
Regret Minimization for Reinforcement Learning
with Vectorial Feedback and Complex Objectives

Wang Chi Cheung
Department of Industrial Systems Engineering and Management

National University of Singapore
isecwc@nus.edu.sg

Abstract

We consider an agent who is involved in an online Markov Decision Process, and
receives a vector of outcomes every round. The agent optimizes an aggregate
reward function on the multi-dimensional outcomes. Due to state transitions, it
is challenging to balance the contribution from each dimension for achieving
near-optimality. Contrary to the single objective case, stationary policies are
generally sub-optimal. We propose a no-regret algorithm based on the Frank-Wolfe
algorithm (Frank and Wolfe 1956, Agrawal and Devanur 2014) , UCRL2 (Jaksch
et al. 2010), as well as a crucial and novel Gradient Threshold Procedure (GTP).
GTP involves carefully delaying gradient updates, and returns a non-stationary
policy that diversifies the outcomes for optimizing the aggregate reward.

1 Introduction

Markov Decision Processes (MDPs) model sequential optimization problems with changes in the
state of the underlying environment. At each time, an agent performs an action, contingent upon the
current state. Influenced by the present state and action, the agent transits to another state and receives
some form of feedback. Typically, the feedback is a scalar reward, and the agent aims to maximize
the total reward. Nevertheless, in many settings, the feedback is a vector of multiple outcomes, and
the agent’s goal depend on each of these outcomes. Moreover, the underlying MDP model is usually
not known to the agent, and is to be learned on-the-fly. Motivated by these situations, we consider the
Complex-Objective Online MDP (CO-OMDP) problem, which maximizes an aggregate function on
the average vectorial outcome.

Solving the CO-OMDP problem requires overcoming the following subtle challenges. To maximize
the aggregate function, an agent has to balance the contributions from the outcomes’ different
components by alternating among different actions, which are generally associated with different
states. Consequently, the agent has to traverse the state space, which could require visiting sub-
optimal states that do not contribute to the maximization of the aggregate function. Altogether, the
maximization can be hindered by undesirable state transitions, which is worsened by the agent’s
model uncertainty.

We overcome the mentioned challenges by proposing TFW-UCRL2, a near-optimal online algorithm
for the CO-OMDP problem. The algorithm is built upon the Frank-Wolfe algorithm (FW) [21, 2],
UCRL2 [28], as well as our novel Gradient Threshold Procedure (GTP). FW balances the objectives
by scalarizing the outcomes, and UCRL2 solves scalarized online MDP problems under model
uncertainty. However, FW and UCRL2 are not enough for overcoming the challenges in balancing the
outcomes while avoiding sub-optimal states. GTP overcomes the challenges by judiciously delaying
the gradient updates in FW. The procedure approximately maintains the balancing effect by FW, while
limits the visits to sub-optimal states by switching among different stationary policies adaptively and
infrequently, despite the model uncertainty.
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Related Literature. The CO-OMDP problem is closely related to the Bandits with global concave
Rewards problem (BwR) [2] and the Scalar-Obejctive Online MDPs problem (SO-OMDP) [28].
BwR concerns maximizing aggregate functions on vectorial feedback in stochastic bandit settings.
BwR is first studied by [2], who solve BwR by a synergy of online convex optimization and upper
confidence bound (UCB) algorithms. Subsequently, BwR is studied under various stochastic bandit
settings and reward functions [4, 17, 14]. BwR is closely related to Bandit with Knapsacks problem
(BwK), which models stochastic bandit problems with resource constraints. BwK is first studied
by [10], and is subsequently studied in various settings [2, 11, 3, 20]. The models for BwR and
BwK assume i.i.d. outcomes across time, while in an MDP setting the outcome distribution changes
endogenously according to the state transition.

The adversarial BwK problem is recently studied in [27]. Among other results, they show that no
online algorithm can achieve an expected value of Ω(1/ log T ) times the offline optimum, where T is
the number of time steps. Our positive results on CO-OMDPs walk a fine line between the negative
results for adversarial BwK and the positive results for stochastic BwR and BwK. Online optimization
problems with global reward functions are studied in adversarial settings with full feedback [19, 9].

The SO-OMDP problem is first studied by [8, 28] for communicating MDPs. Subsequently, the
problem is studied under the more general cases of weakly communicating MDPs [13, 23] and
non-communicating MDPs [22]. Posterior sampling algorithms for the SO-OMDP problem are
proposed and analyzed [5, 37]. The SO-OMDP problem is also studied under certain mixing time
assumptions on all stationary policies [36]. The SO-OMDP problem assumes scalar rewards, but do
not incorporate multi-objective optimization. For a review on MDPs, please consult [38, 15].

Reinforcement Learning (RL) with vectorial feedback and aggregate functions are studied in the
discounted-reward setting [24, 6, 12, 43, 1, 25, 42, 29, 30, 33] and the average-reward [6, 32, 41, 40]
setting. We study the latter with an online model under model uncertainty. Our work shows non-
asymptotic convergence to the optimum, which differs from [6, 32] who show asymptotic convergence.
Tarbouriech and Lazaric [41] study an online model for state space exploration, and achieve a non-
asymptotic convergence to the optimum. In addition to the choice of the aggregate functions, our work
differs from [41] in two aspects. First, the transition kernel is assumed to be known in [41], whereas
the kernel is not known in our model. Second, the reachability assumption of unichain MDPs is
made in [41], while we make the much weaker assumption of communicating MDPs. More recently,
online MDPs with adversarially chosen aggregate functions are studied by [40]. The model in [40] is
episodic, where the state is reset to a fixed state at the end of an episode (involving a fixed number
of steps). In contrast, our setting does not involve any state reset. In [40] the aggregate function is
applied only on the trajectory in each episode, whereas in our setting the aggregate function is applied
on the trajectory across the whole horizon. Finally, we point out that a substantial generalization of
the current paper has been put forth in [18].

In the discounted reward setting, multi-objective optimization are studied in [24, 6, 12, 43]. Many
recent works study the discounted-reward setting with resource constraints [1, 42, 29, 33]. Numerous
recent research works focus on state space exploration problems [25, 30] in the discounted-reward
setting. Constrained MDPs are reviewed in [6], and multi-objective RL is surveyed in [39, 31].

2 Problem Definition of CO-OMDP

A CO-OMDP instance is specified as (S, s1,A, p,V, g). The set S is a finite state space, and s1 ∈ S
is the starting state. The collection A = {As}s∈S contains a finite set of actions As for each state s.
We say (s, a) is a state-action pair iff s ∈ S, a ∈ As. The collections p = {p(·|s, a)}s∈S,a∈As is the
transition kernel, and the collection V = {V(s, a)}s∈S,a∈As governs the vectorial outcomes. When
the agent chooses action a ∈ As at state s, her subsequent state s′ is distributed as p(·|s, a) ∈ ∆S .
She receives a stochastic vectorial outcome V (s, a) ∈ [0, 1]K , distributed as V(s, a), and has
mean E[V (s, a)] = v(s, a) = (vk(s, a))Kk=1. We emphasize that s′, V1(s, a), . . . , VK(s, a) can be
arbitrarily correlated. We focus on the following reward function g : [0, 1]K → R≥0, which is
parameterized by L0 ∈ R≥0, L1, . . . , LK ∈ R, and a convex compact set U ⊆ [0, 1]K :

g(w) :=
1

K
·

[
K∑
k=1

Lkwk −
L0

2
min
u∈U

{
K∑
k=1

(wk − uk)2

}]
. (1)

The function g is concave (see Appendix B.1), and is to be maximized.
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Dynamics. An agent, who faces an CO-OMDP instance M = (S, s1,A, p,V, g), starts at state
s1 ∈ S. At time t, three events happen. First, the agent observes his current state st. Second,
she takes an action at ∈ Ast . Third, she transits to another state st+1 ∼ p(·|st, at), and receives
the vectorial outocme Vt(st, at) ∼ V(st, at). Both st+1 and Vt(st, at) are observed by the agent.
The whole dynamics result in a controlled Markov process {st, at, Vt(st, at)}∞t=1. Conditioned on
(st, at), the random variable pair (st+1, Vt(st, at)) is independent of Ht−1.

In the second event, the choice of at is based on a non-anticipatory policy. The choice only depends
on the current state st and the previous observations Ht−1 := {sq, aq, Vq(sq, aq)}t−1

q=1. When at only
depends on st, but not on Ht−1, the corresponding non-anticipatory policy is said to be stationary.

Objective. The CO-OMDP instanceM is latent. While the agent knows S, s1,A, g, she does not
know v, p. To state the objective, define V̄1:t := 1

t

∑t
q=1 Vq(sq, aq). For any horizon T not known a

priori, the agent aims to maximize g(V̄1:T ), by selecting actions a1, . . . , aT with a non-anticipatory
policy. Denote V̄1:T,k as the k-component of the time average vector V̄1:T . CO-OMDPs capture the
following problems:

Multi-Objective Optimization. Consider maximizing the scalar function
∑K
k=1 LkV̄1:T,k, while

trying to meet the Key Performance Index (KPI) requirement V̄1:T,k ≥ ρk for each k ∈ {1, . . . ,K}.
The vector ρ = (ρk)Kk=1 ∈ [0, 1]K comprises the pre-determined KPI targets for the K objectives
{V̄1:T,k}Kk=1. The task can be modelled as a CO-OMDP problem, by setting L0 ≥ 0, and U = {w :
wk ≥ ρk ∀1 ≤ k ≤ K}. By putting ρk = 1 and Lk = 0 for each k, any maximizer of g(V̄1:T ) is
Pareto-optimal for the simultaneous maximization of V̄1:T,1, . . . , V̄1:T,K . The Pareto optimality still
holds when we replace the inequality wk ≥ 1 with wk ≥ ρUB

k , for any ρUB
k that bounds the average

V̄1:T,k for any policy from above.

State Space Exploration. Consider visiting each state s with empirical frequency as close as possible
to a target frequency %s in T time steps, where % = {%s}s∈S ∈ ∆S . The task can be phrased as a
CO-OMDP problem. For each state-action pair (s, a), we define V (s, a) ∈ {0, 1}S as the standard
basis vector for s in RS , with value 1 at the s-coordinate and value 0 at the others. In addition, set
L0 = 1, L1 = . . . = LK = 0, U = {%}. Maximizing g(V̄1:T ) is equivalent to minimizing the mean
squared error

∑
s∈S(%s −

∑T
t=1 1st=s/T )2. To generalize, we can consider visiting certain subsets

(not necessarily disjoint or covering) of S with some target frequencies.

Finally, when we specialize the CO-OMDP problem with L0 = 0, we recover the SO-OMDP problem
[28]. If we specialize with S = {s}, we recover the BwR problem [2] with reward function g.

Reachability ofM. To learn the latent model, the agent has to travel among states. For any s, s′ ∈ S
and any stationary policy π, we define the travel time from s to s′ under π as the random variable
Λ(s′|π, s) := min{t : st+1 = s′, s1 = s, sτ+1 ∼ p(·|sτ , π(sτ )) ∀τ}. We assume the following:
Assumption 2.1. The latent CO-OMDP instanceM is communicating, that is, the quantity D :=
maxs,s′∈S minstationary π E[Λ(s′|π, s)] is finite. We call D the diameter ofM.

The same reachability assumption is made in [28]. Since the instanceM is latent, the corresponding
diameter D is also not known to the agent. Assumption 2.1 is weaker than the unichain assumption
[6, 32, 41], where every stationary policy induces a single recurrent class on S.

Offline Benchmark and Regret. To measure the effectiveness of a policy, we rephrase the agent’s
objective as the minimization of regret: Reg(T ) := opt(PM) − g(V̄1:T ). The offline benchmark
opt(PM) is the optimum of the convex optimization problem (P(g)), which serves as a fluid relaxation
[38, 6] to the CO-OMDP problem.

(PM): max
x

g

 ∑
s∈S,a∈As

v(s, a)x(s, a)


s.t.

∑
a∈As

x(s, a) =
∑

s′∈S,a′∈As′

p(s|s′, a′)x(s′, a′) ∀s ∈ S (2a)

∑
s∈S,a∈As

x(s, a) = 1 (2b)

x(s, a) ≥ 0 ∀s ∈ S, a ∈ As (2c)
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In (PM), the variables {x(s, a)}s,a form a probability distribution over the state-action pairs. The
set of constraints (2a) requires the rates of transiting into and out of each state s to be equal.

We aim to design a non-anticipatory policy with an anytime regret bound Reg(T ) = O(1/Tα) for
some α > 0. That is, for all δ > 0, there exist constants c, C (which only depend on K,S,A, g, δ),
so that the policy satisfies Reg(T ) ≤ c/Tα for all T ≥ C with probability at least 1− δ. Achieving
Reg(T ) = O(1/Tα) for some α > 0 implies achieving near-optimality, since opt(PM) differs from
the expected optimum only by an additive error of O(L̄D/T ), by a similar reasoning to [28] (see
[18] for details).

3 Challenges of CO-OMDP, and Algorithm TFW-UCRL2

We first discuss some unique challenges in the CO-OMDP, then present and discuss TFW-UCRL2 in
Algorithm 1. Finally, we present the regret bound for TFW-UCRL2.

Challenges. We begin by describing some unique challenges in CO-OMDP hinted in the Introduction.
Consider the three instances in Fig 1. An arc from state s to s′ represents action a with p(s′|s, a) = 1,
and is labelled with its outcome V (s, a), which is deterministic. Let’s focus on Figs 1a, 1b. The
common objective requires balancing the 2-dimensional outcomes by visiting the left loop (ll) and
the right loop (rl) with frequency 0.5 each. In Fig 1a, the agent incurs a O(1/T ) regret by choosing
ll once, then rl once, then ll once, and so on.

s0
(

1
0

)(
0
1

)
(a) BwR

s0 s1s2

(
1
0

)(
0
0

)
(

0
0

)(
0
1

) (
0
0

)
(

0
0

)

(b) CO-OMDP

s0 s1s2
01

1

1

0

0

(c) SO-OMDP

Figure 1: Instances, with opt. actions bolded. Insts (1a, 1b) have g(w) = −
∑2
k=1(wk − 0.5)2/2.

However, if the agent visits ll once, then rl once, then ll once, and so on in Fig 1b, she suffers
Reg(T ) = Ω(1). Indeed, she spends two third of the time at the actions with the ‘sub-optimal’ state
s0, resulting in V̄1:T ≈ (1/6, 1/6)> for large T . While the agent should visit each loop multiple times
before going to state s0 and then another loop, the length of stay at each loop is not a priori clear.
Our Gradient Threshold Procedure (GTP) provides a principled way for determining these lengths,
and GTP generalizes to other communicating MDPs. Finally, such a subtlety in state transitions does
not occur in Fig 1c or generally in communicating SO-OMDP instances, where the agent achieves
near-optimality by remaining in a single recurrent class.

TFW-UCRL2 runs in episodes. Episode m starts at the beginning of time τ(m) and ends at the end
of time τ(m+ 1)− 1. During episode m, the agent follows a certain stationary policy π̃m. The start
times {τ(m)}∞m=1 and policies {π̃m}∞m=1 are decided adaptively. We maintain confidence regions
Hv
m = {Hv

m(s, a)}s,a, Hp
m = {Hp

m(s, a)}s,a on the latent v, p across episodes, by first defining

Nm(s, a) =

τ(m)−1∑
t=1

1(st,at)=(s,a), N+
m(s, a) = max{1, Nm(s, a)}. (3)

The estimates and confidence regions for v are:

v̂m(s, a) :=
1

N+
m(s, a)

τ(m)−1∑
t=1

Vt(st, at)1(st,at)=(s,a), radvm,k(s, a) = Õ

(√
v̂m,k(s, a)

N+
m(s, a)

)
,

Hv
m(s, a) :=

{
v̄ ∈ [0, 1]K : |v̄k − v̂m,k(s, a)| ≤ radvm,k(s, a) ∀k ∈ [K]

}
. (4)

The estimates and confidence regions for p are:

p̂m(s′|s, a) :=
1

N+
m(s, a)

τ(m)−1∑
t=1

1(st,at,st+1)=(s,a,s′), radpm(s′|s, a) = Õ

(√
p̂m(s′|s, a)

N+
m(s, a)

)
,

Hp
m(s, a) :=

{
p̄ ∈ ∆S : |p̄(s′)− p̂m(s′|s, a)| ≤ radpm(s′|s, a) ∀s′ ∈ S

}
. (5)
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We provide the complete expressions of radvm,k(s, a), radpm(s′|s, a) in Appendix B.2. We now explain
the three vital components of TFW-UCRL2: (i) Frank-Wolfe (FW) [21], which has been adapted in
related research on BwR [2, 14] and exploration problems in MDPs [25, 41], (ii) Extended Value
Iteration (EVI) [28], (iii) our crucial and novel Gradient Threshold Procedure (GTP).

Frank Wolfe (FW) [21] provides a way to balance the vectorial outcome at each time step t. We
denote ‖ · ‖2 as the Euclidean norm, and define ΠU (w) = argminu∈U‖u − w‖2. At time t, FW
scalarizes the outcome in eqn (6) with the gradient

∇g(V̄1:t−1) =
1

K

[
(L1, . . . , LK)> − L0(V̄1:t−1 −ΠU (V̄1:t−1))

]
.

To gain intuitions, consider State Space Exploration with target frequency %, where L0 =

1, L1, . . . , LK = 0, U = {%}. The s-component of ∇g(V̄1:t−1) is (%s −
∑t−1
q=1 1sq=s/(t − 1))/K,

which encourages visiting state s when its empirical frequency is below the target %s. Sim-
ilarly, for Multi-Objective Optimization with KPI target ρ, the k-component of ∇g(V̄1:t−1) is
(Lk + L0 max{ρk − V̄1:t−1,k, 0})/K. The agent is motivated to focus on the kth objective when
V̄1:t−1,k ≤ ρk.

Extended Value Iteration (EVI) [28] solves for an optimistic stationary policy for an SO-OMDP
problem, when v, p are not known. We extract EVI from [28] in Appendix B.3. Ideally, at the start
of each episode m, the agent wishes to compute the optimal policy under the scalarized reward
∇g(V̄1:τ(m)−1)>v and transition kernel p. Since v, p are uncertain, the agent uses EVI [28] to
compute the stationary policy π̃m in (7), which is optimal for the optimistic choices of ṽm ∈ Hv

m
and p̃m ∈ Hp

m. By optimistic choices ṽm, p̃m, we mean that the resulting single objective MDP
with scalar rewards r̃m = {r̃m(s, a)}s,a, r̃m(s, a) = ∇g(V̄1:τ(m)−1)>ṽm(s, a) and transition kernel
p̃ has the highest long term average reward, among all v̄m ∈ Hv

m, p̄m ∈ Hp
m. The last argument

1/
√
τ(m) of EVI is an additive error term allowed for EVI. By [28], EVI converges to a stationary

policy π̃m in finite time when Hp
m contains the transition kernel for a communicating MDP.

Algorithm 1 TFW-UCRL2 on g

1: Inputs: Parameter δ ∈ (0, 1), gradient threshold Q ≥ 0 (default Q = L̄/
√
K), initial state s1.

2: Initialize t = 1
3: for Episode m = 1, 2, . . . do
4: Set τ(m) = t, and initialize N+

m(s, a) according to Eq (3) for each s ∈ S, a ∈ As.
5: Compute the confidence regions Hv

m, Hp
m respectively for v, p, according to Eqs (4, 5).

6: Compute the optimistic reward r̃m = {r̃m(s, a)}s∈S,a∈As
:

r̃m(s, a) = max
v̄(s,a)∈Hv

m(s,a)
∇g(V̄1:τ(m)−1)>v̄(s, a). (6)

7: Compute a (1/
√
τ(m))-optimal optimistic policy π̃m:

π̃m,← EVI(r̃m, Hp
m; 1/

√
τ(m)). (7)

8: Initialize νm(s, a) = 0 for each s, a, θref = θτ(m) = ∇g(V̄1:(τ(m)−1)), Ψ = 0.
9: while Ψ ≤ Q and νm(st, π̃m(st)) < N+

m(st, π̃m(st)) do
10: Choose action at = π̃m(st).
11: Observe the outcomes Vt(st, at) and the next state st+1.
12: Compute gradient θt+1 = ∇g(V̄t). . Frank-Wolfe
13: Update Ψ← Ψ + ‖θt+1 − θref‖2.
14: Update νm(st, at)← νm(st, at) + 1.
15: Update t← t+ 1.
16: end while
17: end for

The Gradient Threshold Procedure (GTP) maintains FW’s balancing effect on the vectorial out-
comes, while overcoming the challenges in avoiding sub-optimal actions. GTP maintains a distance
measure Ψ on the gradients generated by FW during each episode, and starts the next episode if the
measure Ψ exceeds a threshold Q. A small Q makes the agent alternate among different stationary
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policies frequently and balances the outcomes, while a large Q facilitates learning and avoids visiting
sub-optimal states. A properly tuned Q paths the way to solve the CO-OMDP problem.

A direct combination of FW and EVI corresponds to TFW-UCRL2 with Q = 0, which silences
GTP and incurs Reg(T ) = Ω(1) on the instance in Fig 1b. Let’s assume start state to be s0, the
complete knowledge of v, p, and consistent tie breaking. The agent would go to s2, take ll once,
then go to s1, take rl once, then back to s2 and take ll once, and so on (the same dynamics as in
Challenges). Indeed, under the pure effect of FW, the agent is obsessed with balancing the outcomes.
Once V̄1:t−1,1 > V̄1:t−1,2, the scalarized reward for (s2, ll) is higher than that for (s1, rl), and she
travels to s2. Similarly, once V̄1:t−1,1 ≤ V̄1:t−1,2, she travels to s1. In this process, she is oblivious to
the fact that constantly alternating between ll, rl penalizes her objective by constantly visiting s0.

In contrast, applying TFW-UCRL2 with 0 < Q <∞ leads us to near-optimality. For example, with
Q = L̄/

√
K, the agent follows this interesting trajectory: Suppose the agent is at s0 at time t. If

V̄1:t−1,1 > V̄1:t−1,2, then she would travel to s2, take ll for Θ(
√
Qt) times, then head back to s0.

Otherwise, she would travel to s1, take rl for Θ(
√
Qt) times, then head back to s0. Altogether, for

every t we have V̄1:t−1,1, V̄1:t−1,2 = 0.5 ± O(
√
Q/t), and the agent only visits s0 for O(

√
t/Q)

times, leading to the anytime regret bound Reg(T ) = O((
√
Q+

√
1/Q)/

√
T ).

Finally, in another extreme case of Q = ∞, in fact we have Reg(T ) = Ω(1/SA log T ). Indeed,
the condition Ψ ≤ Q is always satisfied. By applying [28], the agent alternates among ll, rl only
O(SA log T ) times in T time steps. This leads to an imbalance in the outcomes, since the agent
could stay at a loop for Ω(T/SA log T ) time, and results in Reg(T ) = Ω(1/SA log T ).

Main Results. We establish regret bounds for TFW-UCRL2. Denote S := |S|, A := 1
S

∑
s∈S |As|,

so SA is the number of state-action pairs. Denote Γ := maxs∈S,a∈As
‖p(·|s, a)‖0, which is the

maximum number of states from which a state-action pair can transit to. We employ the Õ(·) notation,
which hides additive terms which scales with log(T/δ)/T as well as multiplicative log(T/δ) factors.

Theorem 3.1. Consider TFW-UCRL2 with gradient threshold Q > 0, applied on a communicating
CO-OMDP instanceM with diameter D. With probability 1−O(δ), we have anytime regret bound

Reg(T ) = Õ
([√

L0Q+
√
L0L̄D/

√
KQ

]
K1/4

/√
T
)

+ Õ
(
L̄(D + 1)

√
ΓSA

/√
T
)
.

In particular, setting Q = L̄/
√
K gives Reg(T ) = Õ(L̄(D + 1)

√
ΓSA/

√
T ).

Let’s focus on the first Õ(·) term in the bound. The Õ(
√
Q) term represents the regret due to

the delay in gradient updates by GTP. The Õ(1/
√
Q) term represents the regret due to (a) the

interference of GTP with the learning of v, p, (b) the switches among stationary policies, which
could require visiting sub-optimal states. The second Õ(·) term is the regret due to the simultaneous
exploration-exploitation by EVI.

By specializing L0 = 0, L1, . . . , LK = 1, TFW-UCRL2 incurs Reg(T ) = Õ(D
√

ΓSA/
√
T )

on SO-OMDP, which essentially matches [28]1. By specializing S = {s}, TFW-UCRL2 incurs
Reg(T ) = Õ(L̄

√
A/
√
T ), which matches [2] on BwR on g. While our regret bounds match [28, 2]

in those special cases, the design and analysis of TFW-UCRL2 require novel ideas that depart from
[28, 2]. We design the novel GTP for handling state transitions. In the upcoming analysis, we show
that GTP is streamlined so that it achieves our regret bounds, without excessively interfering the
balancing by FW and the learning by EVI. Finally, note that TFW-UCRL2 is a non-stationary policy
that diversifies across different stationary policies across time. Interestingly, non-stationary policy is
necessary achieving near-optimality, even when the model parameters are unchanging:
Claim 3.2. Every stationary policy incurs an Ω(1) anytime regret on the instance in Fig 1b.

The Claim, proved in Appendix B.4, illustrates a profound difference between communicating
CO-OMDPs and unichain CO-OMDPs, see Appendix B.4.

Max E[g(V̄1:T )] vs max g(E[V̄1:T ]). Our objective is to maximize g(V̄1:T ) (also leads to max
E[g(V̄1:T )]), which crucially different from maximizing g(E[V̄1:T ]). Now, for any policy, it holds that

1Jaksch et al. [28] achieve the regret bound Õ(DS
√
A/

√
T ). The factor of S is improved to

√
ΓS, by

applying an empirical Bernstein inequality[7] instead of the Hoeffding inequality, as used in [23].
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E[g(V̄1:T )] ≤ g(E[V̄1:T ]) ≤ opt(PM) +O(L̄D/T ). The second inequality (formally proved in [18])
is demonstrated by showing that, for any policy, the empirical frequency of visiting each state-action
pair is “nearly” a feasible solution to (PM), with the O(L̄D/T ) term capturing the error due to the
near feasibility. Under TFW-UCRL2, we know that E[g(V̄1:T )] tends to opt(PM) as T grows. Hence
we also have g(E[V̄1:T ]) tending to opt(PM) as T grows.

Nevertheless, the converse is not true. Consider the instance in Fig 1b again, where the starting state
is s0. Consider the following policy: At the start, the agent transits to either s1 or s2 with probability
1/2. After that, the agent loops at that state indefinitely. It is clear that Pr[V̄1:T = (1− 1/T, 0)>] =
Pr[V̄1:T = (0, 1− 1/T )>] = 1/2. On the one hand, we have g(E[V̄1:T ]) = −1/(8T 2), which tends
to opt(PM) = 0 as T → ∞. On the other hand, we have E[g(V̄1:T )] = −1/8 + O(1/T ), which
does not tend to opt(PM) = 0 as T → ∞. Altogether, solving max g(E[V̄1:T ]) to near-optimality
does not lead to the near-optimality for max E[g(V̄1:T )].

To this end, it is worth mentioning that the related works in the discounted settings [24, 6, 12, 43,
1, 25, 42, 29, 30, 33] focus on maximizing ḡ(E[

∑∞
t=1 γ

tVt(st, at)]), where ḡ is a certain non-linear
function and γ ∈ (0, 1) is the discounted factor. We envision that our technique could be useful for
maximizing E[ḡ(

∑∞
t=1 γ

tVt(st, at))] instead of maximizing ḡ(E[
∑∞
t=1 γ

tVt(st, at)]).

Generalizations. While Theorem 3.1 concerns the specialized aggregate function (1), Cheung [18]
recently generalizes the algorithmic framework to any Lipschitz continuous and smooth function.
By adapting to the online mirror descent algorithm [34], Cheung [18] proposes another algorithm
that results in O(1/T 3) regret (We hide the dependence onM) for Lipschitz continuous concave
aggregate functions that are not necessarily smooth.

4 Analysis of TFW-UCRL2

In this Section, we prove Theorem 3.1. To start, we consider events Ev, Ep and Lemma 4.1, which is
proved in Appendix C.1. The shorthand ∀m, s, a means ‘for all m ∈ N, s ∈ S, a ∈ As’.

Ev := {v(s, a) ∈ Hv
m(s, a) ∀m, s, a} , Ep := {p(·|s, a) ∈ Hp

m(s, a) ∀m, s, a} .

Lemma 4.1. It holds that P[Ev] ≥ 1− δ/2,P[Ep] ≥ 1− δ/2.

We decompose Reg(T ) with the analytical tools on FW [21, 16], which is also adapted in [2, 14, 25,
41]. Define v∗ :=

∑
s,a v(s, a)x∗(s, a), where x∗ is an optimal solution of (PM). We have

g(V̄1:t) ≥ g(V̄1:t−1) +∇g(V̄1:t−1)>[V̄1:t − V̄1:t−1]− L0

K
‖V̄1:t − V̄1:t−1‖22 (8)

=g(V̄1:t−1) +
1

t
∇g(V̄1:t−1)>[Vt(st, at)− V̄1:t−1]− L0

Kt2
‖Vt(st, at)− V̄1:t−1‖22

≥g(V̄1:t−1) +
1

t
∇g(V̄1:t−1)>[v∗ − V̄1:t−1] +

1

t
∇g(V̄1:t−1)>[Vt(st, at)− v∗]−

L0

t2

≥g(V̄1:t−1) +
1

t

[
opt(PM)− g(V̄1:t−1)

]
+

1

t
∇g(V̄1:t−1)>[Vt(st, at)− v∗]−

L0

t2
. (9)

Step (8) is by the property that g is (2L0/K)-smooth w.r.t. ‖ ·‖2 on the domain [0, 1]K (see Appendix
B.1). Rearranging (9) gives

t · Reg(t) ≤ (t− 1) · Reg(t− 1) +
L0

t
+∇g(V̄1:t−1)>[v∗ − Vt(st, at)]. (10)

Apply (10) recursively for t = T, . . . , 1, we obtain (recall that θt = ∇g(V̄1:t−1)):

Reg(T ) ≤ 2L0 log T

T
+

1

T

T∑
t=1

θ>t [v∗ − Vt(st, at)]. (11)

The main analysis is now on the second term in (11), which requires novel technical analysis regarding
the dynamics of the gradient threshold procedure. We start with the following bound.
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Proposition 4.2. Consider an execution of TFW-UCRL2 on a communicating instance with diameter
D. For each T ∈ N, suppose that there is a deterministic constantM(T ) s.t. Pr[m(T ) ≤M(T )] = 1.
Conditioned on events Ev, Ep, with probability at least 1−O(δ) we have

T∑
t=1

θ>t [v∗ − Vt(st, at)] = Õ
(

(Q
√
K + L̄D)M(T )

)
+ Õ

(
L̄(D + 1)

√
ΓSAT

)
.

Proposition 4.2 bounds two sources of error: (i) the error due to GTP, (ii) the estimation errors
associated with Hv

m, H
p
m and EVI. Error (ii) can be upper bounded by the machinery in [28]. Error (i)

concerns the following discrepancy. For each time t in episode m, the action at = π̃m(st) is chosen
based on policy π̃m, which involves the scalarization by θτ(m). However, ideally the action at time t
should balance the current vectorial outcomes by the scalarization with θt. The Proposition bounds
error (i) by charging the discrepancy to the threshold Q and the upper bound M(T ). To complete the
proof of bounding Reg(T ), we establish a bound M(T ) small enough to achieve Theorem 3.1.
Lemma 4.3. Consider an execution of TFW-UCRL2 with gradient threshold Q > 0. With certainty,

for every T ∈ N we have m(T ) ≤M(T ) = Õ(
√
L0T/(

√
KQ)).

The Lemma bounds the error of GTP in balancing the outcomes. Under FW, the gradients change at
a rate O(1/t), which is slow enough for the agent to judiciously delay the gradient updates without
sacrificing their balancing effect too much. This opens the door to avoid visiting sub-optimal states
too frequently.

Sketch Proof of Lemma 4.3. First, observe that {1, . . . ,m(T )} is the union of
MΨ(T ) := {m ∈ N : τ(m) ≤ T , episode m+ 1 is started due to Ψ ≥ Q} ,
Mν(T ) := {m ∈ N : τ(m) ≤ T , episode m+ 1 is started due to

νm(st, π̃m(st)) ≥ N+
m(st, π̃m(st)) for some t ≥ τ(m)

}
,

To prove the Lemma, it suffices to show that:

|MΨ(T )| ≤MΨ(T ) := 1 + (
√
KQ/2L0) + 4

√
2L0T/(

√
KQ), (12)

|Mν(T )| ≤Mν(T ) := SA(1 + log2 T ). (13)
The bound (13) follows from [28]. Thus, we focus on showing bound (12). Let’s expressMΨ(T ) =
{m1,m2, . . . ,mnΨ}, where m1 < m2 < . . . < mnΨ . We also define m0 = 0. We focus on an
episode index mj with j ≥ 1, and consider for each t ∈ {τ(mj) + 1, . . . , τ(mj + 1)} the difference
‖θt − θτ(mj)‖2. In the following, we argue that the gradients under FW changes slowly:

‖θt − θτ(mj)‖2 = ‖∇g(V1:t−1)−∇g(V1:τ(mj)−1)‖2

≤L0

K

∥∥∥∥∥∥ 1

t− 1

t−1∑
q=1

Vq(sq, aq)−
1

τ(mj)− 1

τ(mj)−1∑
q=1

Vq(sq, aq)

∥∥∥∥∥∥
2

=
L0

K
· t− τ(mj)

t− 1
·

∥∥∥∥∥∥ 1

t− τ(mj)

t−1∑
q=τ(mj)

Vq(sq, aq)−
1

τ(mj)− 1

τ(mj)−1∑
q=1

Vq(sq, aq)

∥∥∥∥∥∥
2

≤ 2L0√
K
· t− τ(mj)

t− 1
≤ 2L0√

K
· t− τ(mj)

τ(mj)
.

Since mj ∈MΨ(T ), we know that
∑τ(mj+1)

t=τ(mj) ‖θt − θτ(mj)‖2 > Q, which means

(τ(mj + 1)− τ(mj−1 + 1))2

τ(mj−1 + 1)
≥ (τ(mj + 1)− τ(mj))

2

τ(mj)
≥
τ(mj+1)∑
t=τ(mj)

t− τ(mj)

τ(mj)
>

√
KQ

2L0
, (14)

Inequality (14) says that, since gradients change slowly, the time indexes {τ(mj + 1)}nΨ
j=1 have to be

far apart. Thus, nΨ can be bounded from above. Indeed, by some technical arguments (see Appendix
C.2), inequality (14) turns out to imply τ(mdQ′e+j+1) ≥ Q′(j−1)2/16, whereQ′ =

√
KQ/(2L0).

With j = nΨ − 1, we get Q′(nΨ − 2)2/16 ≤ τ(mdQ′e+nΨ−1 + 1) ≤ T , leading to (12).

Combining the bound (11), Proposition 4.2 and Lemma 4.3, we have proved Theorem 3.1.
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5 Numerical Experiments

We empirically evaluate TFW-UCRL2 on State Space Exploration on 3 instances: Small, Medium,
Large. These instances are detailed in Appendix A.1. In Fig 2a, TFW-UCRL2 is simulated on each
instance and each Q for 25 times. In Figs 2b, 2c, TFW-UCRL2 is simulated on each instance and
Q = L̄/

√
K for 25 times. Each curve plots the averages across the 25 trials, and each error bar

quantifies the ± standard deviation error region. Fig 2a depicts Reg(105) under different Qs. While
extremely small or large Q leads to a large regret, TFW-UCRL2 seems robust in the middle range of
Q. Our default Q = L̄/

√
K (green dot) is motivated by our analysis, and it does not optimize the

empirical performance. Tuning Q online is an interesting research direction.

10−2 10−1 100 101 102

Q

10−4R
eg
(1
05

)

Small
Medium
Large

(a) Reg(105) under different Q

103 104

T

10−4

10−3

10−2

R
eg

(T
)

TFW-UCRL2 Small
TFW-UCRL2 Medium
TFW-UCRL2 Large
Random Small
Random Medium
Random Large

(b) Reg(T ) as T grows

0.0

0.2

Obj 1 by algo
Obj 1 by PM
Target for Obj 1

103 104
0.00

0.05
Obj 2 by algo
Obj 2 by PM
Target for Obj 2

(c) Simultaneous Convergence

Figure 2: Simulation Results on State Space Exploration

Fig 2b demonstrates the trend of Reg(T ) as T grows, in log-log scales. The performance of TFW-
UCRL2 is in contrast with the random policy (in yellow), which samples an action uniformly at
random at every state. The Reg(T ) under TFW-UCRL2 converges to 0 as T grows, while the Reg(T )
under the random policy is constant. The slight wiggling in the plots for TFW-UCRL2 is due to GTP,
which could deteriorate the objective in the short term but still leads to near-optimality eventually.

Fig. 2c highlights the simultaneous convergence of each objective to its target on the Large instance.
The instance involves a star graph with a center state and 12 branch states. The objectives are to visit
the center state with frequency 0 (Obj 1) and to visit each branch state with frequency 1/12 = 0.83
(Objs 2, . . . 13). These target frequencies (in dashed black) are not realizable, and we plot (in dotted
cyan) the frequencies indicated by v∗ =

∑
s,a v(s, a)x∗(s, a), where x∗ is an optimal solution of

(PM). Along with the complete plot in Fig 4 in Appendix A.2, we see that the outputs {V1:T,k}13
k=1

by TFW-UCRL2 (in solid blue) simultaneously converge to all the 13 target frequencies.
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