
We thank the reviewers for their valuable comments and recommendations for the improvement. Overall, it seems that1

the reviewers R1 and R2 found our contributions significant, but had questions about presentation of our theoretical2

results (R2), comparison of our theoretical results to the existing methods and random sampling (R1, R2), and practical3

comparison to SSSC (R1). R3 asked about significance and choice of datasets. R3 also suggested to shrunk review of4

SSC; we will do so and use space to address concerns of R2 by clarifying theoretical results.5

Significance (R3). We would like to point out that our contributions are twofold. We present first linear time algorithm6

which directly solves SSC objective function and show it outperforms other large-scale SSC motivated algorithms.7

Besides algorithmic contribution, we provide novel theoretical result of SSC for limited number of subsamples. Our8

analysis gives theoretical guarantees needed for the success of SSC in the setting of limited number of subsamples.9

Clarification of theoretical result (R1, R2). We highly appreciate that the reviewers pointed out to improve presenta-10

tion of theoretical analysis. Due to the space constraints, pseudocode of the algorithm was included in the Appendix,11

but we will correct this and present key steps in the paper. We agree with R2 that this will help in understanding12

theoretical results. R2 correctly pointed out that the randomness in the model comes from random selection per iteration13

in the algorithm. We will clarify this point and relate to the probability in the statement of the theorems. Furthermore,14

number of iterations T is directly and linearly connected to the runtime of the algorithm. At the same time, T has an15

interpretation as an upperbound on the cardinality of S. We will explain this in the final version. Affinity in Definition 616

is defined in terms of principal angles in references [12, 13] in the paper; we will cite [12, 13] for alternative definition.17

Compatibility to the existing results and stochastic variant (R1, R2). The setting of Theorem 1 is comparable to18

the setting considered in the analysis of SSC-OMP [21], in which authors assume that data is noiseless and each pair19

of subspaces is arbitrarily intersected. Authors further assume that all data is used as a subsample so that it coincides20

with the original SSC, whereas our analysis first succeeded to show that smaller number of subsamples is sufficient to21

guarantee SDP. The setting of Theorem 2 is adopted from the setting of noisy SSC [12], where data is randomly drawn22

from each subspace. Our analysis relies on the notion of persistent inradius, which is a measure originally introduced in23

our work. When inradius and persistent inradius coincide, the SSC results can be reproduced as a special case. R1 was24

interested about noisy SSC setting. Our theoretical result does not assume noise, but empirically we perform well in the25

noisy setting of real-word data. We will add part about the compatibility to the existing SSC theoretical results.26

Table 1: Relation to the existing theoretical analyses
subsample noise data model measure for subspaces condition on data

Theorem 2 in [21] no no deterministic incoherence large inradius
Theorem 2.8 in [12] no yes semi-random affinity large number of data
Our Theorem 1 yes no deterministic incoherence large persistent inradius
Our Theorem 2 yes no semi-random affinity large number of data

R2 asked about the comparison to the fully27

stochastic variant. Our theoretical analysis28

shows that, in the case of random sampling,29

T subsamples are needed to satisfy SDP,30

while S5C needs a smaller number of sub-31

samples to satisfy SDP. We will clarify this in the revised version.32

Choice of datasets (R3). Yale B, Hopkins 155 and MNIST are the most benchmarked subspace clustering datasets. We33

did not compare performance only on Hopkins 155 dataset, but per reviewer’s question we now include Hopkins dataset.34

We report average clustering error across 155 sequences (Table 2), after carefully tuning parameters of all algorithms.35

Results show that S5C significantly outperforms all other large-scale methods. We will include these results in the final36

version. Among other datasets, only Devanagari has not been previously used for subspace clustering. However, the use37

of this dataset is justified since it is a large-scale dataset similar to MNIST, but the problem is even harder: instead of38

handwritten digits the task is to recognize handwritten letters.39

Table 2: Average clustering error across 155 sequences of Hopkins 155
Dataset Nyström AKK SSC SSC-OMP SSC-ORGEN SSSC S5C
Hopkins 155 21.8 20.6 4.1 23.0 20.5 21.1 15.8

Experimental comparison to baselines (R1,40

R2, R3). R3 expressed concern that we report41

better performance than the methods that exploit all samples. Reviewer might be confused by the names of the methods42

(SSC-OMP, SSSC), but the only method that exploits all samples is SSC and it performs better than any other method43

(including ours). We will change name of SSC-ADMM to SSC to avoid ambiguity.44

Figure 1: Clustering error
of S5C and SSSC

R1 raises a point about the practical benefits of our method compared to SSSC. Our method45

has significantly better performance than SSSC, achieving even 14.5% better average perfor-46

mance across all datasets (Table 1 in the paper). To demonstrate additional benefits, we show47

parameter sensitivity of SSSC and S5C on Devanagari dataset (Figure 1). S5C outperforms48

SSSC for all values of sparsity regularizer λ and number of subsamples. Furthermore, when49

the number of subsamples is increased S5C expectedly achieves lower clustering error, while50

SSSC does not exhibit such behavior. Similar behavior can be observed on other datasets.51

Finally, R2 was interested whether distributed computing of SSC can prevent the problem.52

Since the original SSC suffers from O(N3) time complexity, the effect of distributed com-53

puting is limited. On the other hand, since our algorithm is O(N), we can deal with linearly54

larger number of datapoints as available computational resources increases.55


