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Abstract

Sparse subspace clustering (SSC) represents each data point as a sparse linear
combination of other data points in the dataset. In the representation learning step
SSC finds a lower dimensional representation of data points, while in the spectral
clustering step data points are clustered according to the underlying subspaces.
However, both steps suffer from high computational and memory complexity, pre-
venting the application of SSC to large-scale datasets. To overcome this limitation,
we introduce Selective Sampling-based Scalable Sparse Subspace Clustering (S5C)
algorithm which selects subsamples based on the approximated subgradients and
linearly scales with the number of data points in terms of time and memory require-
ments. Along with the computational advantages, we derive theoretical guarantees
for the correctness of S5C. Our theoretical result presents novel contribution for
SSC in the case of limited number of subsamples. Extensive experimental results
demonstrate effectiveness of our approach.

1 Introduction

Subspace clustering algorithms rely on the assumption that high-dimensional data points can be well
represented as lying in the union of low-dimensional subspaces. Based on this assumption, the task of
subspace clustering is to identify the subspaces and assign data points according to the corresponding
subspaces [1]. The clustering task is usually performed in two steps: (i) representation learning; and
(ii) spectral clustering. In the representation learning step the goal is to find a representation of data
points according to the underlying low-dimensional subspaces. The obtained representation is then
used to construct the affinity matrix whose entries define similarity between data points. Ideally,
the affinity matrix is block diagonal and non-zero values are assigned only to data points lying in
the same subspace. Given an affinity matrix as an input, spectral clustering [2] assigns subspace
membership to data points. In particular, spectral clustering defines clustering problem as a minimum
cut problem on a graph and minimizes relaxed versions of the originally NP-hard normalized cut
(NCut) [3, 4] or ratio cut (RCut) [5] objective functions.

Subspace clustering algorithms often differ in regularizations imposed on the representation matrix,
such as sparsity [6–8], low-rankness [9, 10], or their combination [11–13]. In this paper we are
interested in the Sparse Subspace Clustering (SSC), proposed by Elhamifar and Vidal [7]. SSC
imposes sparsity constraint on data representation matrix by solving the `1 norm regularized objective.
SSC enjoys strong theoretical guarantees and can succeed in the noiseless case even when subspaces
intersect [14]. Moreover, SSC is provably effective with noisy data as long as the magnitude of noise
does not exceed a certain threshold [15]. Tsakiris and Vidal [16] recently established guarantees for
SSC with missing data.

Despite the strong theoretical guarantees [14, 15] and superior performance [7], a key challenge
towards the wide applicability of SSC lies in the development of methods able to handle large-scale
data. In particular, learning representation matrix takes O(N3) operations in ADMM-based solver
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used in SSC, where N is the number of data points. Pourkamali-Anaraki and Becker [17] address this
problem by proposing more efficient implementation based on the matrix-inversion lemma; however,
the method still requires O(N2) operations. The same problem is present in the spectral clustering
step which performs eigenvalue decomposition of the Laplacian matrix, resulting in polynomial time
complexity. In addition to high time complexity, the memory cost of SSC requires O(N2) space.
Overall, high time and space complexity limit the application of SSC to small or moderately sized
datasets. Since unlabeled data is often easily obtainable, this limitation is in contrast with many
real-world clustering tasks.

Motivated by the above challenges, we propose Selective Sampling-based Scalable Sparse Subspace
Clustering (S5C) algorithm which linearly scales with the number of data points in terms of computa-
tional and memory requirements. Instead of relying on a random subsample [18–20], the key idea
of our approach is to select data points in terms of the most violating subgradient of the objective
function. In the representation learning step, we solve a small number of LASSO problems [21] and
select subsamples in an iterative manner. Once representation matrix is obtained, we perform spectral
clustering by approximating eigenvectors of graph Laplacian using the block version of the power
method. Whereas in general setting power method suffers from quadratic complexity, S5C achieves
linear time and space by the guarantee to have at most O(N) elements different from zero in the
subspace learning step.

From the theoretical aspect, we provide approximation guarantees under which subspace detection
property of S5C is preserved. Our main result states that SSC can exactly recover subspaces even
in the case of limited number of subsamples, where the number of subsamples is independent of
data size. This notable result has a broader significance and can be applied to other sampling-based
SSC algorithms, such as [19, 20]. Compared to random sampling, theory implies selective sampling
is advantageous. Extensive experiments on six real-world datasets of varying size demonstrate the
superior clustering performance of S5C compared to the state-of-art large-scale sparse subspace
clustering algorithms. Considering that all existing methods avoid to directly solve `1 regularized
basis pursuit problem, to the best of our knowledge, this is the first method with the original SSC
formulation that scales linearly with the number of data points.

1.1 Related work

Algorithmic aspect. Much of the existing work has been devoted to scaling representation learning
step in SSC. Although more efficient than SSC, Orthogonal Matching Pursuit (OMP) [22, 23] and
nearest neighbor based SSC methods [24, 25] do not scale well to large datasets. Scalable Sparse
Subspace Clustering (SSSC) [19, 20] randomly samples small set of data points and performs SSC.
Out-of-sample data points are then classified by minimizing the residual over the in-sample data.
Although this method solves large N problem, the original SSC is still performed on a small-scale
dataset. Furthermore, relying only on a random subsample can result in weak performance in the
cases when the subsample is not representative of the original dataset. All existing methods avoid to
directly solve `1 regularized basis pursuit problem. In contrast to them, S5C preserves the original
construction of the affinity matrix of SSC. In the spectral clustering step, most existing methods
apply computationally inefficient spectral clustering. Power Iteration Clustering (PIC) [26] has been
proposed as a fast and scalable alternative to spectral clustering. However, if PIC is applied to SSC,
theoretical guarantees of SSC do not hold anymore. On the other hand, our spectral clustering step
preserves theoretical guarantees, while retaining advantages of PIC: fast convergence, scalability and
simple implementation. Furthermore, experiments show it achieves significantly better performance
than PIC.

Theoretical aspect. Another limitation of the existing work lies in inability to preserve desirable
theoretical properties of SSC. EnSC-ORGEN [27] and SSC-OMP [23] derive scalable active set
method and prove subspace preserving property for arbitrary subspaces. However, their guarantee
holds only in a finite number of subsamples which can be all data points, and therefore, does not
ensure that the algorithm is more efficient than SSC. Recently proposed exemplar-based subspace
clustering [28] selects subset of data points such that robustness to imbalanced data is achieved and
constructs affinity matrix by nearest neighbor. Although it has linear time and memory complexity, it
fails to prove subspace preserving property except in the setting of independent subspaces which is
overly restrictive assumption [29]. SSSC [19, 20] relies on a random subset selection and does not
provide any theoretical justification. Whereas our focus in this work is on selecting samples based on
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subgradient approximation instead of random sampling, we show how our theoretical results can be
readily extended to random sampling case. Table 1 summarizes relation of our theoretical analyses to
the analyses of existing work.

Table 1: Relation to the existing theoretical results

Subsample Noise Data model Measure for subspaces Condition on data
Theorem 2 in [23] no no deterministic incoherence large inradius
Theorem 2.8 in [14] no yes semi-random affinity large number of data
S5C Theorem 1 yes no deterministic incoherence large persistent inradius
S5C Theorem 2 yes no semi-random affinity large number of data

2 Sparse subspace clustering

Consider data matrix X ∈ RM×N whose columns are N data points drawn from a union of L linear
subspaces

⋃
`∈[L] S` of unknown dimensions {d`}`∈[L] in RM . Sparse subspace clustering (SSC)

solves the following optimization problem:

minimize
C∈RN×N

1

2
‖X−XC‖2F + λ ‖C‖1 , subject to diag(C) = 0, (1)

where C ∈ RN×N is representation matrix and λ is a hyperparameter for sparsity regularization.
SSC solves the resulting convex optimization problem using the ADMM solver [30, 7]. Once
representation matrix is obtained, affinity matrix W ∈ RN×N is constructed to achieve symmetry as
W = |C|+ |C|> .
Given affinity matrix W and number of clusters L, SSC applies spectral clustering algorithm [4, 2].
Specifically, it finds L eigenvectors corresponding to the L smallest eigenvalues of the symmetric
normalized graph Laplacian matrix defined as LS = IN − D−

1
2WD−

1
2 , where D ∈ RN×N is

diagonal degree matrix in which (i, i)-th element is the sum of i-th column of W. Given matrix
whose columns are L eigenvectors, cluster memberships of data points are obtained by applying
K-means algorithm to the normalized rows of the matrix.

3 Selective sampling-based SSC

In this section, we first propose how to efficiently learn representation matrix in SSC, and then
propose the solution for scaling spectral clustering step. Time and memory complexity of S5C
algorithm are analyzed in Appendix A.

3.1 Representation learning

In the representation learning step we aim to solve SSC problem in (1) using only a small number of
selectively sampled data points instead of the entire data matrix X. Let Cji denote (j, i)-th element
of C and xi ∈ RM denote i-th column of X. The problem in (1) can be decomposed by N problems,
where the following problem needs to be solved for i-th column of C:

minimize
(Cji)j∈[N]∈RN

1

2

∥∥∥∥xi −∑j∈[N ]
Cjixj

∥∥∥∥2

2

+ λ
∑

j∈[N ]
|Cji| , subject to Cii = 0. (2)

Note that for each i ∈ [N ] the decomposed problem in (2) has O(N) parameters, so the resulting
time and space complexity is O(N2) which is not acceptable for large-scale data.

Following the basic subspace clustering assumption that data points are generated from the low-
dimensional subspaces, a key intuition of our approach is that we can effectively approximate the
solution of (2) using only a small number of selectively sampled data points instead of the whole data
matrix X. Specifically, we solve the following problem:

minimize
(Cji)j∈[N]∈RN

1

2

∥∥∥∥∥∥xi −
∑
j∈[N ]

Cjixj

∥∥∥∥∥∥
2

2

+ λ
∑
j∈[N ]

|Cji| , subject to Cji = 0,∀j ∈ {i} ∪ ([N ] \ S) ,

(3)

3



where S ⊂ [N ] denotes indices of selected subsamples. This problem can be solved by standard
solvers of `1 minimization problem, such as GLMNET [31] and coordinate descent methods [32] by
time and space complexity independent of N . The key challenge of the approach is to obtain the set
of subsamples S such that all subspaces are sufficiently covered and the obtained solution is close to
the global solution of (1).

To solve this challenge, we propose an incremental algorithm for obtaining S based on the stochastic
approximation of a subgradient. Let us assume that (CSji)ji = CS is formed by the optimal solutions
of (3) and we need to find the next data point i+ ∈ [N ] \ S so that CS∪{i+} is close to the optimal
solution of (1). Our strategy is to choose next i+ in terms of the most violating subgradient. We
explain below how we define the violation and compute it efficiently.

First, let Gji be the subdifferential of the objective function in (2) with respect to CSji. Then, a
necessary condition for the objective function of (2) not to decrease by newly adding i′ ∈ [N ] \ S
to S can be written as Gi′i 3 0, for all i ∈ [N ] \ {i′}. Here, the subdifferential Gi′i is given by the
following equation:

Gi′i =


〈
xi′ ,

∑
j∈[N ] C

S
jixj − xi

〉
+ [−λ, λ] CSi′i = 0,〈

xi′ ,
∑
j∈[N ] C

S
jixj − xi

〉
+ sign

(
CSi′i

)
λ otherwise.

Then, the necessary condition can be written as follows:

Gi′i 3 0⇔ med

{
0,

〈
xi′ ,

∑
j∈[N ]

CSjixj − xi

〉
± λ
}

= 0, (4)

where med denotes the median of three values. To assure that adding i′-th data point to S always
improves the objective function value of (3), the left hand side of (4) has to be non-zero for at least
some i ∈ [N ] \ {i′}. Therefore, we measure the violation of the subgradient for each i′ ∈ [N ] \ S by∑
i∈[N ]\{i′} g

2
i′i, where

gi′i = med

{
0,

〈
xi′ ,

∑
j∈[N ]

CSjixj − xi

〉
± λ
}
. (5)

However, computing (5) for all (i′, i) ∈ ([N ] \ S) × [N ] requires O(N2) time. To reduce time
complexity, we perform stochastic approximation of the amount

∑
i∈[N ]\{i′} g

2
i′i. Specifically, we

approximate the violation of the subgradient for each i′ ∈ [N ]\S using a random subsample I ⊂ [N ]
as ∑

i∈[N ]\{i′}

g2
i′i ≈

N − 1

|I \ {i′} |
∑

i∈I\{i′}

g2
i′i,

where | · | denotes cardinality function. Finally, we select i+ as the maximizer of the right hand side
among i′ ∈ [N ] \ S, which can be computed in O (|I|N), where |I| � N and can be considered
as a constant. In all experiments and analyses, we use only one random subsample, i.e., |I| = 1.
Since this is not time critical step, using more subsamples benefits the algorithm. Pseudocode of
representation learning step is summarized in Algorithm 1.

3.2 Spectral clustering

Given sparse affinity matrix W, S5C algorithm efficently solves spectral clustering step by perform-
ing eigenvalue decomposition using orthogonal iteration. Power method is a well known approach
for approximating dominant eigenvector by iterative matrix-vector multiplication. Orthogonal iter-
ation computes eigenvectors in a block by iteratively performing matrix-matrix multiplication and
orthogonalization of the block using QR factorization. In the general setting, orthogonal iteration
suffers from O(N2) computational complexity. On the other hand, orthogonal iteration in our setting
enjoys O(N) scalability. This is achieved by the guarantee that W contains non-zero elements linear
in the number of data points N .

Spectral clustering algorithm requires computation of L eigenvectors associated with the L smallest
eigenvalues of symmetric normalized Laplacian matrix LS . They can be found as the largest
eigenvectors of the positive semidefinite matrix 2IN − LS , where 2 comes from the upper-bound
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Algorithm 1 Representation learning step in S5C

Require: Dataset (x1, . . . ,xN ) ∈ RM×N , hyperparameter λ, number of iterations T , batch size B
1: S ← ∅
2: for t ∈ [T ] do
3: Randomly sample I ⊂ [N ] such that |I| = B
4: Obtain (Cji)j∈[N ] by solving (3) for i ∈ I
5: gi′i ← med

{
0,
〈
xi′ ,

∑
j∈S\{i} Cjixj − xi

〉
± λ
}

for (i′, i) ∈ ([N ] \ S)× I
6: i+ ← argmaxi′∈[N ]\S

N−1
|I\{i′}|

∑
i∈I\{i′} g

2
i′i

7: if
∑
i∈I\{i+} g

2
i+i
6= 0 then

8: S ← S ∪ {i+}
9: Obtain C by solving (3) for all i ∈ [N ]

10: W← |C|+ |C|>

of the eigenvalues of LS [33]. We then apply orthogonal iteration to matrix LM to find its L
largest eigenvectors. We check the convergence condition of orthogonal iteration by evaluating the
scaled norm difference between previous and current solutions. Spectral clustering step of S5C is
summarized in Algorithm 2 in Appendix A.

4 Theoretical guarantees

In this section, we analyze S5C algorithm from the theoretical aspect. We assume dim(S`) = d for
all ` ∈ [L] solely for the simplicity of notation. As established in the literature [14], we provide
guarantees on Subspace Detection Property (SDP), which is formally defined as follows.

Definition 1 (Subspace Detection Property). An algorithm is said to exhibit subspace detection
property if and only if it produces affinity matrix C ∈ RN×N such that the following conditions hold:

1. For all i ∈ [N ], i-th column of C is not 0.
2. For all i ∈ [N ], i-th column of C has non-zero elements only in those rows that correspond

to data points that belong to the same subspace as i-th data point.

SDP is known to be guaranteed if SSC is solved with all data points [27, 15], i.e., |S| = N in
our notation. In this work, we show that SDP is guaranteed even when |S| = Õ(dL + L2), i.e.,
independent of number of data points N . We analyzed S5C algorithm under deterministic data model
and random data model. We provide all proofs in Appendices B and C. Our theoretical results can be
easily adapted for the case when data points are randomly sampled (Appendix D).

4.1 Deterministic data model

In deterministic data model [15], we assume there is no noise but subspaces can intersect in an
arbitrary manner. To quantify subspace structure, we introduce two measures: persistent inradius
and coherence. Persistent inradius of data points is a measure originally introduced in our work as a
useful extension of inradius of data points [14] and quantifies how much data points are uniformly
distributed in each subspace. Figure 1 illustrates the idea of persistent inradius in the low-dimenional
space. Coherence [23] is a measure which quantifies closeness between two subspaces.

Definition 2 (Inradius). The inradius of convex body P , denoted by r(P ), is defined as the radius of
the largest Euclidean ball inscribed in P .

Definition 3 (Persistent inradius). The persistent inradius with respect to P = {Pi}i∈[m] ⊂ Rd,
denoted by ř(P ), is defined as the minimum inradius of symmetric convex bodies represented as
conv

(
{±Pi}i∈I

)
, where |I| ≥ d.

Definition 4 (Coherence). The coherence µ(X,Y ) between two sets of points of unit norm, X and
Y , is defined as

µ(X,Y ) = max
x∈X,y∈Y

〈x,y〉 .
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Theorem 1. Assume that data X ∈ RM×N with normalized columns and subspaces {S`}`∈[L]

are given. We define `(i) so that the subspace corresponding to i-th data is S`(i) and S` =
{i ∈ [N ]|`(i) = `}. Assume that |S`| = N/L and dimS` = d, for all ` ∈ [L]. X[S`] denotes
the subset which corresponds to data in S`. We define

ř = min
`
ř(X[S`]), µ = max

` 6=`′
µ (X[S`],X[S`′ ]) .

If it holds that

0 < µ ≤ λ < ř, T ≥ 2

(
1 +

L

d

(
log(2Lδ−1)

))
dL,

then, S5C of T iterations with hyerparameter λ has subspace detection property with at least
probability 1− δ.

P1
P2

−P3

P3−P1 −P2

r(P ) ř(P )

P1
P2

−P3

P3−P1 −P2

Figure 1: Concept of persistent inradius. Left: inra-
dius r (conv(P )) where P = {±P1,±P2,±P3}.
Right: persistent inradius ř(P ).

This theorem implies that if µ < ř holds, there
exists hyperparameter λ that makes S5C able to
exactly recover subspaces. The randomness in
the model is introduced with the random selec-
tion of subsample I (line 3 of Algorithm 1). The-
orem also provides approximation guarantees by
implying that the number of iterations sufficient
for S5C to obtain SDP with high probability
is independent of N . Note that S5C chooses
subsample only if the condition in line 7 of Al-
gorithm 1 is satisfied, meaning that less than T
subsamples can be sufficient for the algorithm
to obtain SDP. Therefore, number of iterations
T is linearly connected to the runtime of the
algorithm and has an interpretation as an upper
bound on the number of subsamples |S|. In the
case when subsamples are randomly chosen, we
can easily extend the proof and show that T ran-
domly chosen subsamples can also enjoy SDP with high probability. However, in this case the number
of iterations T corresponds to the number of subsamples. Therefore, theory implies that S5C may
need less number of subsamples to satisfy SDP compared to random subsamples. In the case when
the number of dimensions varies among the subspaces, it is straightforward to generalize the theorem
by setting d = max`∈[L] d`.

4.2 Random data model

We introduce semi-random model [14, 15] for our analysis of random data model.
Definition 5 (Semi-random model). Data X is drawn from semi-random model if and only if, for
each `, each element of X[S`] is drawn from uniform distribution on the surface of the unit ball with
respect to the subspace S`.

To measure the closeness between two subspaces under the random data model, we introduce affinity.
Definition 6 (Affinity). Affinity between two d-dimensional subspaces S and S ′ in RM denoted by
aff(S,S ′) is defined as follows:

aff(S,S ′) = max
U∈O(S)

max
V∈O(S′)

∥∥U>V∥∥
F
,

where O(S) denotes the set of matrices which induces projection onto S, i.e., O(S) ={
V = (vj)j ∈ Rd×M

∣∣vj ∈ S, 〈vi,vj〉 = δij
}

.

An alternative definition of affinity in terms of principal angles can be found in [14, 15].
Theorem 2. Assume that data X ∈ RM×N is drawn from semi-random model in which subspaces
{S`}`∈[L] are given. We define

ρ =
N

dL
, a = min

` 6=`′
aff(S`,S`′).
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If it holds that

4 < log ρ < 4d, a ≤ λ < 1

8

√
log ρ

d
, T ≥ 2

(
1 +

L

d

(
log(2Lδ−1)

))
dL, (6)

then, S5C of T iterations with hyperparameter λ has subspace detection property with at least
probability 1− δ − L exp(−d√ρ).

This theorem implies that if conditions (6) on ρ, λ and T hold, then S5C satisfies SDP with high
probability. This theorem can also be easily adapted for the case of randomly selected data points.

5 Experimental evaluation

Baselines and evaluation metrics. We compare clustering performance and scalability to other
SSC based methods, including Sparse Subspace Clustering (SSC) [7], Scalable Sparse Subspace
Clustering (SSSC) [19, 20], Sparse Subspace Clustering via Orthogonal Matching Pursuit (SSC-
OMP) [22] and Elastic Net Subspace Clustering with ORacle Guided Elastic Net (EnSC-ORGEN)
[27]. Besides sparse subspace clustering methods, we compare performance to Nyström algorithm
[34] and Approximate Kernel K-means (AKK) [35]. Our code is available at https://github.
com/smatsus/S5C. Clustering performance is evaluated in terms of the clustering error (CE) defined
as CE(r̂, r) = minπ∈ΠL

(
1− 1

N

∑
i∈[N ] 1{π(r̂i)=ri}

)
, where ΠL is the set of all permutations on

[L].

Benchmark datasets. We verify the effectiveness of S5C on six benchmark datasets including face
image dataset Yale B [36, 37], motion segmentation Hopkins 155 [38], object recognition datasets
COIL-100 [39] and CIFAR-10 [40], handwritten digits dataset MNIST [41], letter recognition dataset
of different fonts Letter-rec [42], and handwritten character recognition dataset Devanagari [43]. The
summary of datasets and details of experimental setup are provided in Appendix E.

Clustering performance. Clustering error of S5C algorithm compared to the state-of-the-art methods
on six real-world datasets is presented in Table 2. The results show that S5C is the only algorithm
which consistently has good performance, achieving 13% better median performance over the second
best SSC-ORGEN. On the COIL-100 dataset which has 100 classes, S5C achieves score close to the
SSC baseline and significantly outperforms all other methods. In all experiments, we use only one
random subsample, i.e., |I| = 1. In order to examine the sensitivity of S5C to the random sampling
line 3 in Algorithm 1, we rerun the algorithm with different random seeds and report means and
standard deviations over 10 runs. The results demonstrate that S5C is not sensitive to this step and
standard deviation varies from 0.4 % to 2.3 % across all datasets.

Table 2: Clustering error (%): Character ‘/’ denotes that either time limit of 24 hours or memory limit
of 16 GB was exceeded. Standard deviations of S5C are given in parentheses.

Dataset Nyström AKK SSC SSC-OMP SSC-ORGEN SSSC S5C
Yale B 76.8 85.7 33.8 35.9 37.4 59.6 39.3 (1.8)
Hopkins 155 21.8 20.6 4.1 23.0 20.5 21.1 14.6 (0.4)
COIL-100 54.5 53.1 42.5 57.9 89.7 67.8 45.9 (0.5)
Letter-rec 73.3 71.7 / 95.2 68.6 68.4 67.7 (1.3)
CIFAR-10 76.6 75.6 / / 82.4 82.4 75.1 (0.8)
MNIST 45.7 44.6 / / 28.7 48.7 40.4 (2.3)
Devanagari 73.5 72.8 / / 58.6 84.9 67.2 (1.3)

Computational time. We compare computational time to other large-scale methods using randomly
sampled subsets on the COIL-100 and MNIST datasets. Figures 2 (a) and (b) show the mean compu-
tational time for each cardinality of independents subsets. As expected by theory, computational time
of S5C increases only linearly with the respect to the number of data points. Most of the time of S5C
is taken by solving LASSO, which is extremely easy to parallelize just by partitioning data points
across machines. We do not focus on such implementation improvements as our point here is not
in reporting faster time, but in showing the linear scalability and consequently the ability to handle
large-scale data.

Benefits of selective sampling. The main motivation behind the selective sampling in the representa-
tion learning step is to better capture structure of the entire dataset than simple random sampling. To
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evaluate this hypothesis, we design an experiment which compares the performance of subsamples
selected based on the stochastic approximation of the subgradient to random subsamples. For this
purpose, we consider a method in which the selective sampling in the representation learning step
is replaced with random sampling. We call this method S5C-rand. Figure 2 (c) shows the objective
function value with respect to the number of subsamples achieved by S5C and S5C-rand methods on
the Yale B dataset. It can be seen that for each subsample S5C achieves lower value of the objective
function. Furthermore, by using ∼ 75% of subsamples S5C achieves the same objective function
value as S5C-rand.
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Figure 2: (a) and (b) Relation between training time and number of datapoints on the COIL-100 and
MNIST datasets. (c) Objective function value of selective and random sampling based S5C on the
Yale B dataset.

Benefits of orthogonal iteration. We further compare performance and time efficiency of the
spectral clustering step in S5C with a classic eigenvalue decomposition algorithm for the normalized
cut (NCut) referred to as NCutE in [26], and Power Iteration Clustering (PIC) [26]. In PIC method
authors use power method to find the dominant eigenvector and then apply K-means clustering to
one-dimensional vector. We call our method Orthogonal Iteration Clustering (OIC). We design the
experiment so that each of the algorithms receives the same affinity matrix W at the input obtained
by S5C representation learning step. In this way we compare clustering performance of only spectral
decomposition. Since high computational complexity of NCut limits the application to large-datasets,
we compare performance on Yale B and COIL-100 datasets. To avoid that the computational time is
dominated by K-means clustering, we report time obtained with only one execution of K-means,
while in practice it is often executed several times with different initializations. The results are
shown in Table 3. The experiments demonstrate that OIC performs comparably to NCut and does not
degrade clustering performance. Although PIC has lower computational time than OIC, it fails to
provide satisfying clustering accuracy.

Table 3: Clustering error (CE) and computational time of spectral clustering step on the Yale B and
COIL-100 datasets.

Dataset Measure NCut PIC OIC

Yale B
CE (%) 42.7 83.9 42.8
Time (s) 38.7 12.0 16.2

COIL-100
CE (%) 47.0 77.4 45.4
Time (s) 290.0 16.4 27.4

6 Conclusion

Building on the existing work on sparse subspace clustering (SSC), this paper introduced the efficient
SSC algorithm, called S5C, able to linearly scale to the number of data points in both representation
learning and spectral clustering steps. We derived theoretical conditions under which subspace
detection property of S5C is preserved. Besides computational efficiency, experimental results
showed that S5C achieves performance improvement over existing large-scale sparse subspace
clustering algorithms. Our algorithm is not restricted to SSC but can be easily extended to elastic
net subspace clustering. We believe our approach will expand the applicability of sparse subspace
clustering algorithm to large-scale datasets.
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