in practice.
Tuning parameter s is very difficult or almost impossible and the assumption that the dimensionality
of L should be constant during optimization is usually false. In our approach, dimensionality of £
varies and depends on the hardness of the optimization in different optimization stages.



We apply Principal Component Analysis (PCA, [18]) to create a subspace £ capturing particular
variance ¢ > 0 of the approximate gradients data. This data is either: the approximate gradients
computed in previous iterations from the antithetic formula or: the elements of the sum from that
equation that are averaged over to obtain these gradients. For clarity of the exposition, from now on
we will assume the former, but both variants are valid. Choosing ¢ is in practice much easier than s
and leads to subspaces L of varying dimensionalities throughout the optimization procedure, called
by us from now on ES-active subspaces L

active*
Algorithm 1 ASEBO Algorithm

Hyperparameters: number of iterations of full sampling /, smoothing parameter o > 0, step size 7,
PCA threshold e, decay rate -, total number of iterations 7.
Input: blackbox function F, vector fy € R¢ where optimization starts. Covy € {0}2%9, p = 0.
Output: vector 6.
fort=0,...,7—1do
if £ < [ then

| Take n; = d. Sample g1, - - - , gy, from N(0,1;) (independently).

else

1. Take top 7 eigenvalues \; of Cov,, where r is smallest such that: >\_, \; > € Zle Ais
using its SVD as described in text and take n; = r.

2. Take the corresponding eigenvectors uy, ...,u, € R? and let U € R%*" be obtained
by stacking them together. Let Ut ¢ R?*" be obtained from stacking together some
orthonormal basis of £55. _ % span{uy, ..., u, }. Let UL € R4X(@=7) be obtained from
stacking together some orthonormal basis of the orthogonal complement ESCS;’ii‘e of LES, .

3. Sample n; vectors g1, ..., gy, as follows: with probability 1 — p* from N'(0, UL(UL)T)
and with probability p* from A/(0, Ua<t(Ua<t)T).

| 4. Renormalize g1, ..., g,, such that marginal distributions ||g;||2 are x(d).

1. Compute VAL F(0,) as: VELF(0)) = 5= S0 (F (6, + ;) — F(0: — g7))8;-

2. Set Coveyq = ACovy + (1 — A)T, where T = VAL F, (6,) (VAL F,(6,))T.
| 3. Set p* = popt for popt output by Algorithm 2 and: 6,11 + 0, + Vi F(6y).

These will be in turn applied to define covariance matrices encoding probabilistic distributions applied
to construct sensing directions used for estimating V F; (). The additional advantage of our approach
is that PCA automatically filters out gradient noise.

We use our own online version of PCA with decaying weights (decay rate is defined by parameter
A > 0). By tuning A we can define the rate at which historical approximate gradient data is used
to choose the right sensing directions, which will continuously decay. We consider a stream of
approximate gradients Vf/[% F,(6), ...V{\*/ITC F,(6;), ... obtained during the optimization procedure.
We maintain and update on-the-fly the covariance matrix Cov,, where ¢ stands for the number of
completed iterations, in the form of the symmetric matrix SVD-decomposition Cov; = Q' ¥,Q; €
R?. When the new approximate gradient VﬁTC F,(6;) arrives, the update of the covariance matrix is

driven by the following equation, reflecting data decay process, where x; = ﬁﬁITCFo(Ht):
Q1% 1Qur1 = AQ) T Qe + (1 — N)xex, 2

To conduct the update cheaply, it suffices to observe that the RHS of Equation [2 can be rewritten
as: AQ, 2 Qs + (1 — Nxpx, = Q) (AZ; + (1 — N)Qux¢(Qsx¢) T )Q;. Now, using the fact that
for a matrix of the form D + uu', we can get its decomposition in time O(dz) [13]], we obtain an
algorithm performing updates in quadratic time. That in practice suffices since the bottleneck of the

computations is in querying F' and additional overhead related to updating LES. _is negligible.

ES-active subspaces versus active subspaces: Our mechanism for constructing £25. s inspired
by the recent theory of active subspaces [8]], developed to determine the most important directions in
the space of input parameters of high-dimensional blackbox functions such as computer simulations.

The active subspace of a differentiable function F : R¢ — R, square-integrable with respect to the
given probabilistic density function p : R? — R, is given as a linear subspace L,ive defined by the



first r (for a fixed r < d) eigenvectors of the following d x d symmetric positive definite matrix:
Cov = / VF(x)VF(x) " p(x)dx 3)
x€ER4

Density function p determines where compact representation of F' is needed. In our approach we do
not assume that V F' exists, but the key difference between LES  and Lactive lies somewhere else.

active

The goal of ASEBO is to avoid approximating the exact gradient VF(x) € R? which is what makes
standard ES methods very expensive and which is done in [9] via gradient sketching techniques
combined with finite difference approaches (standard methods of choice for ES baselines).

Algorithm 2 Explore estimator via exponentiated sampling

Hyperparameters: smoothing parameter o, horizon C, learning rate «, probability regularizer /3,
initial probability parameter ¢fy € (0,1).

Input: subspaces: LS, P
Output:

fori=1,---,C+1do

1. Compute pj_; = (1 —28)q/_, + (8 and sample a} ~ Ber(p}).

3.If a; = 1, sample g; ~ N(0, 01 ss ), otherwise sample g; ~ N'(0, 01 s, ).

4. Compute v; = i (F(0y+g1) — F(0r —g1)).

(_ af (dim(£5S, ) +2)
®1)° 5
 (1—ab)(dim(£E5E )+2)) v

function F', vector 6,

(1_p:51§tive
q;_q exp(—ae; (1))
qi_, exp(—ae;(1)+(1—qf_,) exp(—aei(2))

5. Sete; = (1 —2p5) (

6. Set gl =

Return: PC-

Instead, in ASEBO an ES-active subspace £ES, s itself used to define sensing directions and
the number of chosen samples k is given by the dimensionality of £ES. . This drastically reduces
sampling complexity, but comes at a price of risking the optimization to be trapped in the fixed
lower-dimensional space that will not be representative for gradient data as optimization progresses.

We propose a solution requiring only a constant number of extra queries to F' in the next sections.

2.3 Exploration-exploitation trade-off: Adaptive Exploration Mechanism

The procedure described above needs to be accompanied with an exploration strategy that will
determine how frequently to choose sensing directions outside the constructed on-the-fly lower-
dimensional ES-subspace Efcstive. Our exploration strategies will be encoded by hybrid probabilistic

distributions for sampling sensing directions. The frequency of sensing from the distributions with
covariance matrices obtained from £F5.  (corresponding to exploitation) and from its orthogonal

active
complement £Scst’iie or entire space (corresponding to exploration) will be given by weights encoding

the importance of exploitation versus exploration in any given iteration of the optimization. For a
vector x € R? denote by X,cive its projection onto Egiive and by x its projection onto ‘Cgcstgie'
The useful metric that can be used to update the above weights in an online manner in the t**

iteration
of the algorithm is the ratio: r = W%. Smaller values of r indicate that current active

subspace is not representative enough for the gradient and more aggressive exploration needs to be
conducted. In practice, we do not compute 7 explicitly, but rather its approximated version 7.

(V46 Fo (81 —1)) activell2
(VA Fo(0:-1)) L ll2
vious iteration. But we can do better. It suffices to separately estimate ||(VF,(6;))active||2 and
[(VE5(6:))1]l2. However we do not aim to estimate (V F, (6:))active and (V Fy(6:)) 1 . That would
be equivalent to computing exact estimate of V F,(6;), defeating the purpose of ASEBO. Instead,
we note that estimating the length of the unknown high-dimensional vector is much simpler than
estimating the vector itself and can be done in the probabilistic manner with arbitrary precision via the
set of dot-product queries of size independent from dimensionality d via compressed sensing methods.
We refine this approach and propose more accurate contextual bandits method that also relies on
dot-product queries applied in the ES-context, but aims to directly approximate optimal probabilities

One can simply take: 7 = , Where @Q%Fg(et,l) is obtained in the pre-



of sampling from £E5.  rather than approximating gradients components’ lengths (see Algorithm

2 box, the compressed sensing baseline is presented in the Appendix). The related computational
overhead is measured in constant number of extra function queries, negligible in practice.

2.4 The Algorithm

ASEBO is given in the Algorithm 1 box. The algorithm we apply to score relative importance of

sampling from the ES-active subspace £ES,  versus from outside £E5,  is in the Algorithm 2 box.

As we have already mentioned, it uses bandits method do determine optimal probability of sampling
from £E5. . In the next section we show that by using these techniques we can substantially reduce
the variance of ES blackbox gradient estimators if ES-active subspaces approximate the gradient
data well (which is the case for RL blackbox functions as presented in Fig. [T). Horizon lengths C' in
Algorithm 2 which determines the number of extra function queries should be in practice chosen as
small constants. In each iteration of Algorithm 1 the number of function queries is proportional to

the dimensionality of the ES-active subspace LIS,  rather than the original space.

3 Theoretical Results

We provide here theoretical guarantees for the ASEBO sampling mechanism (in Algorithm 1), where

sensing directions {g;} at time ¢ are sampled from the hybrid distribution P: with probability p*
from A (0,1, and with probability 1 — p* from N'(0,1,. ).

Following notation in Algorithm 1, let U2t € R?*" be obtained by stacking together vectors of

some orthonormal basis of £25.  where dim(£ES; ) = r and let U+ € R?*(¢=") be obtained my
stacking together vectors of some orthonormal basis of its orthogonal complement Efcst’ife. Denote

by o a smoothing parameter. We make the following regularity assumptions on F:
Assumption 1. F'is L—Lipschitz, i.e. forall 0,6’ € R4, |F(0) — F(¢')| < L||0 — 0'||2.
Assumption 2. F' has a 7-smooth third order derivative tensor with respect to o > 0, so that
F@+o0g) = F(O) +oVF0) g + %QgTH(G)g + $03F"(0)[v,v,v] for some v € R
([vll2 < llgll2) satisfying [ (0)[v, v, v] < 7|[v[|3 < 7[|g]3-

active)

Observe that: E, p[gg’] = (thaCt (Ut " 4 (1 pt)Ut (UL)T). Define ¢} =
(thact (Uact)T 4 (1 _ pt)UL (UL)T) . Let 6?/[%?]:21310}70'(0) — Cl_l F(0+ag)g+2};(0+ag)(—g)

be the gradient estimator corresponding to P. We will assume that o is small enough, i.e.

1 e min(pt,1—p?)
o< 33 7d3 max(L,1)

these assumptions, baseline and ASEBO estimators of V, /() are also good estimators of VF'(6):

for some precision parameter € > 0. Our first result shows that under

Lemma 3.1. If F satisfies Assumptions 1 and 2, the estimators ﬁf/{%tﬁz F,(0) and @QTCa,:iOFU )

Egno1) [VaGAs Fo (0)] = VF(0)|| < € and

are close to the true gradient VF(0), i.e.: ’

[Bges [ViErE0)] - VFO)| < e

3.1 Variance reduction via non isotropic sampling

We show now that under sampling strategy given by distribution ]3, the variance of the gradient
estimator can be made smaller by choosing the probability parameter p’ appropriately. Denote:

dactive = dim(LES, Yand d; = dim(LZ5:5 ). Let T := WSU&M + Lt2550 — [|[VE(0)]2

active active pt

Theorem 3.2. The following holds for syac: = ||(U)TVF(0)|3 and sy = ||[(U+)TVF(0)|3:

1. The variance 0f§&%a§ibloFa (0) is close to T, i.e. |Var[§ﬁ%a§iﬁoFo(9)] T <e
(5uact)(dactivc+2) an

V/(sgact) (dactive +2)++/(5y L) (dy L +2)

the optimal variance Varoy, corresponding to pl satisfies: |[Vareps — Al < € for A =

Vo) lacivs + 3 + w5 )|~ [VFO.

2. The choice of pt that minimizes T satisfies p' :=




~

3. Vargy < Var[Va 1S Fo (0)]+e—| v/ (502 ) [active + 2) — v/ (susee) (d1 + 2)[* = 2| VF(9)]2.
A

Furthermore, slack variable )\ is always nonnegative.

Theorem implies that when syace = (1 — )||VF(0)||2 and sy: = «fVF(0)|3, for

some a € (0,1), we have: Var[@ﬁ%}}fiﬁFa(Q)] ~ (d + 1)|[VF(0)|*> whereas Vargp, =
O ((1 — a)(dactive + 1) +a(di +1)).  When dactive << d and o << 1: Varg, <

~

Var[Vyc 1 Fo (9)].

3.2 Adaptive Mirror Descent

In Theorem [3.2| we showed that for appropriate choices of £ES, ~and p;, the gradient estimator

Vigisebo fp (9) will have significantly smaller variance than Ve 7% F,(6). In this section we

show that Algorithm |g provides an adaptive way to choose p’. Using tools from online learning

theory, we provide regret guarantees that quantify the rate at which this Algorithm [2 minimizes the

variance of 6&%3520F0 (9) and converges to the optimal p’.

t = as. .
Let pj = (,” 5 ;). The main component I" of the variance of Vﬁ%j:i‘ioFa(e) as a function of p}

equals I' = ((p}) = dagtii‘(’i‘)—‘rzsuact + %SUL — [VF(6)]]? (Theorem . We have:
L L

Theorem 3.3. Let Ay be the a 2-d simplex. Under assumptions: 1 and 2, if o < 3—15, / %’
25 and € = 573_’_1), Algorithmsatisﬁes:

“= V/Clldactive+2)25% ey +(d 1 +2)52 ] 2c
1 [& Var 1
—E Lph| - min Y4 < ot 4 —
C ; (pl)] pPEB+(1-28)A2 (p) < g2v/eCc  C

4 Experiments

In our experiments we use different classes of high-dimensional blackbox functions: RL blackbox
functions (where the input is a high-dimensional vector encoding a neural network policy 7 : § — A
mapping states s to actions a and the output is the cumulative reward obtained by an agent applying
this policy in a particular environment) and functions from the recently open-sourced Nevergrad
library [34]. In practice one can setup the hyperparameters used by Algorithm 2 as follows: o =
0.01,C = 10, = 0.01, 8 = 0.1, ¢5 = 0.1. For each algorithm we used k = 5 seeds and obtained
curves are median-curves with inter-quartile ranges presented as shadowed regions.

HalfCheetah Swimmer Reacher Hopper
_5 10°
4000
T —10 10
£ 2000 200
3] 10%
= —15
0 o 10?
00 25 50 0 1 2 7200 250000 500000 0 1 2
Timestepsx 107 Timestepsx 107 Timesteps Timesteps x 107
ES = LM-MA-ES ARS TRPO = ASEBO (Ours)

Figure 2: Comparison of different blackbox optimization algorithms on OpenAl Gym tasks. All
curves are median-curves obtained from k = 5 seeds and with inter-quartile ranges presented as
shadowed regions. For Reacher we present only 3 curves since LM-MA-ES and TRPO did not learn.

4.1 RL blackbox functions

We used the following environments from the OpenAl Gym library: Swimmer-v2, HalfCheetah-
v2, Walker2d-v2, Reacher-v2, Pusher-v2 and Thrower-v2. In all experiments we used policies



encoded by neural network architectures of two hidden layers and with tanh nonlinearities, with
> 100 parameters. For gradient-based optimization we use Adam. For this class of blackbox
functions we compared ASEBO with other generic blackbox methods as well as those specializing
in optimizing RL blackbox functions F, namely: (1) CMA-ES variants; we compare against two
recently introduced algorithms designed for high-dimensional settings (we use the implementation
of VKD-CMA-ES in the pycma open-source implementation from https : //github.com/CMA-
ES/pycma), and that of LM-MA-ES from [26]), (2) Augmented Random Search (ARS)
(we use implementation released by the authors at http : //github.com/modestyachts/ARS), (3)
Proximal Policy Optimization (PPO) and Trust Region Policy Optimization (TRPO) (we
use OpenAl baseline implementation [[12]). The results for four environments are on Fig. [2]

Table 1: Median rewards obtained across k = 5 seeds for seven RL environments. For each
environment the top two performing algorithms are bolded, while the bottom two are shown in red.

Median reward after # timesteps
Environment Timesteps ASEBO ES ARS VkD-CMA LM-MA TRPO PPO

HalfCheetah 5.107 3821 1530 2420 -144 1632 512 1514
Swimmer 107 358 36 348 367 297 110 52

Walker2d 5.107 9941 347 1112 1 18065 3011 2377
Hopper 107 99949 626 1091 42 100199 1663 1310
Reacher 10° —11 -10 -12 -1391 -173 -112 -196
Pusher 10° —46 48  —45 -1001 -467 -120  -316
Thrower 10° -89 -96 -90 -796 =737 -85  -175

Sampling complexity is measured in the number of timesteps (environment transitions) used by the
algorithms. ASEBO is the only algorithm that performs consistently across all seven environments
(see: Table|L), outperforming CMA-ES variants on all tasks aside from VkD-CMA-ES on Swimmer
and LM-MA-ES on Walker2d. For environments such as Reacher, Thrower and Pusher, these
methods perform poorly, drastically underperforming even Vanilla ES. On Fig. [3, we demonstrate
the common problem of state-of-the-art CMA-ES methods: if the number of samples n is not carefully
tuned, the algorithm does not learn. ASEBO does not have this problem since n is learned on-the-fly.

HC: LM-MA-ES HC: VKkD-CMA-ES WA: LM-MA-ES WA: VkD-CMA-ES

= n=20 10000
= n = 100 0 2000
g 2000 || ,, — 212 WY
9] 5000
[
0 —1000 0 0 PIN S TTS TN
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Timestepsx 108 Timestepsx 10® Timestepsx 107 Timestepsx 107

Figure 3: Sensitivity analysis for CMA-ES variants on the HalfCheetah (HC) and Walker2d (WA)
tasks. In each setting, we run £ = 5 seeds, solely changing the number of samples per iteration (or
population size) n.

Sphere Lunacek Rastrigin sRosenbrock
17500 J
1000 10000
15000
7 7500 3
g 800 12500
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600 10000
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Figure 4: Comparison of median-curves obtained from k = 5 seeds for different algorithms on
Nevergrad functions [34]. Inter-quartile ranges are presented as shadowed regions.



4.2 Nevergrad blackbox functions

We tested functions: sphere, rastrigin, rosenbrock and lunacek (from the class of Bi-
Rastrigin/Lunacek’s No.02 functions). All tested functions are 1000-dimensional. The results
are presented on Fig. [d] ASEBO is the most reliable method across different functions.

5 Conclusion

We proposed a new algorithm for optimizing high-dimensional blackbox functions. ASEBO adjusts
on-the-fly the strategy of choosing gradient sensing directions to the hardness of the problem at the
current stage of optimization and can be applied for both RL and non-RL problems. We provided
theoretical guarantees for our method and exhaustive empirical validation.

References

[1] S. Agrawal, N. R. Devanur, and L. Li. Contextual bandits with global constraints and objective.
CoRR, abs/1506.03374, 2015.

[2] S. Ahmad and K. B. Thomas. Flight optimization system ( flops ) hybrid electric aircraft design
capability. 2013.

[3] Y. Akimoto, A. Auger, and N. Hansen. Comparison-based natural gradient optimization in high
dimension. GECCO, 2014.

[4] Y. Akimoto and N. Hansen. Projection-Based Restricted Covariance Matrix Adaptation for
High Dimension. GECCO, 2016.

[5] R. A. Bridges, A. D. Gruber, C. Felder, M. E. Verma, and C. Hoff. Active manifolds: A
non-linear analogue to active subspaces. CoRR, abs/1904.13386, 2019.

[6] G.Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
OpenAl Gym, 2016.

[7] K. Choromanski, M. Rowland, V. Sindhwani, R. E. Turner, and A. Weller. Structured evolution
with compact architectures for scalable policy optimization. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, ICML 2018, Stockholmsmdissan, Stockholm, Sweden,
July 10-15, 2018, pages 969-977, 2018.

[8] P. G. Constantine. Active Subspaces - Emerging Ideas for Dimension Reduction in Parameter
Studies, volume 2 of SIAM spotlights. STAM, 2015.

[9] P. G. Constantine, A. Eftekhari, and M. B. Wakin. Computing active subspaces efficiently
with gradient sketching. In 6th IEEE International Workshop on Computational Advances in
Multi-Sensor Adaptive Processing, CAMSAP 2015, Cancun, Mexico, December 13-16, 2015,
pages 353-356, 2015.

[10] P. G. Constantine, C. Kent, and T. Bui-Thanh. Accelerating markov chain monte carlo with
active subspaces. SIAM J. Scientific Computing, 38(5), 2016.

[11] E.Conti, V. Madhavan, F. P. Such, J. Lehman, K. O. Stanley, and J. Clune. Improving exploration
in evolution strategies for deep reinforcement learning via a population of novelty-seeking
agents. In Advances in Neural Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurlPS 2018, 3-8 December 2018, Montréal,
Canada., pages 5032-5043, 2018.

[12] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor,
Y. Wu, and P. Zhokhov. Openai baselines. https://github. com/openai/baselines, 2017.

[13] G. H. Golub. Some modified matrix eigenvalue problems. SIAM, 15, 1973.

[14] D. Ha and J. Schmidhuber. Recurrent world models facilitate policy evolution. NeurIPS, 2018.


https://github.com/openai/baselines

[15] P. Himaildinen, A. Babadi, X. Ma, and J. Lehtinen. Ppo-cma: Proximal policy optimization
with covariance matrix adaptation. CoRR, abs/1810.02541, 2018.

[16] N. Hansen and A. Ostermeier. Adapting arbitrary normal mutation distributions in evolution
strategies: The covariance matrix adaptation. In Evolutionary Computation, 1996., Proceedings
of IEEE International Conference on, pages 312-317. IEEE, 1996.

[17] R. Houthooft, Y. Chen, P. Isola, B. Stadie, F. Wolski, O. Jonathan Ho, and P. Abbeel. Evolved
policy gradients. NeurIPS, 2018.

[18] I.Jolliffe. Principal component analysis. Series: Springer Series in Statistics, XXIX, 2002.

[19] J. Lehman, J. Chen, J. Clune, and K. O. Stanley. ES is more than just a traditional finite-
difference approximator. In Proceedings of the Genetic and Evolutionary Computation Confer-
ence, GECCO 2018, Kyoto, Japan, July 15-19, 2018, pages 450—457, 2018.

[20] C. Li, H. Farkhoor, R. Liu, and J. Yosinski. Measuring the intrinsic dimension of objective land-
scapes. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018.

[21] G. Liu, L. Zhao, F. Yang, J. Bian, T. Qin, N. Yu, and T.-Y. Liu. Trust region evolution strategies.
In AAAI 2019.

[22] 1. Loshchilov. A computationally efficient limited memory cma-es for large scale optimization.
GECCO, 2014.

[23] I. Loshchilov, T. Glasmachers, and H. Beyer. Large scale black-box optimization by limited-
memory matrix adaptation. IEEE Transactions on Evolutionary Computation, 2019.

[24] N. Maheswaranathan, L. Metz, G. Tucker, and J. Sohl-Dickstein. Guided evolutionary strategies:
escaping the curse of dimensionality in random search. CoRR, abs/1806.10230, 2018.

[25] H. Mania, A. Guy, and B. Recht. Simple random search provides a competitive approach to
reinforcement learning. CoRR, abs/1803.07055, 2018.

[26] N. Miiller and T. Glasmachers. Challenges in high-dimensional reinforcement learning with
evolution strategies. Parallel Problem Solving from Nature — PPSN XV, 2018.

[27] Y. Nesterov and V. Spokoiny. Random gradient-free minimization of convex functions. Found.
Comput. Math., 17(2):527-566, Apr. 2017.

[28] R. Ros and N. Hansen. A simple modification in cma-es achieving linear time and space
complexity. In G. Rudolph, T. Jansen, N. Beume, S. Lucas, and C. Poloni, editors, Parallel
Problem Solving from Nature — PPSN X, pages 296-305, 2008.

[29] M. Rowland, K. Choromanski, F. Chalus, A. Pacchiano, T. Sarlos, R. E. Turner, and A. Weller.
Geometrically coupled monte carlo sampling. In NeurIPS, 2018.

[30] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. Evolution strategies as a scalable
alternative to reinforcement learning. 2017.

[31] J. Schulman, S. Levine, P. Abbeel, M. 1. Jordan, and P. Moritz. Trust region policy optimization.
In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015, pages 1889-1897, 2015.

[32] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[33] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune. Deep neuroevo-
lution: Genetic algorithms are a competitive alternative for training deep neural networks for
reinforcement learning. CoRR, abs/1712.06567, 2017.

[34] O. Teytaud and J. Rapin. Nevergrad: An open source tool for derivative-free optimization.
https://code.fb.com/ai-research/nevergrad/, 2018.

10



[35] K. Varelas, A. Auger, D. Brockhoff, N. Hansen, O. A. Elhara, Y. Semet, R. Kassab, and
F. Barbaresco. A comparative study of large-scale variants of cma-es. PPSN XV 2018 - 15th
International Conference on Parallel Problem Solving from Nature, 2018.

[36] G. Zhang and J. Hinkle. Resnet-based isosurface learning for dimensionality reduction in
high-dimensional function approximation with limited data. CoRR, 2019.

[37] Z.Zhou, X. Li, and R. N. Zare. Optimizing chemical reactions with deep reinforcement learning.
ACS Central Science, 3(12):1337-1344, 2017. PMID: 29296675.

11



