
Reviewer 1: Thank you for the clear guidance on how to improve our presentation. We will follow it closely for1

the final version. That said, your review reflects much more enthusiasm than your score suggests. We would greatly2

appreciate if your could re-examine your numerical evaluation. • Relation to AdaFactor: Please see response to3

Reviewer 3. • Open-sourcing: Certainly! We have been finalizing an open-source version to be available soon on4

GitHub. • Learning Rates (LR): All algorithms we experimented with needed LR warm-up for improved performance.5

Beyond this, SM3 decays its LRs autonomously (like AdaGrad) and does not equire an “external” LR schedule. In6

contrast, Adam and AdaFactor do rely on an external LR schedules. Full details on the LRs and schedules used are7

provided in the supplementary. We will clarify this in the final version, thank you for pointing it out!8

Reviewer 2: Thank you for the constructive comments. It appears that you are pleased by the high significance of the9

contributions, but have some concerns about novelty which we now address. • Relation to “Compressing Gradient10

Optimizers” (SKMS’19): First, we note that SKMS’19 should more fairly be seen as a concurrent work to ours rather11

than a prior work. (The first version of our paper appeared online before the first version of SKMS’19.) This note12

aside, SM3 is superior to the Count Sketch algorithm of SKMS’19 in several important ways:13

(1) Efficiency: Randomized sketching is extremely inefficient on GPUs and TPUs as it requires sparse look-ups and14

is not cache-efficient. For this reason, SKMS’19 only apply their techniques to sparse (sampled) softmax and15

embedding layers with block versions of the hashes. They leave the treatment of hidden layers to future work. In16

contrast, our technique is deterministic and cache-friendly and “compresses” all layers of the model.17

(2) Space saving: SKMS’19 uses sketches that are 5x smaller than the original tensors, whereas our sketches are18

100x-1000x times smaller.19

(3) Compression quality: Empirically, the SM3 compression results in significantly smaller error compared to20

SKMS’19, as illustrated in the figure below. We plan to include these comparisons in the final version.21

(4) Empirical performance: These differences allow us to show improvements on a large variety of tasks & models.22

SKMS’19 essentially brings no improvement for Imagenet, and only has improvements for models dominated23

by the embedding and softmax layers (along with sampled softmax). In contrast, SM3 converges faster for Im-24

agenet, and for language models such as a state-of-the-art 24-layer BERT, we show significant improvements in25

convergence. We could not obtain reasonable results with SKMS’19 (and they do not report such results).26

• Applying to Adam: SM3 can be used with exponential moving-averages (like Adam) instead of sums (like Adagrad)27

through a simple modification of ν′t(i) (SM3-II): ν′t(i) ← βminr:Sr3i µ
′
t−1(r) + (1 − β)g2t (i). As we discuss in the28

paper, in our experiments moving-averages performed substantially worse than sums (regardless of memory savings).29

Reviewer 3: • LR schedules, compared to AdaFactor: The discussion in Section 4 was meant to underscore that the30

LR in Adam/AdaFactor does not necessarily decay with time, and so practitioners often incorporate manually-tuned31

external decay schedules (see Table 4 in the supplementary). SM3 does not require any external decay schedule. That32

said, all algorithms we experimented with benefited from a short warmup phase of a few thousand updates. This is33

currently detailed in the supplementary material, and in the final version it will be made explicit in the main text.34

Thank you for pointing out the lack of clarity. • AdaFactor for general tensors: The AdaFactor paper did not describe35

an extension to higher order tensors, and indeed, the source code of AdaFactor breaks tensors into disjoint matrices36

(slices) each of which is approximated separately. Further, AdaFactor’s approximations can be over or underestimates37

of the gradient moments, and in our experiments we see training instability which precluded the usage of AdaFactor38

with a batch size of 2048 (Figure 3 in the paper). SM3 does not suffer from this issue. Its theoretical and empirical39

convergence properties naturally extend to higher ranks. • Breakdown of memory usage: We will definitely try to40

elaborate more on this important point in the final version, space permitting. We would appreciate it if you could41

add some details in your final review about what kind of breakdown you would have liked to see. • Analysis under42

different assumptions: It would be indeed interesting to extend our analysis to various non-convex settings, and we are43

currently working in that direction. In terms of over-parameterization, is there a concrete assumption you think might44

improve convergence bounds? Please do add it to your final review, we would really appreciate it.45

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Adagrad

SM3-II

Determinstic Count Sketch

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

Adagrad

SM3-II

Determinstic Count Sketch

0 20 40 60 80 100
10

20

30

40

50

60

70

80

90

100

Adagrad

SM3-II

Determinstic Count Sketch

Figure 1: Magnitude of the
100 largest accumulators of
Adagrad and its approxima-
tion with SM3 and Count
Sketch (SKMS’19) for a
Transformer model trained
on WMT’14 en→fr dataset.

(a) Input embedding (b) Attention layer (c) Output softmax

46

47


