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Abstract

Humans and other animals are frequently near-optimal in their ability to integrate
noisy and ambiguous sensory data to form robust percepts, which are informed
both by sensory evidence and by prior experience about the causal structure of the
environment. It is hypothesized that the brain establishes these structures using
an internal model of how the observed patterns can be generated from relevant
but unobserved causes. In dynamic environments, such integration often takes the
form of postdiction, wherein later sensory evidence affects inferences about earlier
percepts. As the brain must operate in current time, without the luxury of acausal
propagation of information, how does such postdictive inference come about? Here,
we propose a general framework for neural probabilistic inference in dynamic mod-
els based on the distributed distributional code (DDC) representation of uncertainty,
naturally extending the underlying encoding to incorporate implicit probabilistic
beliefs about both present and past. We show that, as in other uses of the DDC, an
inferential model can be learned efficiently using samples from an internal model
of the world. Applied to stimuli used in the context of psychophysics experiments,
the framework provides an online and plausible mechanism for inference, including
postdictive effects.

1 Introduction

The brain must process a constant stream of noisy and ambiguous sensory signals from the envi-
ronment, making accurate and robust real-time perceptual inferences crucial for survival. Despite
the difficult and some times ill-posed nature of the problem, many behavioral experiments suggest
that humans and other animals achieve nearly Bayes-optimal performance across a range of contexts
involving noise and uncertainty: e.g., when combining noisy signals across sensory modalities [1} |14}
34]], making sensory decisions with consequences of unequal value [48]], or inferring causal structure
in the sensory environment [23]].

Real-time perception in dynamical environments, referred to as filtering, is even more challenging.
Beliefs about dynamical quantities must be continuously and rapidly updated on the basis of new
sensory input, and very often informative sensory inputs will arrive after the time of the relevant state.
Thus, perception in dynamical environments requires a combination of prediction—to ensure actions
are not delayed relative to the external world—and postdiction—to ensure that perceptual beliefs
about the past are correctly updated by subsequent sensory evidence [6, |12} |17} 20,32, 41].

Behavioral [3} |5, 24} |31} 50]] and physiological [[8, 9, |15]] findings suggest that the brain acquires
an internal model of how relevant states of the world evolve in time, and how they give rise to the
stream of sensory evidence. Recognition is then formally a process of statistical inference to form
perceptual beliefs about the trajectory of latent causes given observations in time. While this type of
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statistical computation over probability distributions is well understood mathematically and accounts
for nearly optimal perception in experiments, it remains largely unknown how the brain carries out
these computations in non-trivial but biologically relevant situations. Three key questions need to be
answered: How does the brain represent probabilistic beliefs about dynamical variables? How does
the representation facilitate computations such as filtering and postdiction? And how does the brain
learn to perform these computations?

In this work, we introduce a neurally plausible online recognition scheme that addresses these
three questions. We first review the distributed distributional code (DDC) [40, 45]]: a hypothesized
representation of uncertainty in the brain, which has been shown to facilitate efficient and accurate
computation of probabilistic beliefs over latent causes in internal models without temporal structure.
Our main contribution is to show how to extend the DDC representation, along with the associated
mechanisms for computation and learning, to achieve online inference within a dynamical state
model. In the proposed approach, each new observation is used to update beliefs about the latent state
both at the present time and in the recent history—thus implementing a form of online postdiction.

This form of recognition accounts for perceptual illusions across different modalities [41]. We
demonstrate in experiments that the proposed scheme reproduces known perceptual phenomena,
including the auditory continuity illusion [6} [30]], and positional smoothing associated with the
flash-lag effect in vision [28| |32]. We also evaluate its performance at tracking the hidden state of a
nonlinear dynamical system when receiving noisy and occluded observations.

2 Background: neural inference in static environments

Building on previous work [[19} 40, 52|, Vértes and Sahani [45] introduced the DDC Helmholtz
Machine for inference in hierarchical probabilistic generative models, providing a potential substrate
for feedforward recognition in static environments with noiseless rate neurons. We review this
approach here. See Appendix [E] for discussion and experiments on the robustness of DDC-based
inference in the presence of neuronal noise.

2.1 The distributed distributional code for uncertainty

The DDC representation of the probability distribution ¢(z) of a random variable Z is given by a
population of K, neurons whose firing rates rz are equal to the expected values of their “encoding”

(or tuning) functions {yk(z)}kK:"l under ¢(2):
rzZ k= th/k(z)]vk € {172a"'aK‘Y}' (D

As reviewed in Appendix if ¢(z) belongs to a minimal exponential family (Z discrete or
continuous) with sufficient statistics 7y(z), then the DDC 7z is the mean parameter that uniquely
specifies a distribution within the family. With a rich set of y(z), g(z) can describe a large variety of
distributions, and 7z is then a very flexible representation of uncertainty.

Many computations that depend on encoded uncertainty, in fact, require the evaluation of expected
values. The DDC rz can be used to approximate expectations with respect to Z by projecting a target
function into the span of the encoding functions «y(z) and exploiting the linearity of expectations [44,
45| |47]. That is, for a target function {(z):

Ko Koy
(z) =Y am(z)=a-v(z) = Ell))~) arzn=a-rz, 2)
k=1 k

The coefficients  can be learned by fitting the left-hand equation in (@) at a set of points {z(*)}.
This set need not follow any particular distribution, but should “cover” the region where ¢(z)I(z) has
significant mass.

2.2 Amortised inference with the DDC

Let the internal generative model of a static environment be given by the distribution p(z,x) =
p(z)p(x|z), where z is latent and x is observed. Inference or recognition with a DDC involves
finding the expectations that correspond to the posterior distribution p(z|x) for a given .

T*Z|w = Ep(z\ac)[’)’(z)} 3)



This is a deterministic quantity given . Similar to other amortized inference schemes such as
those in the Helmholtz machine [[10] and variational auto-encoder [22} [38], the posterior DDC
may be approximated using a recognition model, with the key difference that here, the output of
the recognition model takes the form of (the mean parameters of) a flexible exponential family
distribution defined by rich sufficient statistics «(z), rather than the natural parameters or moments
of a simple parametric distribution, such as a Gaussian.

Let the recognition model be h(x). A natural cost function for h would be

L(h) = Epa) |Epizia)[¥(2)] — R(@)]3 = Epa) 751 — h(2)]3. )

However, we do not have access to r*Zlm for a generic internal model. Nonetheless, Propositionin
Appendix [A.T|shows that minimizing the following expected mean squared error (EMSE)

Es(h) = ]Ep(m)Ep(ZIm)||7(z) - h’(a’)”% = Ep(z,m)H'Y(z) - h(“’)H% (5

also minimizes (@), and they share the same optimal solution. Thus, we define the DDC representation
of the approximate posterior by

rz|z :=h*(x), h*=argminL*(h) = argminL(h). (6)

Thus, minimizing (3 provides a way to train h even though the true posterior DDCs are not available.

2.3 Learning to infer

Sensory neurons encode features of an observation from the world z*) by tuning functions o ().
The mean firing rates o(z*)) = [ d(x — x*))o(z)dx can be seen as encoding a deterministic
belief by DDC with basis o (). The brain then needs to learn the mapping from o (2(*)) t0 7 75~
For biological plausibility, we restrict the recognition model to have the form h(x) = Wo (x) where
W is a weight matrix. The EMSE in (3)) can thus be minimized using the delta rule, given samples
from the internal model p:

W e [1(z1) = Wo(@®)| o @), (209,2) ~ p(z,2) )

where € is a learning rateﬂ The approximation error between 7z, computed this way and the DDC of
the exact posterior in (3) can be reduced by adapting the number and form of the tuning curves o ().
Furthermore, as shown in Theorem [I]in Appendix minimizing (3) with h(x) = Wo () also
minimizes the expected (under p(x)) Kullback-Leibler (KL) divergence KL[p(z|x)||¢(z|x)], where
q(z|x) is in the exponential family with sufficient statistics v(z) and mean parameters Wo (x). The
minimum of the KL divergence with respect to W depends on +(z), and can be further lowered by
using a richer set of v(z).

Thus, the quality of approximation provided by the distribution implied by 7z, to the true posterior

p(z|x) depends on three factors: (i) the divergence between p(z|x) and the optimal member of the
exponential family with sufficient statistic functions «(z); (ii) the difference between the optimal
mean parameters 1. and the value of W*eo (), where W* minimizes (5); and (iii) the difference

between W* and W estimated from a finite number of internal samples. Indeed, it is possible for
generalization error in the recognition model to yield values of 7z, that are infeasible as means
of ¥(z), although even in this case their values may be used to approximate expectations of other
functions.

3 Online inference in dynamic environments

3.1 A generic internal model of the dynamic world

We now turn to a dynamic environment, the main focus of this paper. Similar to the static setting in
Section 2] an internal model of the dynamic world forms the foundation for online perception and

!Throughout this paper we shall denote by ™) an observation from the external world, and by z®a sample
from the internal model of the world. Superscript * without parentheses indicates optimal function/parameter.



recognition. We assume that this internal model is stationary (time-invariant), Markovian and easy to
simulate or sample, and that the latent dynamics and observation emission take a generic form as

Zt = f(zt—la §z,t) (8a)
Ty = g(zn Cac,t)7 (8b)

where f and g are arbitrary functions that transform the conditioning variables and noise terms (. ;.
The expressions (8) imply conditional distributions p(z¢|z.1) and p(x,|z;), but in this form they
avoid narrow parametric assumptions while retaining ease of simulation. Next, we develop online
inference using DDC for the internal model described by (), thereby extending the inference from
the static hierarchical setting of [45]].

3.2 Dynamical encoding functions

Models of neural online inference usually seek to obtain the marginal p(z¢|x1.¢) [L1}|42] or, in
addition, the pairwise joint p(z.1, z¢|x1.¢) [29]. However, postdiction requires updating all the latent
variables z;.; given each new observation ;. To represent such distributions by DDC, we introduce
neurons with dynamical encoding functions 1/, a function of z;.; defined by a recurrence relationship
encapsulated in a function k: ¥, = k(¢1_1, z;). In particular, we choose

Y = k(Yi—1,2) = Up1 + [v(2);0], ||UJ2 <1, 9)

where v(z;) € RE~ is a static feature of z; as in (1), and U is a Ky, x Ky, Ky > K. random
projection matrix that has maximum singular value less than 1.0 to ensure stability. ~(z;) only
feeds into a subset of ;. The set of encoding functions ), is then capable of encoding a posterior
distribution of the history of latent states up to time ¢ through a DDC 7; := Eg(2, ,|2y.,)[%:]. If
1); depends only on z; (U = 0), then the corresponding DDC represents the conventional filtering
distribution. With a finite population size, the dependence of 1), on past states decay with duration,
limited to about K, /K, time steps for a simple delay line structure. This limit can be extended with
careful choices of U and ~(-) [7|16].

3.3 Learning to infer in dynamical models

The goal of recognition in this framework is to compute r; recursively in online, combining r,; and
x;. Extending the ideas of amortized inference and EMSE training introduced in Section[2} we use
samples from the internal model to train a recursive recognition network to compute this posterior
mean. In principle the recognition function h; should depend on time step, to minimize:

L (he;@101) = Epay e fwren) [ (@ @1e1) — i3 (10)

Unlike in (@), the expectation here is taken over a distribution conditioned on the history, which
may be difficult to obtain from samples. Furthermore, the optimal h; depends on x;.;.;. Restrict-
ing hy(xy;x1.4.1) = Wio(x,) as in Section the optimal W7 could be computed from 4
(summarizes @1..1), albeit not straightforwardly (see Appendix [B). An alternative is to explicitly
parameterize the dependence of h; on both 7, and x;, giving a time-invariant function h‘; (re1, ),
and train ¢ using a different loss

Ef((ﬁ) = EQ(zlzhmhwl:t-l) Hh;(rt'hmt) B ¢t||z (11)

where ;1 depends on x1.;.1 through recursive filtering. After training, if h‘;’)* (741, -) learns the

exact dependence on 741 so that it is the same as h;(-), then the loss in (TT)) is the expectation of the
loss in (I0) over all possible observation histories. Therefore, bounds the expected loss of
from above; minimizing (TT) ensures that (T0) is minimized for any given history, and the output of
hfﬁ* (741, x¢) approximates the desired DDC. Whereas technically ¢* should depend on ¢, for the
stationary processes we consider here the distribution of inputs 7,  and outputs ¢, is time-invariant
as t — oo; and so ¢* is approximately time-independent for sufficiently long sequences.

We consider two biologically plausible forms of hfp:

bilinear:  h8i (111, x;) = W(re1 @ o(x)), (12)
linear: hl\f\?(rt_l, xy) = Wrey; o(xy)], (13)



Algorithm 1: Learning to infer and postdict with temporal DDC

input :internal model f, g and noise source (. ¢, as in (8);
recognition model hf;,(rt_l, Tt);
target function ! on which postdictive posterior expectations are to be computed, (T4);
fixed random basis o (+) for x4, (-) for 2t and k(-,-), e.g. O;
observations from the external world x;* arriving at time ¢;
Initialize internal DDCs {ros)} _, and latent samples {zo )} from prior po(zo);
Initialize 7 for external observations, e.g. empirical mean of 1/J(z0);
Initialize recognition parameters ¢ and readout weights o
Compute recurrent feature 1/)(()3) = [*y(zés)); 0],vs € {1,2,...,5}
while Online observations come in at time t € {1,2,...} do
Updating ¢ and o
fors € {1,2,...,5} do
Simulate z° 9 = f(2Y), ist)) and z¥) = ( (#) Ciz) @i
Compute ;" = k(3. ). @: (" = hy(ry.2.). e @D or @3
end
Update ¢ to minimize sample Version of CS

bilinear (T12): AW, 1, }; > ( wt y )rt i Jok(wt( ));

fnear [ AW,y 4 3,057 — 0 [ri%: (a9
Update « to better approximate l(zt_”) with 1;, e.g. by delta rule;
Compute posterior DDC and expectation of target function

= he(rl), z.)); ()

]Eq(zt»7:t‘m1:t)[l(zt'T:t)] ~ aTrt 5

end
return:r{” and B (ze olz)[1(z, o) attimet € {1,2. .}

where ® indicates the Kronecker product. That is, h%ié maps to 4 from the outer product of r;.; and

o (x;), and h{y does so from the concatenation of the two (the bilinear update is discussed further
in Appendix [C). Both choices allow W to be trained by the biologically plausible delta rule, using

samples {(rt( zt(s) x;(*))}. The triplets can be obtained by simulating the internal model; training

samples of 7“151) are bootstrapped by applying h to the simulated 1.,

Once we infer 4, postdictive posterior expectations (with lag 7) can be found in the same way as (2).

Egzrjar[l(zer)] ®a-ry where o~ 4py = 1(24.r). (14

This approach to online learning for inference and postdiction in the DDC framework is summarized
in Algorithm|[I] The complexity of learning the recognition process scales linearly with the number
of internal samples from p and with K. ,/,QK o for the bilinear form (I2), and with Ky, (Ky + Ko ) for
the linear form (13)).

4 Experiments

We demonstrate the effectiveness of the proposed recognition method on biologically relevant
simulationsE] For each experiment, we trained the DDC filter offline until it learned the internal
model, and ran inference using fixed ¢ and . Details of the experiments are described in Appendix D]
Additional results incorporating neuronal noise are shown in Appendix

4.1 Auditory continuity illusions

In the auditory continuity illusion, the percept of a complex sound may be altered by subsequent
acoustic signals. Two tone pulses separated by a silent gap are perceived to be discontinuous;
however, when the gap is filled by sufficiently loud wide-band noise, listeners often report an illusory

2Code available at https://github.com/kevin-w-1i/ddc_ssm
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Figure 1: Modelling the auditory continuity illusion. We demonstrate postdictive DDC inference for
six different acoustic stimuli (experiments A-F). In each experiment, the top panel shows the true
amplitudes of the tone and noise; the middle panel shows the spectrogram observation; and the lower
panel shows the real-time posterior marginal probabilities of the tone q(z:.r|x1¢), 7 € {0,...,t-1}
at each time ¢ and lag 7. Each vertical stack of three small rectangles shows the estimated marginal
probability that the tone level was zero (bottom), medium (middle) or high (top) (see scale at bottom
right). Each row of stacks collects the marginal beliefs based on sensory evidence to time ¢ (left
labels). The position of the stack in the row indicates the absolute time ¢-7 to which the belief pertains
(bottom left labels). For example, the highlighted stack in A shows the marginal probability over tone
level at time step 7 (¢ = 7) about the tone level at time step 6 (t-7 = 6); in this example, the medium
level has most of the probability as expected.
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Figure 2: Modelling localization in the flash-lag effect. Black dashed line shows the true trajectory
of the moving object. Red line shows the prediction of the extrapolation model. Black solid line
with error bar shows the perceived trajectory reported by a human subject (mean + 2sem) or models
(mean = std from 100 runs). A, human data from [49]. B, the observation used in our simulation. C,
DDC recognition using 7 = 3 additional observations to postdict position at £y, = 3 time steps after
the time of the flash. D, DDC recognition without postdiction.

continuation of the tone through the noise. This illusion is reduced if the second tone begins after a
slight delay, even though the acoustic stimulus in the two cases is identical until noise offset 6} 30].

To model the essential elements of this phenomenon, we built a simple internal model for tone and
noise stimuli described in Appendix with a binary Markov chain describing the onsets and
offsets of tone and wide-band noise, and noisy observations of power in three frequency bands. We
ran six different experiments once the recognition model had learned to perform inference based on
the internal model. Figure[I]shows the marginal posterior distributions of the perceived tone level at
past times ¢-7 based on the stimulus up to time ¢, based on the DDC values r;. In Figure[TJA, when a
clear mid-level tone is presented, the model correctly identifies the level and duration of the tone,
and retains this information following tone offset. Figure[IB and C show postdictive inference. As
the noise turns on, the real-time estimate of the probability that the tone has turned off increases.
However, when the noise turns off, an immediately subsequent tone restores the belief that the tone
continued throughout the noise. By contrast, a gap between the noise and the second tone, increased
the inferred belief that the noise had turned off to near certainty.

We tested the model on three additional sound configurations. In Figure[ID, the tone has a higher
level than in Figure[TJA-C. If the noise has lower spectral density than the tone, the model believes
that the tone might have been interrupted, but retains some mild uncertainty. If this noise level is
much lower (Figure [TE), no illusory tone is perceived. These effects of tone and noise amplitude on
how likely the illusion arises are qualitatively consistent with findings in [39]. In the final experiment
(Figure[TJF), the model predicts that no continuity is perceived if the first tone is softer than the noise
but the second tone is louder, having learned from the internal model that tone level does not, in fact,
change between non-zero levels.

4.2 The flash-lag effect with direction reversal

In the previous experiment, the internal model correctly describes the statistics of the stimuli. It is
known that a mismatch of the internal model to the real world, such as when a slowness/smooth prior
meets an observation that actually moves fast [41]], can induce perceptual illusions. Here, we use
DDC recognition to model the flash-lag effect, although the same principle can also be used directly
for the cutaneous rabbit effect in somatosensation [[17]].

In the flash-lag effect, a brief flash of light is generated adjacent to the current position of an object
that has been moving steadily in the visual field. Subjects report the flash to appear behind the object
[28,[32]. One early explanation for this finding is the extrapolation model [32]: viewers extrapolate
the movement of the object and report its predicted position at the time of the flash. An alternative is
the latency difference model [36] according to which the perception of a sudden flash is delayed by
to relative to the object, and so subjects report the object at time ¢ after the flash.

However, neither explanation can account for another related finding: if the moving object suddenly
switches direction and the timing of the flash chosen at different offsets around the reversal position
(still aligned with the object), the reported object locations at the time of the flashes form a smooth
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Figure 3: Tracking in a nonlinear noisy system. A, 1-D image observation through time. B, posterior
mean and marginals estimated using a particle filter. C-G, posterior marginals decoded from DDC for
the location at time ¢-7 perceived at time .

trajectory (Figure[2JA), instead of the broken line predicted by the extrapolation model, or the simple
shift in time predicted by the latency difference model [49).

Rao et al. suggested that the lag might arise from signal propagation delays as in the latency
difference model, but the smoothing could be caused by incorporating observations during an
additional processing delay. That is, after perceiving the flash at ¢y, the brain takes time 7 to estimate
the object location. Importantly, subjects process more observations from the visible object trajectory
in this period in order to postdict its position at ty. The authors used Kalman smoothing in a linear
Gaussian internal model favoring slow movements to reproduce the behavioral results.

Here, we apply this idea of postdiction from to a more realistic internal model described in
Appendix[D.2] Briefly, the unobserved true object dynamics is linear Gaussian with additive Gaussian
noise, and the observation emission is a 1-D image showing the position at each time step with
Poisson noise (Figure [2B). After establishing a preference for slow and smooth movements, the
perceived locations derived by dynamical DDC inference trace out a curve that resembles the human
data, by taking into account observations after the perception of flash (Figure[2JC). Without postdiction
(Figure |2D), the reported location tends to overshoot, as also noted in .

4.3 Noisy and occluded tracking

When tracking a target (such as a prey) using noisy and occasionally occluded observations, it
is possible to improve estimates of the trajectory followed during the occlusion by using later
observations. Knowledge of the particular path followed by the target may be important for planning
and control [2]. To explore the potential for dynamic DDC inference in this setting, we instantiated
a system of stochastic oscillatory dynamics observed through a 1-D image with additive Gaussian



noise and occlusion (details in Appendix [D.3]). An example set of observations is shown in Figure 3A.
We ran a simple bootstrap particle filter (PF) as a benchmark Figure [3B.

The results of DDC recognition for these observations are shown in Figure 3IC-G. The marginal
posterior histograms were obtained by projecting ; onto a set of bin functions using (I4). (maximum
entropy decoding is less smooth, see Figure |5| in Appendix . We computed the R? of the
prediction of true latent locations by posterior means. The purely forward (7 = 0) posterior mean
is comparable to that of the particle filter. As the postdictive window (and so number of future
observations) 7 increases, we see not only an increase in R2, but also a reduction in uncertainty. In
the occluded regions, the posterior mass becomes more concentrated as the number of additional
observations 7 increases, particularly towards the end of occlusions. In addition, bimodality is
observed during some occluded intervals, reflecting the nonlinearity in the latent process.

5 Related work and discussion

The DDC [45]] stems from earlier proposals for neural representations of uncertainty [40, |51} |52].
Notably, the DDC for a marginal distribution (T)) is identical to the encoding scheme in [40], in
which moments of a set of tuning functions «(z) encode multivariate random variables or intensity
functions. The DDC may also be seen as a mean embedding within a finite-dimensional Hilbert
space, approaching the full kernel mean embedding [43] as the size of the population grows. Recent
developments [44,47]] focus on conditional DDCs with applications in learning hierarchical generative
models, with a relationship to the conditional mean embedding [|18]].

The work in this paper extends the DDC framework in two ways. First, the dynamic encoding
function introduced in Section [3.2] condenses information about variables at different times, and
thus facilitates online postdictive inference for a generic internal model. Second, Algorithm [I]in
Section [3.3]is a neurally plausible method for learning to infer. It allows a recognition model to
be trained using samples and DDC messages, and could be extended to other graph structures.
Although the psychophysical experiments modeled in Section @ have been explained as smoothing
on a computational level, we provides a plausible mechanism for how neural populations could
implement and learn to perform this computation in an online manner.

Other schemes besides the DDC have been proposed for the neural representation of uncertainty.
These include: sample-based representations [21] {25} |33]]; probabilistic population codes (PPCs) [4,
27]] which in their most common form have neuronal activity represent the natural parameters of
an exponential family distribution [4]; linear density codes [|13]]; and further proposals adapted to
specific inferential problems, such as filtering [[11,26]. The generative process of a realistic dynamical
environment is usually nonlinear, making postdiction or even ordinary filtering challenging. If beliefs
about latent states were represented by samples [25] 29]], then postdiction would either depend on
samples being maintained in a “buffer” to be modified by later inputs and accessed by downstream
processing; would require an exponentially large number of neurons to provide samples from latent
histories; or would require a complex distributed encoding of samples that might resemble the
dynamic DDC we propose. Natural parameters (as in the PPC) might be associated with dynamic
encoding functions as described here, but the derivation and neural implementation for the update
rule would not be straightforward. In contrast, DDC (mean parameters) can be updated using simple
operations as in (T3) and (T2)). Unlike the sample-based representation hypotheses in which posterior
samples must be drawn in real-time, sampling within the DDC learning framework is used to train
the recognition model using the unconditioned joint distribution.

Although several approximate inference methods may seem plausible, learning the appropriate
networks to implement them poses yet another challenge for the brain. In most of the frameworks
mentioned above, special neural circuits need to be wired for specific problems. Learning to infer
using DDC requires training samples from the internal model, on which the delta-rule is used to
update the recognition model. This can be done off-line and does not require true posteriors as targets.

One aspect we did not address in this paper is how the brain acquires an appropriate internal model,
and thus adapts to new problems. If an EM- or wake-sleep-like algorithm is used for adaptation,
parameters in the internal model may be updated using the posterior representations [45] learned
from the previous internal model. We expect that the postdictive (smoothed) DDC proposed here
may help to fit a more accurate model to dynamical observations, as these posteriors better capture
the correlations in the latent dynamics than a filtered posterior.
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