
We thank the reviewers for their thoughtful feedback. We will make sure to incorporate all minor editorial recom-1

mendations in the next revision of our paper. Below we explain our results at a high level and answer the reviewers’2

questions. We consider two fundamental problems in statistical hypothesis testing: testing independence of a bivariate3

discrete distribution, and testing closeness (also known as equivalence or two-sample testing) of two unknown discrete4

distributions given access to unequal sized sample sets from each. We designed minimax sample optimal algorithms5

(up to a logarithmic factor) for these two problems that satisfy differential privacy. Our main technical contribution is a6

methodology to privatize the “closeness tester” of [25] that relies on the idea of flattening the underlying distributions.7

(Please see Preliminaries Line 147-173 for a detailed description of this tester).8

Testing closeness via the flattening technique has played a central role in testing properties of discrete distributions in the9

non-private setting. Several other distribution properties can be tested via a reduction or direct use of this closeness tester.10

Examples include identity testing (goodness-of-fit), closeness testing between two unknown distributions with unequal11

sample sizes, independence testing (in two or higher dimensions), closeness testing for collections of distributions,12

and testing histograms. For most of these properties, the only known methodology to obtain minimax sample-optimal13

testers is via a reduction or direct use of the flattening-based closeness tester. This is due in part on the fact that the14

flattening-based testers naturally allows us exploit the potential structure of the underlying distributions.15

Despite the importance of the flattening technique in the non-private setting, prior to our work there were no differentially16

private tester that could make the flattening step private. The main barrier for designing differentially private testers17

using this method is the unstable nature of the statistic when we use flattening: even changing one sample in the18

flattening step can drastically change the behavior of the statistic and the tester — whereas a differentially private tester19

must be stable if a single sample is changed.20

We give the first differentially private tester that achieves privatizing the flattening-based closeness tester. In particular,21

we design a general differentially private closeness tester that allows specific reductions for the flattening of the22

underlying distributions. (See Definition 3.2 for the properties of these specific reductions.) As a corollary, we obtain23

the first minimax sample-optimal and differentially private testers for closeness testing with unequal sized sample sets24

and independence testing. We circumvent the issue of the unstable statistic by an appropriate derandomization of the25

non-private flattening-based tester: We compute the average statistic over all possible permutations of the samples and26

carefully analyze its worse-case sensitivity. Furthermore, for independence testing, we provide a novel technique for27

mapping samples sets with high sensitivity to sample sets with low sensitivity. This technique helps us significantly28

reduce the sensitivity even further when the worst-case sensitivity is high.29

Detecting if ‖p‖2 and ‖q‖2 are small: The `2-norm of a discrete distribution over [n] is always at least 1/
√
n, and30

we can efficiently estimate the `2-norm of any distribution up to a constant factor [8]. In our paper, we do not need to31

detect whether ‖p‖2 = Θ(‖q‖2), as is needed in [25]. We circumvent this detection step entirely by a careful analysis32

of the statistic and achieve a tester with sample complexity O
(
(n/ε2) min(‖p‖2, ‖q‖2)

)
. Hence, as long as one of the33

two distributions has small `2-norm (a property guaranteed by flattening), our tester is sample-efficient.34

Advantages of statisticZ: The main advantage of the statisticZ is that it has a low sensitivity. The exact improvement35

in the sensitivity depends on the flattening procedure and the property being tested. We precisely bound the sensitivity36

for independence testing and closeness testing with unequal sized sample sets in the respective sections in the Appendix.37

Please see Section B.2 and Section C.2, where we analyze the sensitivity of Z.38

Dependency on the privacy parameter: We emphasize that our algorithm is always differentially private regardless39

of the number of samples. The privacy guarantee follows from the properties of the Laplace mechanism. The sample40

complexities we obtain are necessary to obtain an accurate tester in a differentially private setting. Moreover, our41

algorithms have the optimal dependencies on the privacy parameter. Please see the table below for a comparison.42

43

Independence Testing Closeness Testing (with unequal sized sample sets)

Our Results Ω
(
n2/3m1/3

ε4/3
+

√
mn
ε2 +

√
mn logn
ε
√
ξ

+ 1
ε2ξ

) k1 = Ω
(
n2/3

ε4/3
+

√
n
ε2 +

√
n

ε
√
ξ

)
s = Θ

(
n

ε2
√

min(n,k1)
+

√
n
ε2 +

√
n

ε
√
ξ

+ 1
ε2ξ

)
Lower Bounds [4, 25] Ω

(
n2/3m1/3

ε4/3
+

√
mn
ε2 +

√
mn

ε
√
ξ

+ 1
ε ξ

)
s = Ω

(
n√
k1ε2

+
√
n
ε2 +

√
n

ε
√
ξ

+ 1
ε ξ

)


