
Response to Reviewers. We would like to thank the reviewers for their valuable feedback. All the reviewers recognized1

that the paper made novel theoretical contributions for an important class of models for which there have been few such2

results. We appreciate and address the reviewers’ suggestions for improvement as follows.3

Reviewer 1: We are glad the reviewer found the paper to be timely and important with rigorous and novel theoretical4

results on an important class of models for problems with long-term dependencies.5

Contractive assumption: We agree that there are cases where this key assumption is limiting. Indeed, as stated in6

the paper, a URNN cannot in general be equivalent to an unstable system. However, the contractivity assumption is7

not always prohibitively limiting. For example, we are excited to address the reviewer’s concern of comparison to a8

benchmark. In Fig. 1 below, we now evaluate various models on the standard permuted MNIST task (see [1, 13, 25] of9

the paper) using validation-based early stopping. Permuted MNIST is a more widely-used benchmark for this class of10

problems than the multiplication task. Without imposing a contractivity constraint during learning, the RNN is either11

unstable or requires a slow learning rate. Imposing a contractivity constraint improves the performance. Incidentally,12

using a URNN improves the performance further. Thus, contractivity can improve learning for RNNs when models13

have sufficiently large numbers of time steps. Related results, where bounding the singular values can help, are found in14

[25] of the paper. We will include these experiments and discussion in the final paper. Thank you for raising this issue.15

Figure 1: Accuracy on Permuted MNIST task for various
models trained with RMSProp, validation-based early ter-
mination, and initial learning rate lr. (1) URNN model:
RNN model with unitary constraint; (2) ContRNN: RNN
with a contractivity constraint; (3 & 4) RNN model with
no contractivity or unitary constraint (two learning rates).
We see contractivity improves performance, and unitary
constraints improve performance further.

Other concerns: (1) The reviewer is correct that the result requires the standard sigmoid; we will state this. It can also16

be extended to other smooth activations with slope < 1. (2) The fixed points exist for the URNN since the activation17

slope is < 1. (3) The reviewer is correct that the fundamental distinction between Theorem 3.1 and the converse result18

4.1 is that the activation is smooth with a positive slope. With such activations, you can linearize the system, and the19

eigenvalues of the transition matrix become visible in the input–output mapping. In contrast, ReLUs can zero out states20

and suppress these eigenvalues. This is a key insight of the paper and a further contribution in understanding nonlinear21

systems. (4) There are several algorithms [1, 13, 16, 25, 26] for efficiently implementing the unitary constraint.22

Reviewer 2: Connection to algorithms: The reviewer is correct that the focus of the work was on theoretical properties23

of existing models and algorithms. Since there are already many works on efficient algorithms (see [1, 13, 16, 25, 26] of24

the paper) but few methods to analyze them, this direction would be more impactful. As Reviewer 3 noted, we believe25

that our theory can guide future algorithms. For example, much work (e.g., [13] and [17] in the paper) developed26

efficient parametrizations of the matrices, some covering only a subset of unitary space. The results in this paper may27

lead to better understanding and improved efficient representations. In particular, for representations, coverage of28

input–output relationships is more important than coverage of the space of transition matrices. Our results suggest that29

even more efficient representations are possible if we parametrize the set of input–output mappings.30

Generalization error: Reviewer 2 is correct that expressivity is only one component of generalization error. Theoretical31

results on generalization error are a difficult and active subject area in deep neural networks. However, some measures32

of model complexity such as in [A] are related to the spectral norm of the transition matrices. For RNNs with non-33

contractive matrices, these complexity bounds will grow exponentially with the number of time steps. In contrast, since34

unitary matrices can bound the generalization error, our updated work can also relate to generalizability. Thank you for35

raising this important issue. We have already added this valuable and new result and discussion.36

Reviewer 3: We are glad the reviewer found the work complete and self-contained, with backed-up claims and clear37

statements of what can and cannot be achieved. We agree the work goes beyond the memory capacity of orthogonal38

networks analysis by White, Lee, and Sompolinsky [B]. In particular, we develop a novel approach for formalizing and39

analyzing input–output expressiveness, which was not previously examined. Thank you for this reference; we will add40

this. We too hope that this result is important for future research of RNNs and developing training methods.41
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