
1. Our contribution. The DRLR informed KNN builds on a previously proposed method using OLS to inform1

KNN. Yet, our key, differentiating contributions lie in that: (i) the use of DRLR induces a more robust2

identification of the important factors that affect the future response and, thus, the neighbors being selected3

provide a better representation of the individual in query in the presence of outliers; (ii) we propose a4

randomized prescriptive policy that can potentially correct for the prediction bias and thus adds further5

robustness; (iii) in contrast to the earlier work, we establish new, rigorous theoretical results on the predictive6

and prescriptive performance of the proposed method; and (iv) we derive a closed-form expression for the7

threshold level that is used to activate the prescriptive rule.8

2. The benefit of KNN. If we just use DRLR (which is a linear regression model) to predict the counterfactuals,9

the prediction will be far from accurate since the non-linearity in the data is not well explained. The KNN10

model builds locally linear (and globally nonlinear) predictions using information from neighbors, accounting11

for the non-linearity that is not captured by DRLR. Furthermore, it is nonparametric, easy to estimate and is12

efficient to solve. In consideration of its sensitivity to the choice of the number of neighbors, K, we proposed a13

refinement of the policy described in the end of the experimental section, where a patient-specific K was used,14

discarding the neighbors that are relatively far away from the patient in query. In the final response prediction,15

we treat all the neighbors equally, using the same weight. An alternative is to take a distance-weighted16

average of the responses of neighbors; we tried this on our medical datasets, but we found that its effect is not17

significantly different from the strategy where a uniform average of the responses is taken. Notice that we18

discarded the neighbors that are relatively far away from the individual in the refined policy, which can be19

considered as a weighted average of the responses. We also want to point out that the theoretical analysis can20

be easily adapted to the weighted average response prediction.21

3. Using DRLR based weights to inform KNN. The intuition for using a weighted distance metric in KNN22

is to amplify the weight of features that are most predictive of the future response and downweight the23

unimportant ones. We use DRLR to inform KNN because it produces a robust identification of the important24

features. As a result, the selected samples are close to the individual in the most relevant features, and their25

corresponding response values should serve as a good approximation. Combining DRLR with KNN produces26

predictions that account for the non-linearity in the data and are robust to outliers. It is hard to define “optimal27

performance” for our proposed method. What we can show is that its prediction bias depends on the accuracy28

of the linear coefficient estimate, the similarity between the individual in query and its K-nearest neighbors,29

the dimensionality of data, and the smoothness of the regression hypothesis. Robustness and nonlinearity are30

the focus of this work, which are respectively taken care of by the DRLR and KNN models.31

4. Metric regression. Our method constructs a locally linear estimator of the future outcome through learning32

a robust metric in the feature space. Different from the classical metric learning works (e.g., Gottlieb et al.33

[2017]), we solve a downstream decision making problem by utilizing the information filtered by the learned34

metric. Gottlieb et al. [2017] focuses on the computational aspect of solving the metric regression problem.35

They significantly improve the computational efficiency compared to solving a convex program. By contrast,36

we focus on developing a novel method for the optimal decision making problem rather than improving the37

algorithmic efficiency. A direct comparison of the two papers easily shows how different they are. Moreover,38

Gottlieb et al. [2017] studies only the regression problem, whereas we considered a richer framework of39

combining regression with a randomized prescriptive policy. For the generalization bounds, we offered similar40

insights to their results. Theorem 5.1 in their paper provided a risk bound that depends on the empirical risk41

(reflected in τm and w̄m of our bound), the dimensionality of data (p), and the smoothness of the regression42

hypothesis (Lm). Their result also considered the runtime-precision tradeoff which we did not take into43

account. We would be happy to update our literature review to make these connections.44

5. The notation. We apologize for the confusion in the notations. Due to the page limit, we cannot present the45

intermediate results that lead to the main theorem, and many notations coming from the intermediate theorems46

were not clearly stated (these are included in the supplementary file). We will fix this in the revision, and be47

more clear about the notation and assumptions. The rate with respect to the sample size N is 1/N2, since τm48

is proportional to 1/N .49
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