
We would like to thank three reviewers for their feedback. Upon acceptance, we will include in the final version (a)1

new local linear convergence results for fiEM method, (b) an improved presentation of main results and (c) missing2

references. We first discuss a few common concerns shared by reviewer 1, reviewer 2, reviewer 3.3

• • Local Linear Convergence of fiEM: As observed by the reviewers, empirically fiEM shows a local linear4

convergence similar to sEM-VR. We found that fiEM has local linear convergence in theory, too. The new analysis5

requires same assumptions as [Thm.1,Chen+2018] and adopts proof of [Defazio+2014]. We show E‖ŝ(k) − s?‖2 ≤6

(1− δ)k‖ŝ(0) − s?‖2 for k ≥ 0 with δ = Θ(1/n), where s? is a stationary point to (19).7

•• Satisfaction of Assumptions: All assumptions H1-H5 are verified rigorously in the GMM, pLSA applications8

presented, as proven in Appendix G. They are mild even though should be checked on a case-by-case basis. Reviewers9

are referred to [McLachlan&Krishnan 2007] which shows satisfaction of similar assumptions on a variety of applications.10

•• Clarity: We admit it is a challenging task to present all technical results within the page limit, but we will try our11

best to improve in the final version, viz. using a running example to illustrate the assumptions used and implementation12

of algorithms. We will also clarify about the expectation operators in theorems and correct typos.13

Reviewer 1: We thank the reviewer for valuable comments and references. Our point-to-point response is as follows:14

Related work: The paper [Karimi+2019] is relevant and will be included. Thank you for bringing it to our attention.15

Karimi+[2019] focused on a biased stochastic approximation scheme and gave a global convergence rate for sEM. In16

this case, their analysis shares similar scaled gradient interpretation as fiEM and sEM-VR, yet w/o variance reduction.17

iEM’s Rate: You are right as the rate of iEM is comparable to GD. Yet, iEM is a popular method without a previously18

known global rate. Indeed, the comparison of iEM to fiEM, sEM-VR (theoretical & empirical) is our main contribution.19

Comparison to [Chen+2018]: Our assumptions are more practical and less restrictive. Global convergence to stationary20

point for sEM-VR in [Thm.2, Chen+2018] assumes i) the sufficient statistics si(θ(s′)) is Ls-Lipschitz continuous in s′,21

∀i – this is implied by our H1-H5 via Lemma 4; ii) the complete log-likelihood is strongly concave – this is slightly22

relaxed in our H4 which only requires a unique global minimizer for the complete log-likelihood. Besides, H1-H5 are23

directly verifiable (as explained above) and we provide the rate towards a stationary point. Lastly, local convergence in24

[Thm.1, Chen+2018] requires ‖ŝ(k) − s?‖ to be in a ball of radius O(1/Ls) for any k ≥ 1. This is a strong assumption25

that is not directly verifiable even if ŝ(0) ≈ s? is known a-priori.26

Reviewer 2: We thank the reviewer for useful comments. Please find the comparison of fiEM, sEM-VR below:27

Comparing fiEM to sEM-VR: This comparison is analogous to comparing SAGA to SVRG for finite sum optimization,28

and there is no clear ordering. In short, it depends on the trade-off of memory imprint and computation complexity.29

sEM-VR requires O(dim(S)) space to store s(`(k)), yet a full pass on the data set is needed at each epoch, resulting in30

higher complexity; meanwhile, fiEM only processes the data set incrementally, but it requires O(ndim(S)) to store the31

variables involved. We remark that the global rate for sEM-VR is not proven in [Chen+2018]. In Fig. 2 we show fiEM32

outperformed sEM-VR in one dataset (a bigger one) but was outperformed by sEM-VR in the other (a smaller one).33

Reviewer 3: We thank the reviewer for the comments. We clarify that in addition to analyzing iEM using the MISO34

framework (which will be mentioned explicitly), we analyzed fiEM, sEM-VR with a completely different framework35

w/ scaled gradient, the latter constitutes our main contribution of fast global convergence rates; see p.2 of our paper.36

Global Convergence & H4: We emphasize H4 does not imply that every stationary point of (1) is global minima,37

as having a unique global minimizer does not imply any first order critical point is global minima. Also, H4 refers38

to complete log-likelihood L(s,θ) with fixed s, instead of incomplete log-likelihood L(θ) in (1). It holds for most39

exponential family models where EM is useful [McLachlan&Krishnan 2007]. Mind that L(θ) is non-convex and our40

convergence is global in the sense that it does not restrict the initialization, a common assumption for analysis of EM.41

Bounds in theorems: The current presentation style of theorems, which evaluates the gradient norm of a ran-42

domly terminated stochastic EM solution, is common in stochastic non-convex optimization e.g., [Ghadimi&Lan43

2013,Reddi+2016a/b]. Part of the reason is that it results in a practical solution. While picking the best iterate leads to44

the same sublinear rate as ours, doing so involves a full pass on the data (∇L) and computing the incomplete likelihood,45

both are difficult tasks avoided in stochastic EM methods. Besides, as the reviewer mentioned, both random termination46

and best iterate schemes lead to a quantity upper bounded by
∑

k E‖∇L(θ(k))‖2/Kmax. This quantity is not equal to47

the averaged iterate, and upper bounding it by O(1/Kmax) is a non-trivial task – and is precisely our main contribution.48

Theorem 1 of Paper 1613: Indeed, Theorem 1 for iEM is a special case of [Thm. 1, 1613]. We will cite the latter49

properly. Our main contribution here lies on fast convergence of fiEM, sEM-VR shown by a different framework, see50

Theorem 2. Detailed comments about the difference between this paper and 1613 has been sent to the AC.51


