
DINGO: Distributed Newton-Type Method for
Gradient-Norm Optimization

Rixon Crane
University of Queensland
r.crane@uq.edu.au

Fred Roosta
University of Queensland
fred.roosta@uq.edu.au

Abstract

For optimization of a large sum of functions in a distributed computing environment,
we present a novel communication efficient Newton-type algorithm that enjoys a
variety of advantages over similar existing methods. Our algorithm, DINGO, is
derived by optimization of the gradient’s norm as a surrogate function. DINGO does
not impose any specific form on the underlying functions and its application range
extends far beyond convexity and smoothness. The underlying sub-problems of
DINGO are simple linear least-squares, for which a plethora of efficient algorithms
exist. DINGO involves a few hyper-parameters that are easy to tune and we
theoretically show that a strict reduction in the surrogate objective is guaranteed,
regardless of the selected hyper-parameters.

1 Introduction

Consider the optimization problem

min
w∈Rd

{
f(w) ,

1

m

m∑
i=1

fi(w)

}
, (1)

in a centralized distributed computing environment involving one driver machine and m worker
machines, in which the ith worker can only locally access the ith component function, fi. Such
distributed computing settings arise increasingly more frequently as a result of technological and
communication advancements that have enabled the collection of and access to large scale datasets.

As a concrete example, take a data fitting application, in which given n data points, {xi}ni=1, and
their corresponding loss, `i(w;xi), parameterized by w, the goal is to minimize the overall loss as
minw∈Rd

∑n
i=1 `i(w;xi)/n. Such problems appear frequently in machine learning, e.g., [1, 2, 3]

and scientific computing, e.g., [4, 5, 6]. However, in “big data” regimes where n � 1, lack of
adequate computational resources, in particular storage, can severely limit, or even prevent, any
attempts at solving such optimization problems in a traditional stand-alone way, e.g., using a single
machine. This can be remedied through distributed computing, in which resources across a network
of stand-alone computational nodes are “pooled” together so as to scale to the problem at hand [7].
In such a setting, where n data points are distributed across m workers, one can instead consider (1)
with

fi(w) ,
1

|Si|
∑
j∈Si

`j(w;xj), i = 1, 2, . . . ,m, (2)

where Si ⊆ {1, 2, . . . , n}, with cardinality denoted by |Si|, correspond to the distribution of data
across the nodes, i.e., the ith node has access to a portion of the data indexed by the set Si.

In distributed settings, the amount of communications, i.e., messages exchanged across the network,
are often considered a major bottleneck of computations (often more so than local computation

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

times), as they can be expensive in terms of both physical resources and time through latency
[8, 9]. First-order methods [10], e.g., stochastic gradient descent (SGD) [11], solely rely on gradient
information and as a result are rather easy to implement in distributed settings. They often require the
performance of many computationally inexpensive iterations, which can be suitable for execution on
a single machine. However, as a direct consequence, they can incur excessive communication costs
in distributed environments and, hence, they might not be able to take full advantage of the available
distributed computational resources.

By employing curvature information in the form of the Hessian matrix, second-order methods aim at
transforming the gradient such that it is a more suitable direction to follow. Compared with first-order
alternatives, although second-order methods perform more computations per iteration, they often
require far fewer iterations to achieve similar results. In distributed settings, this feature can directly
translate to significantly less communication costs. As a result, distributed second-order methods
have the potential to become the method of choice for distributed optimization tasks.

Notation

We let 〈·, ·〉 denote the common Euclidean inner product defined by 〈x,y〉 = xTy for x,y ∈ Rd.
Given a vector v and matrix A, we denote their vector `2 norm and matrix spectral norm as ‖v‖ and
‖A‖, respectively. For x, z ∈ Rd we let [x, z] ,

{
x+ τ(z− x) | 0 ≤ τ ≤ 1

}
. The range and null

space of a matrix A is denoted byR(A) and N (A), respectively. The Moore–Penrose inverse [12]
of A is denoted by A†. We let wt ∈ Rd denote the point at iteration t. For notational convenience,
we denote gt,i , ∇fi(wt), Ht,i , ∇2fi(wt), gt , ∇f(wt) and Ht , ∇2f(wt). We also let

H̃t,i ,

[
Ht,i

φI

]
∈ R2d×d and g̃t ,

(
gt

0

)
∈ R2d, (3)

where φ > 0, I is the identity matrix, and 0 is the zero vector.

Related Work and Contributions

Owing to the above-mentioned potential, many distributed second-order optimization algorithms have
recently emerged to solve (1). Among them, most notably are GIANT [13], DiSCO [9], DANE [14],
InexactDANE and AIDE [15]. While having many advantages, each of these methods respectively
come with several disadvantages that can limit their applicability in certain regimes. Namely,
some rely on, rather stringent, (strong) convexity assumptions, while for others the underlying sub-
problems involve non-linear optimization problems that are themselves non-trivial to solve. A subtle,
yet potentially severe, draw-back for many of the above-mentioned methods is that their performance
can be sensitive to, and severely affected by, the choice of their corresponding hyper-parameters.

Here, we present a novel communication efficient distributed second-order optimization method
that aims to alleviate many of the aforementioned disadvantages. Our approach is inspired by and
follows many ideas of recent results on Newton-MR [16], which extends the application range of the
classical Newton-CG beyond (strong) convexity and smoothness. More specifically, our algorithm,
named DINGO for “DIstributed Newton-type method for Gradient-norm Optimization”, is derived
by optimization of the gradient’s norm as a surrogate function for (1), i.e.,

min
w∈Rd

{
1

2

∥∥∇f(w)
∥∥2 =

1

2m2

∥∥∥∥∥
m∑
i=1

∇fi(w)

∥∥∥∥∥
2}
. (4)

When f is invex, [17, 18], the problems (1) and (4) have the same solutions. Recall that invexity is the
generalization of convexity, which extends the sufficiency of the first order optimality condition, e.g.,
Karush-Kuhn-Tucker conditions, to a broader class of problems than simple convex programming. In
other words, invexity is a special case of non-convexity, which subsumes convexity as a sub-class. In
this light, unlike DiSCO and GIANT, by considering the surrogate function (4), DINGO’s application
range and theoretical guarantees extend far beyond convex settings to invex problems. Naturally, by
considering (4), DINGO may converge to a local maximum or saddle point in non-invex problems.

Similar to GIANT and DiSCO, and in contrast to DANE, InexactDANE and AIDE, our algorithm
involves a few hyper-parameters that are easy to tune and the underlying sub-problems are simple
linear least-squares, for which a plethora of efficient algorithms exist. However, the theoretical

2

Table 1: Comparison of problem class, function form and data distribution. Note that DINGO doesn’t
assume invexity in analysis, rather it is suited to invex problems in practice.

Problem Class Function Form Data Distribution

DINGO Invex Any Any
GIANT Strongly Convex `j(w;xj) = ψj(〈w,xj〉) + γ‖w‖2 |Si| > d

DiSCO Strongly Convex Any Any
InexactDANE Non-Convex Any Any

AIDE Non-Convex Any Any

Table 2: Comparison of number of sub-problem hyper-parameters and communication rounds per
iteration. Under inexact update, the choice of sub-problem solver will determine additional hyper-
parameters. Most communication rounds of DiSCO arise when iteratively solving its sub-problem.
We assume DINGO and GIANT use two communication rounds for line-search per iteration.

Number of Sub-Problem Hyper- Communication Rounds Per
Parameters (Under Exact Update) Iteration (Under Inexact Update)

DINGO 2 ≤ 8

GIANT 0 6

DiSCO 0 2 + 2 · (sub-problem iterations)
InexactDANE 2 4

AIDE 3 4 · (inner InexactDANE iterations)

analysis of both GIANT and DiSCO is limited to the case where each fi is strongly convex, and for
GIANT they are also of the special form where in (2) we have `j(w;xj) = ψj(〈w,xj〉) + γ‖w‖2,
γ > 0 is a regularization parameter and ψj is convex, e.g., linear predictor models. In contrast,
DINGO does not impose any specific form on the underlying functions. Also, unlike GIANT, we
allow for |Si| < d in (2). Moreover, we theoretically show that DINGO is not too sensitive to the
choice of its hyper-parameters in that a strict reduction in the gradient norm is guaranteed, regardless
of the selected hyper-parameters. See Tables 1 and 2 for a summary of high-level algorithm properties.
Finally, we note that, unlike GIANT, DiSCO, InexactDANE and AIDE, our theoretical analysis
requires exact solutions to the sub-problems. Despite the fact that the sub-problems of DINGO are
simple ordinary least-squares, and that DINGO performs well in practice with very crude solutions,
this is admittedly a theoretical restriction, which we aim to address in future.

The distributed computing environment that we consider is also assumed by GIANT, DiSCO, DANE,
InexactDANE and AIDE. Moreover, as with these methods, we restrict communication to vectors of
size linear in d, i.e., O(d). A communication round is performed when the driver uses a broadcast
operation to send information to one or more workers in parallel, or uses a reduce operation to receive
information from one or more workers in parallel. For example, computing the gradient at iteration t,
namely gt =

∑m
i=1 gt,i/m, requires two communication rounds, i.e., the driver broadcasts wt to all

workers and then, by a reduce operation, receives gt,i for all i. We further remind that the distributed
computational model considered here is such that the main bottleneck involves the communications
across the network.

2 DINGO

In this section, we describe the derivation of DINGO, as depicted in Algorithm 1. Each iteration
t involves the computation of two main ingredients: an update direction pt, and an appropriate
step-size αt. As usual, our next iterate is then set as wt+1 = wt + αtpt.

3

Update Direction

We begin iteration t by distributively computing the gradient gt. Thereafter, we distributively compute
the Hessian-gradient product Htgt =

∑m
i=1 Ht,igt/m as well as the vectors

∑m
i=1 H

†
t,igt/m and∑m

i=1 H̃
†
t,ig̃t/m. Computing the update direction pt involves three cases, all of which involve simple

linear least-squares sub-problems:

Case 1 If 〈
∑m

i=1 H
†
t,igt/m,Htgt〉 ≥ θ‖gt‖2, where θ is as in Algorithm 1, then we let

pt =
∑m

i=1 pt,i/m, with pt,i = −H†t,igt. Here, we check that the potential update direction
“−
∑m

i=1 H
†
t,igt/m” is a suitable descent direction for our surrogate objective (4). We do this since

we have not imposed any restrictive assumptions on (1), e.g., strong convexity of each fi, that would
automatically guarantee descent; see Lemma 1 for an example of such restrictive assumptions.
Case 2 If Case 1 fails, we include regularization and check again that the new potential update
direction yields suitable descent. Namely, if 〈

∑m
i=1 H̃

†
t,ig̃t/m,Htgt〉 ≥ θ‖gt‖2, then we let pt =∑m

i=1 pt,i/m, with pt,i = −H̃†t,ig̃t.

Case 3 If all else fails, we enforce descent in the norm of the gradient. More specifically, as Case 2
does not hold, the set

It ,
{
i = 1, 2, . . . ,m | 〈H̃†t,ig̃t,Htgt〉 < θ‖gt‖2

}
, (5)

is non-empty. In parallel, the driver broadcasts Htgt to each worker i ∈ It and has it locally compute
the solution to

argmin
pt,i

1

2
‖Ht,ipt,i + gt‖2 +

φ2

2
‖pt,i‖2, such that 〈pt,i,Htgt〉 ≤ −θ‖gt‖2,

where φ is as in (3). It is easy to show that the solution to this problem is

pt,i = −H̃†t,ig̃t − λt,i(H̃T
t,iH̃t,i)

−1Htgt, λt,i =
−gT

t HtH̃
†
t,ig̃t + θ‖gt‖2

gT
t Ht(H̃T

t,iH̃t,i)−1Htgt

. (6)

The term λt,i in (6) is positive by the definition of It and well-defined by Assumption 5, which
implies that for gt 6= 0 we have Htgt 6= 0. In conclusion, for Case 3, each worker i ∈ It computes
(6) and, using a reduce operation, the driver then computes the update direction pt =

∑m
i=1 pt,i/m,

which by construction yields descent in the surrogate objective (4). Note that pt,i = −H̃†t,ig̃t for all
i /∈ It have already been obtained as part of Case 2.
Remark 1. The three cases help avoid the need for any unnecessary assumptions on data distribution
or the knowledge of any practically unknowable constants. In fact, given Lemma 1, which imposes a
certain assumption on the data distribution, we could have stated our algorithm in its simplest form,
i.e., with only Case 1. This would be more in line with some prior works, e.g., GIANT, but it would
have naturally restricted the applicability of our method in terms of data distributions.
Remark 2. In practice, like GIANT and DiSCO, our method DINGO never requires the computation
or storage of an explicitly formed Hessian. Instead, it only requires Hessian-vector products, which
can be computed at a similar cost to computing the gradient itself. Computing matrix pseudo-inverse
and vector products, e.g., H†t,igt, constitute the sub-problems of our algorithm. This, in turn, is
done through solving least-squares problems using iterative methods that only require matrix-vector
products (see Section 4 for some such methods). Thus DINGO is suitable for large dimension d in (1).

Line Search

After computing the update direction pt, DINGO computes the next iterate wt+1 by moving along pt

by an appropriate step-size αt and forming wt+1 = wt + αtpt. We use an Armijo-type line search
to choose this step-size. Specifically, as we are minimizing the norm of the gradient as a surrogate
function, we choose the largest αt ∈ (0, 1] such that

‖gt+1‖2 ≤ ‖gt‖2 + 2αtρ〈pt,Htgt〉, (7)

for some constant ρ ∈ (0, 1). By construction of pt we always have 〈pt,Htgt〉 ≤ −θ‖gt‖2.
Therefore, after each iteration we are strictly decreasing the norm of the gradient, and line-search
guarantees that this occurs irrespective of all hyper-parameters of DINGO, i.e., θ, φ and ρ.

4

Algorithm 1 DINGO
1: input initial point w0 ∈ Rd, gradient tolerance δ ≥ 0, maximum iterations T , line search

parameter ρ ∈ (0, 1), parameter θ > 0, and regularization parameter φ > 0 as in (3).
2: for t = 0, 1, 2, . . . , T − 1 do
3: Distributively compute the full gradient gt.
4: if ‖gt‖ ≤ δ then
5: return wt

6: else
7: The driver broadcasts gt and, in parallel, each worker i computes Ht,igt, H

†
t,igt and H̃†t,ig̃t.

8: By a reduce operation, the driver computes Htgt =
1
m

∑m
i=1 Ht,igt, 1

m

∑m
i=1 H

†
t,igt and

1
m

∑m
i=1 H̃

†
t,ig̃t.

9: if
〈

1
m

∑m
i=1 H

†
t,igt,Htgt

〉
≥ θ‖gt‖2 then

10: Let pt =
1
m

∑m
i=1 pt,i, with pt,i = −H†t,igt.

11: else if
〈

1
m

∑m
i=1 H̃

†
t,ig̃t,Htgt

〉
≥ θ‖gt‖2 then

12: Let pt =
1
m

∑m
i=1 pt,i, with pt,i = −H̃†t,ig̃t.

13: else
14: The driver computes pt,i = −H̃†t,ig̃t for all i such that 〈H̃†t,ig̃t,Htgt〉 ≥ θ‖gt‖2.
15: The driver broadcasts Htgt to each worker i such that 〈H̃†t,ig̃t,Htgt〉 < θ‖gt‖2 and, in

parallel, they compute

pt,i = −H̃†t,ig̃t − λt,i(H̃T
t,iH̃t,i)

−1Htgt, λt,i =
−gT

t HtH̃
†
t,ig̃t + θ‖gt‖2

gT
t Ht(H̃T

t,iH̃t,i)−1Htgt

.

16: Using a reduce operation, the driver computes pt =
1
m

∑m
i=1 pt,i.

17: end if
18: Choose the largest αt ∈ (0, 1] such that

∥∥∇f(wt + αtpt)
∥∥2 ≤ ‖gt‖2 + 2αtρ〈pt,Htgt〉.

19: The driver computes wt+1 = wt + αtpt.
20: end if
21: end for
22: return wT .

3 Theoretical Analysis

In this section, we present convergence results for DINGO. The reader can find proofs of lemmas and
theorems in the supplementary material. For notational convenience, in our analysis we have C1 ,
{t | 〈

∑m
i=1 H

†
t,igt/m,Htgt〉 ≥ θ‖gt‖2}, C2 , {t | 〈

∑m
i=1 H̃

†
t,ig̃t/m,Htgt〉 ≥ θ‖gt‖2, t /∈ C1},

and C3 , {t | t /∈ (C1 ∪C2)}, which are sets indexing iterations t that are in Case 1, Case 2 and Case
3, respectively. The convergence analysis under these cases are treated separately in Sections 3.2,
3.3 and 3.4. The unifying result is then simply given in Corollary 1. We begin, in Section 3.1, by
establishing general underlying assumptions for our analysis. The analysis of Case 1 and Case 3
require their own specific assumptions, which are discussed in Sections 3.2 and 3.4, respectively.
Remark 3. As long as the presented assumptions are satisfied, our algorithm converges for any choice
of θ and φ, i.e., these hyper-parameters do not require the knowledge of the, practically unknowable,
parameters from these assumptions. However, in Lemma 3 we give qualitative guidelines for a better
choice of θ and φ to avoid Case 2 and Case 3, which are shown to be less desirable than Case 1.

3.1 General Assumptions

As DINGO makes use of Hessian-vector products, we make the following straightforward assumption.
Assumption 1 (Twice Differentiability). The functions fi in (1) are twice differentiable.

Notice that we do not require each fi to be twice continuously differentiable. In particular, our
analysis carries through even if the Hessian is discontinuous. This is in sharp contrast to popular
belief that the application of non-smooth Hessian can hurt more so than it helps, e.g., [19]. Note that

5

even if the Hessian is discontinuous, Assumption 1 is sufficient in ensuring that Ht,i is symmetric,
for all t and i, [20]. Following [16], we also make the following general assumption on f .
Assumption 2 (Moral-Smoothness [16]). For all iterations t, there exists a constant L ∈ (0,∞)
such that

∥∥∇2f(w)∇f(w)−∇2f(wt)∇f(wt)
∥∥ ≤ L‖w−wt‖, for all w ∈ [wt,wt + pt], where

pt is the update direction of DINGO at iteration t.

As discussed in [16] with explicit examples, Assumption 2 is strictly weaker than the common
assumptions of the gradient and Hessian being both Lipschitz continuous. Using [16, Lemma 10], it
follows from Assumptions 1 and 2 that∥∥∇f(wt + αpt)

∥∥2 ≤ ∥∥gt

∥∥2 + 2α
〈
pt,Htgt

〉
+ α2L‖pt‖2, (8)

for all α ∈ [0, 1] and all iterations t.

3.2 Analysis of Case 1

In this section, we analyze the convergence of iterations of DINGO that fall under Case 1. For such
iterations, we make the following assumption about the action of the pseudo-inverse of Ht,i on gt.
Assumption 3 (Pseudo-Inverse Regularity of Ht,i on gt). For all t ∈ C1 and all i = 1, 2, . . . ,m,
there exists constants γi ∈ (0,∞) such that ‖H†t,igt‖ ≤ γi‖gt‖.

Assumption 3 may appear unconventional. However, it may be seen as more general than the
following assumption.
Assumption 4 (Pseudo-Inverse Regularity of Ht on its Range Space [16]). There exists a constant
γ ∈ (0,∞) such that for all iterates wt we have ‖Htp‖ ≥ γ‖p‖ for all p ∈ R(Ht).

Assumption 4 implies ‖H†tgt‖ = ‖H†t
(
UtU

T
t + U⊥t (U

⊥
t)

T
)
gt‖ = ‖H†tUtU

T
t gt‖ ≤ γ−1‖gt‖,

where Ut and U⊥t denote arbitrary orthonormal bases for R(Ht) and R(Ht)
⊥, respectively, and

R(Ht)
⊥ = N (HT

t) = N (H†t). Recall that Assumption 4 is a significant relaxation of strong
convexity. As an example, an under-determined least-squares problem f(w) = ‖Aw − b‖2/2,
which is clearly not strongly convex, satisfies Assumption 4 with γ = σ2

min(A), where σmin(A) is the
smallest non-zero singular value of A.
Theorem 1 (Convergence Under Case 1). Suppose we run DINGO. Then under Assumptions 1, 2
and 3, for all t ∈ C1 we have ‖gt+1‖2 ≤ (1− 2τ1ρθ)‖gt‖2, where τ1 = min

{
1, 2(1− ρ)θ/(Lγ2)

}
,

γ =
∑m

i=1 γi/m, L is as in Assumption 2, γi are as in Assumption 3, ρ and θ are as in Algorithm 1.

From the proof of Theorem 1, it is easy to see that ∀t ∈ C1 we are guaranteed that 0 < 1−2τ1ρθ < 1.
In Theorem 1, the term γ is the average of the γi’s. This is beneficial as it “smooths out” non-
uniformity in γi’s; for example, γ ≥ mini γi. Under specific assumptions on (1), we can theoretically
guarantee that t ∈ C1 for all iterations t. The following lemma provides one such example.
Lemma 1. Suppose Assumption 1 holds and that we run DINGO. Furthermore, suppose that for
all iterations t and all i = 1, 2, . . . ,m, the Hessian matrix Ht,i is invertible and there exists
constants εi ∈ [0,∞) and νi ∈ (0,∞) such that ‖Ht,i −Ht‖ ≤ εi and νi‖gt‖ ≤ ‖Ht,igt‖. If∑m

i=1(1− εi/νi)/m ≥ θ then t ∈ C1 for all t, where θ is as in Algorithm 1.

As an example, the Assumptions of Lemma 1 trivially hold if each fi is strongly convex and we
assume certain data distribution. Under the assumptions of Lemma 1, if the Hessian matrix for each
worker is on average a reasonable approximation to the full Hessian, i.e., εi is on average sufficiently
small so that

∑m
i=1 εi/νi < m, then we can choose θ small enough to ensure that t ∈ C1 for all t. In

other words, for the iterates to stay in C1, we do not require the Hessian matrix of each individual
worker to be a high-quality approximation to full Hessian (which could indeed be hard to enforce in
many practical applications). As long as the data is distributed in such a way that Hessian matrices
are on average reasonable approximations, we can guarantee to have t ∈ C1 for all t.

3.3 Analysis of Case 2

We now analyze the convergence of DINGO for iterations that fall under Case 2. For this case, we do
not require any additional assumptions to that of Assumptions 1 and 2. Instead, we use the upper

6

bound: ‖H̃†t,i‖ ≤ 1/φ for all iterations t and all i = 1, 2, . . . ,m, where φ is as in Algorithm 1; see
Lemma 4 in the supplementary material for a proof of this upper bound.

Theorem 2 (Convergence Under Case 2). Suppose we run DINGO. Then under Assumptions 1 and
2, for all t ∈ C2 we have ‖gt+1‖2 ≤ (1− 2τ2ρθ)‖gt‖2, where τ2 = min

{
1, 2(1− ρ)φ2θ/L

}
, L is

as in Assumption 2, and ρ, θ and φ are as in Algorithm 1.

In our experience, we have found that Case 2 does not occur frequently in practice. It serves more of
a theoretical purpose and is used to identify when Case 3 is required. Case 2 may be thought of as
a specific instance of Case 3, in which It is empty. However, it merits its own case, as in analysis
it does not require additional assumptions to Assumptions 1 and 2, and in practice it may avoid an
additional two communication rounds. If we were to bypass Case 2 to Case 3 and allow It to be
empty, then Theorem 3 of Section 3.4 with |It| = 0, which states the convergence for Case 3, indeed
coincides with Theorem 2.

3.4 Analysis of Case 3

Now we turn to the final case, and analyze the convergence of iterations of DINGO that fall under
Case 3. For such iterations, we make the following assumption.

Assumption 5. For all t ∈ C3 and all i = 1, 2, . . . ,m there exists constants δi ∈ (0,∞) such that∥∥(H̃T
t,i)
†Htgt

∥∥ ≥ δi‖gt‖.

Assumption 5, like Assumption 3, may appear unconventional. In Lemma 2 we show how Assump-
tion 5 is implied by three other reasonable assumptions, one of which is as follows.

Assumption 6 (Gradient-Hessian Null-Space Property [16]). There exists a constant ν ∈ (0, 1] such
that

∥∥(U⊥w)T∇f(w)
∥∥2 ≤ (1− ν)ν−1

∥∥UT
w∇f(w)

∥∥2, for all w ∈ Rd, where Uw and U⊥w denote
any orthonormal bases forR

(
∇2f(w)

)
and its orthogonal complement, respectively.

Assumption 6 implies that, as the iterations progress, the gradient will not become arbitrarily
orthogonal to the range space of the Hessian matrix. As an example, any least-squares problem
f(w) = ‖Aw − b‖2/2 satisfies Assumption 6 with ν = 1 ; see [16] for detailed discussion and
many more examples of Assumption 6.

Lemma 2. Suppose Assumptions 4 and 6 hold and ‖Ht,i‖2 ≤ τi, ∀t ∈ C3, i = 1, 2, . . . ,m, τi ∈
(0,∞), i.e., local Hessians are bounded. Then, Assumption 5 holds with δi = γ

√
ν/(τi + φ2), where

φ is as in Algorithm 1, and γ and ν are as in Assumptions 4 and 6, respectively.

The following theorem provides convergence properties for iterations of DINGO that are in Case 3.

Theorem 3 (Convergence Under Case 3). Suppose we run DINGO. Then under Assumptions 1,
2 and 5, for all t ∈ C3 we have ‖gt+1‖2 ≤ (1 − 2ωtρθ)‖gt‖2 ≤ (1 − 2τ3ρθ)‖gt‖2, where
ωt = min{1, 2(1− ρ)θ/Lc2t}, τ3 = min{1, 2(1− ρ)θ/Lc2},

ct =
1

mφ

(
m+ |It|+ θ

∑
i∈It

1

δi

)
, c =

2

φ
+

θ

mφ

m∑
i=1

1

δi
,

L is as in Assumption 2, δi are as in Assumption 5, It is as in (5), and ρ, θ and φ are as in Algorithm 1.

Note that the convergence in Theorem 3 is given in both iteration dependent and independent format,
since the former explicitly relates the convergence rate to the size of It, while the latter simply
upper-bounds this, and hence is qualitatively less informative.

Comparing Theorems 2 and 3, iterations of DINGO should have slower convergence if they are in
Case 3 rather than Case 2. By Theorem 3, if an iteration t resorts to Case 3 then we may have slower
convergence for larger |It|. Moreover, this iteration would require two more communication rounds
than if it were to stop in Case 1 or Case 2. Therefore, one may wish to choose θ and φ appropriately
to reduce the chances that iteration t falls in Case 3 or that |It| is large. Under this consideration,
Lemma 3 presents a necessary condition on a relationship between θ and φ.

Lemma 3. Suppose we run DINGO. Under Assumption 1, if |It| < m for some iteration t, then
θφ ≤ ‖Htgt‖/‖gt‖.

7

AIDE Asynchronous SGD DINGO DiSCO GIANT InexactDANE Synchronous SGD

0 100 200 300 400 500
Communication Rounds

1.6

1.8

2.0

2.2

Ob
je

ct
iv

e
Fu

nc
tio

n:
 f

(w
)

0 100 200 300 400 500
Communication Rounds

10 3

10 2

10 1

100

Gr
ad

ie
nt

 N
or

m
: |

|
f(w

)||

0 20 40 60 80
Iteration

100

Lin
e

Se
ar

ch
:

0 100 200 300 400 500
Communication Rounds

10

15

20

25

30

35

40

Te
st

 C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy
 (%

)

(a) 10 Workers

0 100 200 300 400 500
Communication Rounds

1.6

1.8

2.0

2.2

Ob
je

ct
iv

e
Fu

nc
tio

n:
 f

(w
)

0 100 200 300 400 500
Communication Rounds

10 3

10 2

10 1

100

Gr
ad

ie
nt

 N
or

m
: |

|
f(w

)||

0 20 40 60 80
Iteration

10 1

100
Lin

e
Se

ar
ch

:

0 100 200 300 400 500
Communication Rounds

10

15

20

25

30

35

40

Te
st

 C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy
 (%

)

(b) 100 Workers

0 100 200 300 400 500
Communication Rounds

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Ob
je

ct
iv

e
Fu

nc
tio

n:
 f

(w
)

0 100 200 300 400 500
Communication Rounds

10 2

10 1

100

Gr
ad

ie
nt

 N
or

m
: |

|
f(w

)||

0 20 40 60 80
Iteration

10 2

10 1

100

Lin
e

Se
ar

ch
:

0 100 200 300 400 500
Communication Rounds

10

15

20

25

30

35

40

Te
st

 C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy
 (%

)

(c) 1000 Workers

0 100 200 300 400 500
Communication Rounds

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Ob
je

ct
iv

e
Fu

nc
tio

n:
 f

(w
)

0 100 200 300 400 500
Communication Rounds

10 1

100

Gr
ad

ie
nt

 N
or

m
: |

|
f(w

)||

0 20 40 60 80
Iteration

10 5

10 4

10 3

10 2

10 1

100

Lin
e

Se
ar

ch
:

0 100 200 300 400 500
Communication Rounds

10

15

20

25

30

35

40

Te
st

 C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy
 (%

)

(d) 10000 Workers

Figure 1: Softmax regression problem on the CIFAR10 dataset. All algorithms are initialized at
w0 = 0. In all plots, Sync-SGD has a learning rate of 10−2. Async-SGD has a learning rate of: 10−3
in 1(a), 10−4 in 1(b) and 1(c), and 10−5 in 1(d). SVRG has a learning rate of: 10−3 in 1(a) and 1(d),
and 10−2 in 1(b) and 1(c). AIDE has τ = 100 in 1(a) and 1(d), τ = 1 in 1(b), and τ = 10 in 1(c).
The number of workers is the value of m in (1) and (2).

Lemma 3 suggests that we should pick θ and φ so that their product, θφ, is small. Clearly, choosing
smaller θ will increase the chance of an iteration of DINGO being in Case 1 or Case 2. However,
this also gives a lower rate of convergence in Theorems 1 and 2. Choosing smaller φ will preserve
more curvature information of the Hessian Ht,i in H̃†t,i. However, φ should still be reasonably large,
as making φ smaller also makes some of the sub-problems of DINGO more ill-conditioned. There is
a non-trivial trade-off between φ and θ, and Lemma 3 gives an appropriate way to set them.

We can finally present a unifying result on the overall worst-case linear convergence rate of DINGO.

Corollary 1 (Overall Linear Convergence of DINGO). Suppose we run DINGO. Then under Assump-
tions 1, 2, 3 and 5, for all iterations t we have ‖gt+1‖2 ≤ (1−2τρθ)‖gt‖2 with τ = min{τ1, τ2, τ3},
where τ1, τ2 and τ3 are as in Theorems 1, 2, and 3, respectively, and ρ and θ are as in Algorithm 1.

From Corollary 1, DINGO can achieve ‖gt‖ ≤ ε with O(log(ε)/(τρθ)) communication rounds.
Moreover, the term τ is a lower bound on the step-size under all cases, which can determine the
maximum communication cost needed during line-search. For example, knowing τ could determine
the number of step-sizes used in backtracking line-search for DINGO in Section 4.

4 Experiments

In this section, we evaluate the empirical performance of DINGO, GIANT, DiSCO, InexactDANE,
AIDE, Asynchronous SGD (Async-SGD) and Synchronous SGD (Sync-SGD) [11] on the strongly
convex problem of softmax cross-entropy minimization with regularization on the CIFAR10 dataset
[21], see Figure 1. This dataset has 50000 training samples, 10000 test samples and each datapoint
xi ∈ R3072 has a label yi ∈ {1, 2, . . . , 10}. This problem has dimension d = 27648. In the
supplementary material, the reader can find additional experiments on another softmax regression

8

DINGO, with = 0.0001 DINGO, with = 0.1 DINGO, with = 1 DINGO, with = 10 DINGO, with = 100

0 100 200 300 400 500
Communication Rounds

1.6

1.8

2.0

2.2

Ob
je

ct
iv

e
Fu

nc
tio

n:
 f

(w
)

0 100 200 300 400 500
Communication Rounds

10 3

10 2

10 1

100

Gr
ad

ie
nt

 N
or

m
: |

|
f(w

)||

0 100 200 300 400 500
Communication Rounds

10

15

20

25

30

35

40

Te
st

 C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy
 (%

)

0 20 40 60 80 100 120
Iteration

10 13

10 10

10 7

10 4

10 1

Lin
e

Se
ar

ch
:

Figure 2: Softmax regression problem on the CIFAR10 dataset. We compare DINGO with θ =
10−4, 10−1, 1, 10, 100. All iterations are in Case 1 with θ = 10−4, which implies the same plot
would occur for all θ ≤ 10−4. Case 1 and Case 3 iterations occur when θ = 10−1, 1. All iterations
under θ = 10, 100 are in Case 3.

as well as on a Gaussian mixture model and autoencoder problem. In all experiments we consider
(1) with (2), where the sets S1, S2, . . . , Sm randomly partition the index set {1, 2, . . . , n}, with each
having equal size s = n/m. Code is available at https://github.com/RixonC/DINGO.

We describe some implementation details. All sub-problem solvers are limited to 50 iterations and
do not employ preconditioning. For DINGO, we use the sub-problem solvers MINRES-QLP [22],
LSMR [23] and CG [24] when computing H†t,igt, H̃

†
t,ig̃t and (H̃T

t,iH̃t,i)
−1(Htgt), respectively. We

choose CG for the latter problem as the approximation x of (H̃T
t,iH̃t,i)

−1Htgt is guaranteed to satisfy
〈Htgt,x〉 > 0 regardless of the number of CG iterations performed. For DINGO, unless otherwise
stated, we set θ = 10−4 and φ = 10−6. We use backtracking line search for DINGO and GIANT
to select the largest step-size in {1, 2−1, 2−2, . . . , 2−50} which passes, with an Armijo line-search
parameter of 10−4. For InexactDANE, we set η = 1 and µ = 0, as in [15], and use SVRG [25] as a
local solver with the best learning rate from {10−6, 10−5, . . . , 106}. We have each iteration of AIDE
invoke one iteration of InexactDANE, with the same parameters as in the stand-alone InexactDANE
method, and use the best catalyst acceleration parameter τ ∈ {10−6, 10−5, . . . , 106}, as in [15]. For
Async-SGD and Sync-SGD we report the best learning rate from {10−6, 10−5, . . . , 106} and each
worker uses a mini-batch of size n/(5m).

DiSCO has consistent performance, regardless of the number of workers, due to the distributed PCG
algorithm. This essentially allows DiSCO to perform Newton’s method over the full dataset. This
is unnecessarily costly, in terms of communication rounds, when s is reasonably large. Thus we
see it perform comparatively poorly in Plots 1(a), 1(b), and 1(c). DiSCO outperforms GIANT and
DINGO in Plot 1(d). This is likely because the local directions (−H−1t,i gt and pt,i for GIANT and
DINGO, respectively) give poor updates as they are calculated using very small subsets of data, i.e.,
in Plot 1(d) each worker has access to only 5 data points, while d = 27648.

A significant advantage of DINGO to InexactDANE, AIDE, Async-SGD and Sync-SGD is that it is
relatively easy to tune hyper-parameters. Namely, making bad choices for ρ, θ and φ in DINGO will
give sub-optimal performance; however, it is still theoretically guaranteed to strictly decrease the
norm of the gradient. In contrast, some choices of hyper-parameters in InexactDANE, AIDE, Async-
SGD and Sync-SGD will cause divergence and these choices can be problem specific. Moreover,
these methods can be very sensitive to the chosen hyper-parameters with some being very difficult
to select. For example, the acceleration parameter τ in AIDE was found to be difficult and time
consuming to tune and the performance of AIDE was sensitive to it; notice the variation in selected τ
in Figure 1. This difficulty was also observed in [13, 15]. We found that simply choosing ρ, θ and φ
to be small, in DINGO, gave high performance. Figure 2 compares different values of θ.

5 Future Work
The following is left for future work. First, extending the analysis of DINGO to include convergence
results under inexact update. Second, finding more efficient methods of line search, for practical
implementations of DINGO, than backtracking line search. Using backtracking line search for
GIANT and DINGO requires the communication of some constant number of scalars and vectors,
respectively. Hence, for DINGO, it may transmit a large amount of data over the network, while still
only requiring two communication rounds per iteration of DINGO. Lastly, considering modifications
to DINGO that prevent convergence to a local maximum/saddle point in non-invex problems.

9

https://github.com/RixonC/DINGO

Acknowledgments

Both authors gratefully acknowledge the generous support by the Australian Research Council
(ARC) Centre of Excellence for Mathematical & Statistical Frontiers (ACEMS). Fred Roosta was
partially supported by DARPA as well as ARC through a Discovery Early Career Researcher Award
(DE180100923). Part of this work was done while Fred Roosta was visiting the Simons Institute for
the Theory of Computing.

References
[1] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to

Algorithms. Cambridge University Press, Cambridge, 2014.

[2] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The Elements of Statistical Learning,
volume 1. Springer Series in Statistics New York, NY, USA, 2001.

[3] Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, and Francis Bach. Foundations of
Machine Learning. MIT Press, Cambridge, 2012.

[4] Nan Ye, Farbod Roosta-Khorasani, and Tiangang Cui. Optimization Methods for Inverse
Problems, volume 2 of MATRIX Book Series. Springer, 2017. arXiv:1712.00154.

[5] Farbod Roosta-Khorasani, Kees van den Doel, and Uri Ascher. Stochastic algorithms for
inverse problems involving PDEs and many measurements. SIAM J. Scientific Computing,
36(5):S3–S22, 2014.

[6] Farbod Roosta-Khorasani, Kees van den Doel, and Uri Ascher. Data completion and stochastic
algorithms for PDE inversion problems with many measurements. Electronic Transactions on
Numerical Analysis, 42:177–196, 2014.

[7] Rasul Tutunov, Haitham Bou-Ammar, and Ali Jadbabaie. Distributed newton method for large-
scale consensus optimization. IEEE Transactions on Automatic Control, 64(10):3983–3994,
2019.

[8] Ron Bekkerman, Mikhail Bilenko, and John Langford. Scaling up Machine Learning: Parallel
and Distributed Approaches. Cambridge University Press, Cambridge, 2012.

[9] Yuchen Zhang and Xiao Lin. DiSCO: distributed optimization for self-concordant empirical
loss. In International Conference on Machine Learning, pages 362–370, 2015.

[10] Amir Beck. First-Order Methods in Optimization. SIAM, 2017.

[11] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Revisiting distributed
synchronous SGD. In International Conference on Learning Representations Workshop Track,
2016.

[12] Roger Penrose. A generalized inverse for matrices. Mathematical Proceedings of the Cambridge
Philosophical Society, 51(3):406–413, 1955.

[13] Shusen Wang, Farbod Roosta-Khorasani, Peng Xu, and Michael W. Mahoney. GIANT: globally
improved approximate Newton method for distributed optimization. In Advances in Neural
Information Processing Systems, pages 2338–2348, 2018.

[14] Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed optimization
using an approximate Newton-type method. In International Conference on Machine Learning,
pages 1000–1008, 2014.

[15] Sashank J. Reddi, Jakub Konečnỳ, Peter Richtárik, Barnabás Póczós, and Alex Smola. AIDE:
fast and communication efficient distributed optimization. arXiv preprint arXiv:1608.06879,
2016.

[16] Fred Roosta, Yang Liu, Peng Xu, and Michael W. Mahoney. Newton-MR: Newton’s method
without smoothness or convexity. arXiv preprint arXiv:1810.00303, 2018.

10

[17] A. Ben-Israel and B. Mond. What is invexity? The ANZIAM Journal, 28(1):1–9, 1986.

[18] Shashi K. Mishra and Giorgio Giorgi. Invexity and Optimization. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2008.

[19] Yossi Arjevani, Ohad Shamir, and Ron Shiff. Oracle complexity of second-order methods for
smooth convex optimization. Mathematical Programming, pages 1–34, 2017.

[20] John H. Hubbard and Barbara Burke Hubbard. Vector Calculus, Linear Algebra, and Differential
Forms: a Unified Approach. Matrix Editions, 5 edition, 2015.

[21] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

[22] Sou-Cheng T. Choi, Christopher C. Paige, and Michael A. Saunders. MINRES-QLP: a Krylov
subspace method for indefinite or singular symmetric systems. SIAM Journal on Scientific
Computing, 33(4):1810–1836, 2011.

[23] David Chin-Lung Fong and Michael Saunders. LSMR: an iterative algorithm for sparse least-
squares problems. SIAM Journal on Scientific Computing, 33(5):2950–2971, 2011.

[24] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer Science & Business
Media, 2006.

[25] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems, pages 315–323, 2013.

11

