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Thank you to all the reviewers for their insightful suggestions, which we will implement along with results and2

clarifications below. When do prop. 7 conditions hold: we relax the condition by restricting the set of test functions3

in Eq 15 to functions in the RKHS and exactly obtain the KSD [31], allowing us to compute and verify it in simple4

cases. E.g., when both µ and ν0 are gaussians and the kernel is k(x, y) = xy + x2y2, then νt is also gaussian with5

mean at and variance σt satisfying a coupled differential equation. The KSD can be computed in closed form in terms6

of at and σt. The condition is then verified using standard dynamical systems techniques. A simpler example: linear7

kernel; both µ and ν0 are gaussians with the same variance. The dynamical system can be solved in closed form and the8

condition in Prop. 7 is satisfied. We will add both examples with detailed proofs in the appendix. In the more general9

case, weighted negative sobolev distance (WNSD) can be controlled if νt has a density bounded below [35]. Getting10

milder conditions remains an open question. Conditions that depend on the whole trajectory have been considered11

previously: [A, Theorem 6.1], assumes that the first moment remains constant to get a stronger convergence result. We12

agree with R.1 that Prop. 7 can be interpreted as a locality condition. Unlike in the finite dimensional case, however, it13

is unclear a priori what locality condition is best suited to characterize convergence of the MMD flow. Our contribution14

is to use the WNSD to define the notion of locality, which may be useful for further analysis of MMD flow convergence.15

Reviewer 1. We’ve added experiments (the figure shows results averaged over 10 runs. Same setting as in Sec G.1)16

and now compare with an entropy-regularized flow [30] and KSD flow [31]. (d,e) our noise injection method (red)17

is robust to the amount of noise and achieves best performance over a wide region. MMD + diffusion (green) has18

worse performance over a much narrower optimal region. KSD (purple) behaves better than MMD (blue) (b and c),19

however we (red) still outperform it. Moreover, the computational cost is much higher for KSD (a). We didn’t include20

SVGD in this comparison since it requires the closed form unnormalised density of the target, contrary to our paper21

setting. Validation error plateaus even for βn > 0, since the kernel is estimated using finitely many random features22

in training (empirical version, Eq 42 in Sec B.1). Validation error is estimated using new RFs. MMD flow vs training23

NNs we’ll add this clarification: “The MMD flow (without noise) with a finite number of particles is equivalent to24

standard GD with a quadratic loss, as shown in Sec B.1 and G.1 and in [37]. Therefore, our results could be used to25

analyze convergence of GD in NNs even when a non-linearity is applied after the final activation. This is by contrast26

to [37,11] where the final layer must be linear to get convergence results.” In the figure, MMD flow (blue) is in fact27

equivalent to SGD. Stochasticity is due to the estimation of the kernel using RFs (Eq 42+43 in Sec B.1). Our algorithm28

based on noise injection (red) can therefore be applied to train NNs as shown in Alg. 2 of App. G.1. We’ll clarify this29

in the main paper, along with extensions to more general cost functions.30

Reviewer 2. We’ll gladly implement all suggested clarifications and provide more intuition for displacement convexity.31

Reviewer 3. As suggested, we will provide more discussion of prior works, and how they differ from ours, as follows.32

[Carillo+, Thm. 6.1] provides a convergence results when both potentials satisfy convexity assumptions. This can’t be33

applied for MMD flow as it requires convexity of either the potential or interaction term. Both terms involve the same34

kernel but with opposite signs, so even under convexity of the kernel, a concave term appears and cancels the effect35

of the convex term, and [Carillo+, Remark 6.4] fails to hold. Moreover, the requirement that the kernel be positive36

semi-definite makes it hard to construct interesting convex kernels. In [30], an entropic regularization is used and allows37

to prove convergence to the global optimum. However, the latter is in general different from the global optimum of the38

un-regularized loss. To get an accurate solution, small levels of noise are required which can be of limited interest in39

practice: green traces, Figure. Our proposed algorithm in (Eq. 21) is different from entropic regularization, and the40

global optimum of the MMD remains a fixed point of the algorithm. Qualitatively, the behavior is also very different:41

Figure (red). In [37,11], the loss function has a particular structure: ’1-homogeneity’.This is well suited for NNs with a42

linear final layer and leads to an elegant proof for global optimality. In our case, this corresponds to a kernel k of the43

form k(x, x′) = cc′κ(θ, θ′) where x and x′ are of the form x = (c, θ) and x′ = (c′, θ′). However, when a characteristic44

kernel is required (to ensure the MMD is a metric), such a structure can’t be exploited. KSD flow [31] is also shown to45

minimize the MMD. However, those are two different functionals and behave differently: Figure (purple vs blue/red).46

See also our App. E.1 discussion on the global optimality condition in [31]. SVGD [28], was introduced as a gradient47

flow of the KL w.r.t. a metric [28, Eq. 20] that is not the Wasserstein metric, and requires a closed form target density.48

Finally, we emphasize our new noise injected flow in Sec. 4., which improves over the Sec. 3 “vanilla” MMD flow49

and has a global convergence result (Prop. 8) that supplants the Prop. 7 conditions. We provide empirical evidence50

of its benefits compared to other methods in the figure. The algorithm can be best understood as a generalization of51

continuation methods to interacting potentials. To our knowledge, our work is the first to propose this approach.52


