
Response to Reviewer #1 We thank the reviewer for taking the time to review our submission and for their helpful1

suggestions. Regarding recovery of k-NN graphs, you are correct that a best-k strategy could be used to identify2

individual edges. The main challenge would be working out the condition for when the triangle inequality implies3

elimination. A point is eliminated if we can certify that there are k closer points due to either triangle inequalities or4

symmetry. That is ensured if for a given j, there are k distinct previous points i that satisfy the condition of Lemma 4.3.5

In the case of clustered data, as long as any cluster has at least k points, the same separation condition will apply, and6

this should give an additional factor of k in theorems 4.5 and 4.6. We will add a discussion of extending to k-NN graphs7

to the paper and correct the references to the algorithms.8

Response to Reviewer #2 We thank the reviewer for their comments on our work and all helpful suggestions for how9

to improve it. To the best of our knowledge, we are unaware of any prior work that uses noisy triplet queries to learn10

the NN-graph. In the noiseless setting, there are techniques for nearest neighbor search using triplets [1,2], which11

potentially could be modified and used as a sub-routine by an algorithm that finds the NN-graph when there is no noise.12

We will elaborate on works relevant to the noiseless triplet setting in the related work section. Regarding provided code,13

we included example code zipped in the supplementary to preserve double blindness and apologize for the confusion14

with the checklist. On the note of the metric assumption, in the supplementary, we compare against an implementation15

that does not use the triangle inequality. Compared to the method that uses triangle inequality, we see slightly worse16

initial performance but similar gains over random sampling at higher accuracy levels. We will move this discussion to17

the main body to highlight it. Thank you also for pointing out the typos. We will correct them, simplify the notation,18

and define the quantities in Lemma 3.1 before the statement of the Lemma.19

Response to Reviewer #3 We thank the reviewer for taking the time to review our work and all their suggestions,20

especially about how to clarify and contextualize the selection criteria.21

Re: quantification of entropy over NN-graphs. That is an interesting way of looking at the problem. In some problem22

instances, the number of queries made by our algorithm is within a constant factor of the minimum bits required to23

specify the answer from a list of all possible NN-graphs. There are a total of nn−1 possible NN-graphs, hence each can24

be specified using (n− 1) log n bits. If the dataset consists of hierarchical clusters as in the condition for Theorem 4.6,25

then ANNEasy finds the NN-graph after makingO(n log(n)∆−2) queries. Thus even though our noisy distance oracle is26

weaker than an oracle that answers arbitrary yes/no queries (e.g. membership queries of the form: is the true NN-graph27

present in a particular subset of all possible NN-graphs?), we are able to identify the NN-graph within a factor of the28

optimum number of queries and a multiplicative penalty to account for the noise in each answer.29

The effect of having a weaker oracle can be seen in a different problem instance where Ω(n2) distance queries are30

necessary to identify the NN-graph by any algorithm that uses the weaker oracle. For example, consider a dataset31

consisting of points xi = ei + ε ∈ Rn ∀i where ei is the unit vector with 1 in the ith component and 0 elsewhere, and ε32

is small independent zero-mean noise. Then all points are roughly at the same distance from each other, and for finding33

xi∗ we have to query Q(i, j) for all j 6= i. This is made more explicit in the discussion following Theorem 4.4.34

Re: selection criteria for Q(i, j). Our algorithm iterates over points xi in the dataset and finds xi∗ before starting35

the procedure for xi+1. In the ith round, we use a modified successive elimination algorithm for bandit best-arm36

identification to find xi∗ . It is known that this algorithm matches instance-dependent lower bounds for best-arm37

identification within log-factors [3]. In that sense, for a given xi, our algorithm optimally selects xj while querying38

Q(i, j) to find xi∗ . We will add this discussion before our reference to Algorithm 2. The triangle inequality bounds39

used for elimination are also optimal. [4] show that this Floyd-Warshall style approach yields the tightest upper and40

lower bounds on the distance matrix in the entry-wise L1 norm.41

The order in which the points {xi} are processed follows their subscript index, which is randomly chosen and fixed42

before starting the algorithm. Different orders in which {xi} are processed can affect the query complexity of our43

algorithm as discussed in the paragraph after Theorem 4.4. However it is not always possible to find an optimal order44

for {xi} from only noisy distance samples without assumptions on the metric. For example, if the oracle is noiseless,45

there are datasets where the pair (i, j) with the smallest di,j , must be queried within the first n queries to identify the46

NN-graph using the minimum number of queries. Since that cannot be ensured by an algorithm that only has access to47

information via a distance oracle, it is not possible to achieve the minimum number of queries in such examples.48
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