
Partially Encrypted Machine Learning using Functional Encryption1

We graciously thank the reviewers for their helpful comments. We agree with the points made and will update the draft2

accordingly. We clarify some details of the article below.3

Relevance to NeurIPS. As this venue primarily addresses an ML audience, we strive to make the cryptography4

exposition more self-contained. However, with the rise of privacy concerns in the ML community, we also find it5

useful to expose ML researchers to basic tools from cryptography to help popularize certain useful privacy-preserving6

techniques for data analysis.7

Response to Reviewer 2. R2 mentions that functional encryption (FE) might not scale well and may echo R4 on this8

matter. This technique is still in its early stages, and while there exist FE schemes that are more flexible than ours,9

they are far too slow to be used in practice. In fact, this article shows that even if FE isn’t as mature as homomorphic10

encryption or multi-party computation, we can already use it to propose concrete privacy-preserving techniques.11

As our approach is focused on applications to ML and privacy, which are at the core of the article, we believe our12

contributions to be a good fit for NeurIPS. We do detail and reference many notions from cryptology. This is because the13

ML community may not be familiar with those new concepts, and we sought to introduce them carefully and rigorously.14

In return, classical notions of ML do not need to be referenced as much because they are well established. On the topic15

of the new FE scheme we introduce: it serves as a perfect pretext to explain the workings of FE schemes in general, but16

the merit of this scheme is more to accelerate computations than to bring theoretical advances in cryptology. Moreover,17

the use of adversarial ML to enhance privacy by reducing data leakage is, we believe, an interesting technique to avoid18

fully encrypted computations and bring efficient privacy-preserving techniques to the ML community.19

Response to Reviewer 3. R3 points out that the encryption scheme is not clearly detailed, except for Figure 10 in20

the appendix. We agree that this scheme should be reintegrated into the core of the article, especially since it helps21

to understand how FE schemes work in practice. Figures 2 & 3 aim to illustrate how the private and public parts of22

the networks are organized (circles and lines represent neurons and connections between neurons respectively), and to23

explain where the adversary can try to extract knowledge. This information is already present in the text of the article24

so these figures could be removed to make room for Figure 10 and more detailed explanations.25

Response to Reviewer 4. R4’s main concern is that the threat model is not clearly explained. In particular, it is not26

clear where the adversary is and when the adversarial training phase takes place. To illustrate our explanation, we27

will use the spam filtering example. Data owners are the parties who exchange emails and they don’t want to reveal28

sensitive data to the server, which is in charge of forwarding and processing the emails. The adversary is the server,29

which will try to gain access to private information. Adversarial training is done faithfully by the data owners to build a30

function q so that a plain text evaluation q(x) doesn’t reveal private information about x to the server. Once q is built,31

a decryption key dkq is provided to the server. The server may be malicious, but given dkq it can only obtain q(x)32

from an encryption Enc(x) and the choice of q makes it really hard to recover private information about x using q(x).33

Figure 2 & 3 might also be confusing: during adversarial training we don’t have a real adversary: we simulate a strong34

adversary and ensure that its inference power is negligible for private features. On the server at runtime, the adversary35

might behave differently but we obtain experimental guarantees for a large family of neural network attacks.36

Another point raised by R4 is that encryption time is longer than evaluation time and, therefore, outsourcing computation37

might not be worthwhile. This is true for simple outsourcing scenarios, but in our context such as spam filtering, we38

can’t trust the sender to perform the spam detection faithfully. As the recipient might not be online to do the filtering39

himself, we must use the intermediate server to perform this computation, but of course we don’t want this server to40

read the emails’ content. Last but not least, because of how FE works, one single encryption can be used with several41

decryption keys dkqi which means that the server could do several analyses: in addition to spam filtering, it could also42

detect if an email is urgent, contains abusive speech, etc. Note that, at encryption time, the functions for those analyses43

may not have been decided upon yet, so inference at that point may not have been an option.44

With regard to R4’s suggestion to explore other datasets, we fully agree and would have preferred to use more complex45

datasets. Besides the limited set of functions currently supported by functional encryption, our main concern is to find a46

dataset with two types of features and where the cross-distribution of features is balanced. To our knowledge, such a set47

of image data is not available but would be very beneficial to research into privacy-preserving ML.48

Finally, in Section 4.2, θ stands for all the parameters of a neural network’s section: θq for the privately-evaluated49

network, θpub for the network predicting the public features and θpriv for the adversarial network predicting the private50

features.51


