
We sincerely thank all the reviewers for their feedback indicating that we present an innovative work that could have a1

wide impact (R1), and for appreciating the overall idea and emphasizing the effectiveness of our method (R2, R3). We2

strongly believe that combining the advantages of more classical inference methods with those of Deep Learning may3

be of interest to the research community and may impact future applications. We address the reviewer comments below.4

R1: More discussion about how this idea could be applied to other generative models. We extended the paper5

discussion section with a more detailed explanation of how to apply our idea to other generative models. The equations6

that describe the current model of the paper are defined on edges and nodes, therefore, by modifying the input graph, in7

other words, by modifying the edges and nodes of the input graph we can run the algorithm on any arbitrary structure.8

Furthermore, in the future, we could experiment with different types of messages for the GM-messages, for example9

Belief Propagation messages, then the model would also be able to run on discrete variables.10

R2: One way to improve the manuscript would be to study how the proposed method scales with the dimension-11

ality of the observations as well as how the sample complexity increases as the true transition/emission function12

move further away from being linear. In the Lorenz attractor experiment, we are computing the Taylor expansion13

from the Lorenz differential equations. The larger the number of expansion terms, the further the transition function14

moves away from being linear. Currently, in the paper, we only show the plots for J=1 and J=2 expansion terms. Based15

on this feedback, we will add another expansion term J=5 (for J>5 there is not noticeable improvement). And then, we16

will study how the sample complexity decreases as the transition/emission function of the model moves away from17

being linear.18

R2: One limitation of the work that could be made more explicit is that practitioners need to know the func-19

tional form of the transition and emission function apriori in order to estimate the matrices necessary to initial-20

ize the GM-messages. A strength of our method is the capability of combining prior knowledge known by practitioners21

with dynamics learned from the data. Instead of having to choose between more classical methods or deep learning,22

we want to obtain the benefits from both. Therefore, we don’t see as a limitation the fact that the functional form is23

needed. Given the functional form, our method has the advantage to combine it with deep learning. To avoid confusions24

and emphasize that GM-messages are a way of encoding the prior knowledge known by practitioners we changed25

lines 113-114 from the paper to: "Graphical Model Messages (GM-messages): These messages are derived from the26

generative graphical model that encodes the prior knowledge known by practitioners (e.g. equations of motion from a27

physics model)."28

R2: I think the experimental section can also be improved by adding in a comparison to Unscented Kalman29

Filters. Unlike EKFs which work with a linearization of nonlinear model functions, UKFs have a tunable30

number of particles to obtain high fidelity fits to the latent variable. It would be worthwhile incorporating this31

baseline into the results on the lorentz sequences as well as the nclt dataset. We also thought of adding the UKF as32

another baseline. But in the NCLT dataset, although the real world dynamics may be complex, the assumed dynamics33

of the GM-messages are already linear, therefore, there is no need to use EKF or UKF here. In the Lorenz attractor,34

there isn’t a closed form function xk+1 = f(xk) that defines its dynamics. Instead, we are provided with the dynamics35

matrix defined by the Lorenz differential equations, from which we can compute the Taylor Expansion to approximate36

xk+1 = f̂xk
(xk) as explained in section 5.2 of the paper. Indeed, in case we had access to the true f(xk), by computing37

its Taylor Expansion at point xk we would obtain f̂xk
(xk). Hence, we can apply the EKF as if we had access to38

f(xk) but not the UKF. We could run UKF on an approximation of f(xk), it shouldn’t be the same approximation we39

used in the EKF, otherwise it would be a suboptimal solution of the EKF. We can study running the UKF in a better40

approximation of f(xk) than the Taylor expansion, but maybe that diverges from the scope of our paper.41

R2: Missing citation to related work: http://proceedings.mlr.press/v80/marino18a/marino18a.pdf We added the42

paper to the related work. It has interesting relations with our paper since it also uses meta-learning to learn an43

iterative inference algorithm. They repeatedly compute posterior gradients to perform optimization and they encode44

this gradients with a Neural Network that learns how to update the posterior estimates. However, in our case, graphical45

models play a stronger role and we combine prior knowledge with learned inference.46

R3: My main concern is the experimental part. In the experiment, the dynamics are simple and fixed. The47

authors may want to train the model on a set of different dynamics (with the same structure, but different48

parameters), and then test them on the dynamics with the same structure but different parameters (obviously,49

the parameters can be input to the model as conditional variables). Actually, the dynamics of the Lorenz attractor50

depend at every time step on the current state. It means they are not fixed, instead the parameters change at every51

timestep. The same happens at test time, the dynamics are different and also change at every time step depending on the52

current state. Our method significantly outperformed the others in this experiment.53

R1, R2, R3: Beside the already commented changes, we updated the experiments adding error bars to the plots and we54

polished some sentences/writing.55


