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Abstract

This paper extends robust principal component analysis (RPCA) to nonlinear mani-
folds. Suppose that the observed data matrix is the sum of a sparse component and
a component drawn from some low dimensional manifold. Is it possible to separate
them by using similar ideas as RPCA? Is there any benefit in treating the manifold
as a whole as opposed to treating each local region independently? We answer
these two questions affirmatively by proposing and analyzing an optimization
framework that separates the sparse component from the manifold under noisy data.
Theoretical error bounds are provided when the tangent spaces of the manifold
satisfy certain incoherence conditions. We also provide a near optimal choice of
the tuning parameters for the proposed optimization formulation with the help of a
new curvature estimation method. The efficacy of our method is demonstrated on
both synthetic and real datasets.

1 Introduction

Manifold learning and graph learning are nowadays widely used in computer vision, image processing,
and biological data analysis on tasks such as classification, anomaly detection, data interpolation,
and denoising. In most applications, graphs are learned from the high dimensional data and used
to facilitate traditional data analysis methods such as PCA, Fourier analysis, and data clustering
[7, 8, 9, 15, 12]. However, the quality of the learned graph may be greatly jeopardized by outliers
which cause instabilities in all the aforementioned graph assisted applications.

In recent years, several methods have been proposed to handle outliers in nonlinear data [11, 21, 3].
Despite the success of those methods, they only aim at detecting the outliers instead of correcting them.
In addition, very few of them are equipped with theoretical analysis of the statistical performances.
In this paper, we propose a novel non-task-driven algorithm for the mixed noise model in (1) and
provide theoretical guarantees to control its estimation error. Specifically, we consider the mixed
noise model as

X̃i = Xi + Si + Ei, i = 1, . . . , n, (1)

where Xi ∈ Rp is the noiseless data independently drawn from some manifoldM with an intrinsic
dimension d � p, Ei is the i.i.d. Gaussian noise with small magnitudes, and Si is the sparse
noise with possibly large magnitudes. If Si has a large entry, then the corresponding X̃i is usually
considered as an outlier. The goal of this paper is to simultaneously recover Xi and Si from X̃i,
i = 1, .., n.

There are several benefits in recovering the noise term Si along with the signal Xi. First, the support
of Si indicates the locations of the anomaly, which is informative in many applications. For example,
if Xi is the gene expression data from the ith patient, the nonzero elements in Si indicate the
differentially expressed genes that are the candidates for personalized medicine. Similarly, if Si is a
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result of malfunctioned hardware, its nonzero elements indicate the locations of the malfunctioned
parts. Secondly, the recovery of Si allows the “outliers” to be pulled back to the data manifold instead
of simply being discarded. This prevents a waste of information and is especially beneficial in cases
where data is insufficient. Thirdly, in some applications, the sparse Si is a part of the clean data rather
than a noise term, then the algorithm provides a natural decomposition of the data into a sparse and a
non-sparse component that may carry different pieces of information.

Along a similar line of research, Robust Principle Component Analysis (RPCA) [2] has received
considerable attention and has demonstrated its success in separating data from sparse noise in many
applications. However, its assumption that the data lies in a low dimensional subspace is somewhat
strict. In this paper, we generalize the Robust PCA idea to the non-linear manifold setting. The major
new components in our algorithm are: 1) an incorporation of the manifold curvature information into
the optimization framework, and 2) a unified way to apply RPCA to a collection of tangent spaces of
the manifold.

2 Methodology

Let X̃ = [X̃1, . . . , X̃n] ∈ Rp×n be the noisy data matrix containing n samples. Each sample is a
vector in Rp independently drawn from (1). The overall data matrix X̃ has the representation

X̃ = X + S + E

where X is the clean data matrix, S is the matrix of the sparse noise, and E is the matrix of the
Gaussian noise. We further assume that the clean data X lies on some manifoldM embedded in Rp
with a small intrinsic dimension d� p and the samples are sufficient (n ≥ p). The small intrinsic
dimension assumption ensures that data is locally low dimensional so that the corresponding local
data matrix is of low rank. This property allows the data to be separated from the sparse noise.

The key idea behind our method is to handle the data locally. We use the k Nearest Neighbors (kNN)
to construct local data matrices, where k is larger than the intrinsic dimension d. For a data point
Xi ∈ Rp, we define the local patch centered at it to be the set consisted of its kNN and itself, and
a local data matrix X(i) associated with this patch is X(i) = [Xi1 , Xi2 , . . . , Xik , Xi], where Xij is
the jth-nearest neighbor of Xi. Let Pi be the restriction operator to the ith patch, i.e., Pi(X) = XPi
where Pi is the n×(k+1) matrix that selects the columns ofX in the ith patch. ThenX(i) = Pi(X).
Similarly, we define S(i) = Pi(S), E(i) = Pi(E) and X̃(i) = Pi(X̃).

Since each local data matrix X(i) is nearly of low rank and S is sparse, we can decompose the noisy
data matrix into low-rank parts and sparse parts through solving the following optimization problem

{Ŝ, {Ŝ(i)}ni=1, {L̂(i)}ni=1} = arg min
S,S(i),L(i)

F (S, {S(i)}ni=1, {L(i)}ni=1)

≡ arg min
S,S(i),L(i)

n∑
i=1

(
λi‖X̃(i) − L(i) − S(i)‖2F + ‖C(L(i))‖∗ + β‖S(i)‖1

)
subject to S(i) = Pi(S), (2)

here we take β = max{k + 1, p}−1/2 as in RPCA, X̃(i) = Pi(X̃) is the local data matrix on the
ith patch and C is the centering operator that subtracts the column mean: C(Z) = Z(I − 1

k+111
T ),

where 1 is the (k + 1)-dimensional column vector of all ones. Here we are decomposing the data
on each patch into a low-rank part L(i) and a sparse part S(i) by imposing the nuclear norm and
entry-wise `1 norm on L(i) and S(i), respectively. There are two key components in this formulation:
1). the local patches are overlapping (for example, the first data point X1 may belong to several
patches). Thus, the constraint S(i) = Pi(S) is particularly important because it ensures copies of
the same point on different patches (and those of the sparse noise on different patches) remain the
same. 2). we do not require L(i) to be restrictions of a universal L to the ith patch, because the L(i)s
correspond to the local affine tangent spaces, and there is no reason for a point on the manifold to
have the same projection on different tangent spaces. This seemingly subtle difference has a large
impact on the final result.

If the data only contains sparse noise, i.e., E = 0, then X̂ ≡ X̃ − Ŝ is the final estimation for X .
If E 6= 0, we apply Singular Value Hard Thresholding [6] to truncate C(X̃(i) − Pi(S)) and remove
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the Gaussian noise (See §6), and use the resulting L̂(i)
τ∗ to construct a final estimate X̂ of X via least

squares fitting

X̂ = arg min
Z∈Rp×n

n∑
i=1

λi‖Pi(Z)− L̂(i)
τ∗‖2F . (3)

The following discussion revolves around (2) and (3), and the structure of the paper is as follows. In
§3, we explain the geometric meaning of each term in (2). In §4, we establish theoretical recovery
guarantees for (2) which justifies our choice of β and allows us to theoretically choose λ. The
calculation of λ uses the curvature of the manifold, so in §5, we provide a simple method to estimate
the average manifold curvature and the method is robust to sparse noise. The optimization algorithms
that solve (2) and (3) are presented in §6 and the numerical experiments are in §7.

3 Geometric explanation

We provide a geometric intuition for the formulation (2). Let us write the clean data matrix X(i) on
the ith patch in its Taylor expansion along the manifold,

X(i) = Xi1
T + T (i) +R(i), (4)

where the Taylor series is expanded at Xi (the center point of the ith patch), T (i) stores the first order
term and its columns lie in the tangent space of the manifold at Xi, and R(i) contains all the higher
order terms. The sum of the first two terms Xi1

T + T (i) is the linear approximation to X(i) that is
unknown if the tangent space is not given. This linear approximation precisely corresponds to the
L(i)s in (2), i.e., L(i) = Xi1

T + T (i). Since the tangent space has the same dimensionality d as the
manifold, with randomly chosen points, we have with probability one, that rank(T (i)) = d. As a
result, rank(L(i)) = rank(Xi1

T + T (i)) ≤ d+ 1. By the assumption that d < min{p, k}, we know
that L(i) is indeed low rank.

Combing (4) with X̃(i) = X(i) + S(i) + E(i), we find the misfit term X̃(i) − L(i) − S(i) in (2)
equals E(i) + R(i). This implies that the misfit contains the high order residues (i.e., the linear
approximation error) and the Gaussian noise.

4 Theoretical choice of tuning parameters

To establish the error bound, we need a coherence condition on the tangent spaces of the manifold.

Definition 4.1 Let U ∈ Rm×r (m ≥ r) be a matrix with U∗U = I , the coherence of U is defined as

µ(U) =
m

r
max

k∈{1,...,m}
‖U∗ek‖22,

where ek is the kth element of the canonical basis. For a subspace T , its coherence is defined as

µ(V ) =
m

r
max

k∈{1,...,m}
‖V ∗ek‖22,

where V is an orthonormal basis of T . The coherence is independent of the choice of basis.

The following theorem is proved for local patches constructed using the ε-neighborhoods. We use
kNN in the experiments because kNN is more robust to insufficient samples. The full version of
Theorem 4.2 can be found in the supplementary material.

Theorem 4.2 [succinct version] Let each Xi ∈ Rp, i = 1, ..., n, be independently drawn from a
compact manifoldM⊆ Rp with an intrinsic dimension d and endowed with the uniform distribution.
LetXij , j = 1, . . . , ki be the ki points falling in an η-neighborhood ofXi with radius η, where η > 0

is some fixed small constant. These points form the matrix X(i) = [Xi1 , . . . , Xiki
, Xi]. For any

q ∈M, let Tq be the tangent space ofM at q and define µ̄ = supq∈M µ(Tq). Suppose the support
of the noise matrix S(i) is uniformly distributed among all sets of cardinality mi. Then as long as
d < ρr min{k, p}µ̄−1 log−2 max{k̄, p}, and mi ≤ 0.4ρspk (here ρr and ρs are positive constants,
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k̄ = maxi ki, and k = mini ki) , then with probability over 1− c1nmax{k, p}−10− e−c2k for some
constants c1 and c2, the minimizer Ŝ to (2) with weights

λi =
min{ki + 1, p}1/2

εi
, βi = max{ki + 1, p}−1/2 (5)

has the error bound ∑
i

‖Pi(Ŝ)− S(i)‖2,1 ≤ C
√
pnk̄‖ε‖2.

Here εi = ‖X̃(i) − Xi1
T − T (i) − S(i)‖F will be estimated in the next section, ε = [ε1, ..., εn],

‖ · ‖2,1 stands for taking `2 norm along columns and `1 norm along rows, and T (i) is the projection
of X(i) −Xi1

T to the tangent space TXi .

Remark. We can interpret ε as the total noise in the data. As explained in §3, ‖X̃(i)−Xi1
T −T (i)−

S(i)‖F = ‖R(i) +E(i)‖F , thus ε = 0 if the manifold is linear and the Gaussian noise is absent. The
factor

√
n in front of ‖ε‖2 takes into account the use of different norms on the two hand sides (the

right hand side is the Frobenius norm of the noise matrix {R(i) +E(i)}ni=1 obtained by stacking the
R(i) +E(i) associated with each patch into one big matrix). The factor

√
p is due to the small weight

βi of ‖S(i)‖1 compared to the weight 1 on ‖X̃(i) − L(i) − S(i)‖2F . The factor k̄ appears because on
average, each column of Ŝ − S is added about k := 1

n

∑
i ki times on the left hand side.

5 Estimating the curvature

The definition λi in (5) involves an unknown quantity ε2i = ‖X̃(i) − Xi1
T − T (i) − S(i)‖2F ≡

‖R(i) +E(i)‖2F . We assume the standard deviation σ of the i.i.d. Gaussian entries of E(i) is known,
so ‖E(i)‖2F can be approximated. Since R(i) is independent of E(i), the cross term 〈R(i), E(i)〉 is
small. Our main task is estimating ‖R(i)‖2F , the linear approximation error defined in §3. At local
regions, second order terms dominates the linear approximation residue, hence estimating ‖R(i)‖2F
requires the curvature information.

5.1 A short review of related concepts in Riemannian geometry

The principal curvatures at a point on a high dimensional manifold are defined as the singular values
of the second fundamental forms [10]. As estimating all the singular values from the noisy data may
not be stable, we are only interested in estimating the mean curvature, that is the root mean squares
of the principal curvatures.

Figure 1: Local manifold geometry

For the simplicity of illustration, we review the
related concepts using the 2D surfaceM embed-
ded in R3 (Figure 1). For any curve γ(s) inM
parametrized by arclength with unit tangent vec-
tor tγ(s), its curvature is the norm of the covari-
ant derivative of tγ : ‖dtγ(s)/ds‖ = ‖γ′′(s)‖. In
particular, we have the following decomposition

γ′′(s) = kg(s)v̂(s) + kn(s)n̂(s),

where n̂(s) is the unit normal direction of the
manifold at γ(s) and v̂ is the direction perpendic-
ular to n̂(s) and tγ(s), i.e., v̂ = n̂ × tγ(s). The
coefficient kn(s) along the normal direction is
called the normal curvature, and the coefficient kg(s) along the perpendicular direction v̂ is called the
geodesic curvature. The principal curvatures purely depend on kn. In particular, in 2D, the principal
curvatures are precisely the maximum and minimum of kn among all possible directions.

A natural way to compute the normal curvature is through geodesic curves. The geodesic curve
between two points is the shortest curve connecting them. Therefore geodesic curves are usually
viewed as “straight lines” on the manifold. The geodesic curves have the favorable property that their
curvatures have 0 contribution from kg. That is to say, the second order derivative of the geodesic
curve parameterized by the arclength is exactly kn.
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Algorithm 1: Estimate the mean curvature Γ̄(p) at some point p
Input: Distance matrix D, adjacency matrix A, some proper constants r1 < r2, number of pairs m
Output: the estimated mean curvature Γ̄(p)

1 for i = 1: m do
2 Randomly pick some point qi ∈ B(p, r2)\B(p, r1);
3 Calculate the geodesic distance dg(p, qi) using A;
4 Solve for the radius Ri based on (7);
5 end
6 Compute estimated curvature Γ̄(p) = ( 1

m

∑m
i=1R

−2
i )1/2.

Algorithm 2: Estimate the overall curvature Γ̄(Ω) for some region Ω

Input: Distance matrix D, adjacency matrix A, some proper constants r1 < r2, number of pairs m
Output: the estimated overall curvature Γ̄(Ω)

1 for i = 1: m do
2 Randomly pick a pair of points pi, qi ∈ Ω such that r1 ≤ d(pi, qi) ≤ r2 ;
3 Calculate the geodesic distance dg(pi, qi) using A;
4 Solve for the radius Ri based on (7);
5 end
6 Compute estimated curvature Γ̄(Ω) = ( 1

m

∑m
i=1R

−2
i )1/2.

5.2 The proposed method

All existing curvature estimation methods we are aware of are in the field of computer vision where
the objects are 2D surfaces in 3D [5, 4, 19, 14]. Most of these methods are difficult to generalize to
high (> 3) dimensions with the exception of the integral invariant based approaches [17]. However,
the integral invariant based approaches is not robust to sparse noise and is unsuited to our problem.

We propose a new method to estimate the mean curvature from the noisy data. Although the graphic
illustration is made in 3D, the method is dimension independent. To compute the average normal
curvature at a point p ∈ M, we randomly pick m points qi ∈ M on the manifold lying within a
proper distance to p as specified in Algorithm 1. Let γi be the geodesic curve between p and qi. For
each i, we compute the pairwise Euclidean distance ‖p− qi‖2 and the pairwise geodesic distance
dg(p, qi) using the Dijkstra’s algorithm. Through a circular approximation of the geodesic curve as
drawn in Figure 1, we can compute the curvature of the geodesic curve as the inverse of the radius

‖γ′′i (p)‖ = 1/Rγ′i , (6)

where γ′i is the tangent direction along which the curvature is calculated and Rγ′i is the radius of the
circular approximation to the curve γ at p, which can be solved along with the angle θγ′i through the
geometric relations

2Rγ′i sin(θγ′i/2) = ‖p− qi‖2, Rγ′iθγ′i = dg(p, qi), (7)

as indicated in Figure 1. Finally, we define the average curvature Γ̄(p) at p to be

Γ̄(p) := (Eqi‖γ′′i (p)‖2)1/2 ≡ (EqiR−2γi )1/2. (8)

To estimate the mean curvature from the data, we construct two matrices D and A. D ∈ Rn×n is the
pairwise distance matrix, where Dij denotes the Euclidean distance between two points Xi and Xj .
A is a type of adjacency matrix defined as follows and is to be used to compute the pairwise geodesic
distances from the data,

Aij =

{
Dij if Xj is in the k nearest neighbors of Xi

0 elsewhere.
(9)

Algorithm 1 estimates the mean curvature at some point p and Algorithm 2 estimates the overall
curvature within some region Ω on the manifold.

The geodesic distance is computed using the Dijkstra’s algorithm, which is not accurate when p and
q are too close to each other. The constant r1 in Algorithm 1 and 2 is thus used to make sure that p
and q are sufficiently apart. The constant r2 is to make sure that q is not too far away from p, as after
all we are computing the mean curvature around p.
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5.3 Estimating λi from the mean curvature

We provide a way to approximate λi when the number of points n is finite. In the asymptotic limit
(k →∞, k/n→ 0), all the approximate sign “≈” below become “=”.

Fix a point p ∈ M and another point qi in the η-neighborhood of p. Let γi be the geodesic curve
between them. With the computed curvature Γ̄(p), we can estimate the linear approximation error
of expanding qi at p: qi ≈ p + PTp(qi − p), where PTp is the projection onto the tangent space at
p. Let E be the error of this linear approximation E(qi, p) = qi − p− PTp(qi − p) = PT⊥p (qi − p)
where T⊥p is the orthogonal complement of the tangent space. From Figure 1, the relation between
‖E(p, qi)‖2, ‖p− qi‖2, and θγ′i is

‖E(p, qi)‖2 ≈ ‖p− qi‖2 sin
θγ′
i

2 =
‖p−qi‖22
2Rγ′

i

. (10)

To obtain a closed-form formula for E , we assume that for the fixed p and a randomly chosen qi in an
ξ neighborhood of p, the projection PTp(qi− p) follows a uniform distribution in a ball with radius η′

(in fact η′ ≈ η since when η is small, the projection of q−p is almost q−p itself, therefore the radius
of the projected ball almost equal to the radius of the original neighborhood). Under this assumption,
let ri = ‖PTp(qi − p)‖2 be the magnitude of the projection and φi = PTp(qi − p)/‖PTp(qi − p)‖2
be the direction, by [20], ri and φi are independent of each other. As the curvature Rγi only depends
on the direction, the numerator and the denominator of the right hand side of (10) are independent of
each other. Therefore,

E‖E(p, qi)‖22 ≈ E‖p−qi‖
4
2

4R2
γ′
i

=
E‖p−qi‖42

4 ER−2γ′i =
E‖p−qi‖42

4 · Γ̄2(p), (11)

where the first equality used the independence and the last equality used the definition of the mean
curvature in the previous subsection.

Now we apply this estimation to the neighborhood of Xi. Let p = Xi, and qj = Xij be the neighbors
of Xi. Using (11), the average linear approximation error on this patch is

1

k
‖R(i)‖2F := 1

k

k∑
j=1

‖E(Xij , Xi)‖22
k→∞−−−−→ E‖Xi−Xij ‖

4
2

4 Γ̄2(Xi), (12)

where the right hand side can also be estimated with

1

k

k∑
j=1

‖Xi −Xij‖42
4

Γ̄2(Xi)
k→∞−−−−→

E‖Xi −Xij‖42
4

Γ̄2(Xi) (13)

so when k is sufficient large, 1
k‖R

(i)‖2F is also close to 1
k

k∑
j=1

‖Xi−Xij ‖
4
2

4 Γ̄2(Xi), which can be

completely computed from the data. Combining this with the argument at the beginning of §5 we get,

εi = ‖R(i)+E(i)‖F ≈
√
‖R(i)‖2F + ‖E(i)‖2F ) ≈

(
(k + 1)pσ2 +

k∑
j=1

‖Xi −Xij‖42
4

Γ̄2(Xi)
)1/2

=: ε̂.

Thus we can set λ̂i = min{k+1,p}1/2
ε̂i

due to (5). We show in the supplementary material that∣∣∣ λ̂i−λ∗iλ∗i

∣∣∣ k→∞−−−−→ 0, where λ∗i = min{k+1,p}1/2
εi

as in (5).

6 Optimization algorithm

To solve the convex optimization problem (2) in a memory-economic way, we first write L(i) as a
function of S and eliminate them from the problem. We can do so by fixing S and minimizing the
objective function with respect to L(i)

L̂(i) = arg min
L(i)

λi‖X̃(i) − L(i) − S(i)‖2F + ‖C(L(i))‖∗

= arg min
L(i)

λi‖C(L(i))− C(X̃(i) − S(i))‖2F + ‖C(L(i))‖∗ + λi‖(I − C)(L(i) − (X̃(i) − S(i)))‖2F .

(14)
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Notice that L(i) can be decomposed as L(i) = C(L(i)) + (I − C)(L(i)), set A = C(L(i)), B =
(I − C)(L(i)), then (14) is equivalent to

(Â, B̂) = arg min
A,B

λi‖A− C(X̃(i) − S(i))‖2F + ‖A‖∗ + λi‖B − (I − C)(X̃∗(i) − S(i)))‖2F ,

which decouples into

Â = arg min
A

λi‖A− C(X̃(i) − S(i))‖2F + ‖A‖∗, B̂ = arg min
B

λi‖B − (I − C)(X̃(i) − S(i))‖2F .

The problems above have closed form solutions

Â = T1/2λi(C(X̃
(i) − Pi(S))), B̂ = (I − C)(X̃(i) − Pi(S)) (15)

where Tµ is the soft-thresholding operator on the singular values

Tµ(Z) = U max{Σ− µI, 0}V ∗, where UΣV ∗ is the SVD of Z.

Combing Â and B̂, we have derived the closed form solution for L̂(i)

L̂(i)(S) = T1/2λi(C(X̃
(i) − Pi(S))) + (I − C)(X̃(i) − Pi(S)). (16)

Plugging (16) into F in (2), the resulting optimization problem solely depends on S. Then we apply
FISTA [1, 18] to find the optimal solution Ŝ with

Ŝ = arg min
S

F (L̂(i)(S), S). (17)

Once Ŝ is found, if the data has no Gaussian noise, then the final estimation for X is X̂ ≡ X̃ − Ŝ; if
there is Gaussian noise, we use the following denoised local patches L̂(i)

τ∗

L̂
(i)
τ∗ = Hτ∗(C(X̃(i) − Pi(Ŝ))) + (I − C)(X̃(i) − Pi(Ŝ)), (18)

where Hτ∗ is the Singular Value Hard Thresholding Operator with the optimal threshold as defined
in [6]. This optimal thresholding removes the Gaussian noise from L̂

(i)
τ∗ . With the denoised L̂(i)

τ∗ , we
solve (3) to obtain the denoised data

X̂ = (

n∑
i=1

λiL̂
(i)
τ∗P

T
i )(

n∑
i=1

λiPiP
T
i )−1. (19)

The proposed Nonlinear Robust Principle Component Analysis (NRPCA) algorithm is summarized
in Algorithm 3. There is one caveat in solving (2): the strong sparse noise may result in a wrong

Algorithm 3: Nonlinear Robust PCA

Input: Noisy data matrix X̃ , k (number of neighbors in each local patch), T (number of
neighborhood updates iterations)

Output: the denoised data X̂ , the estimated sparse noise Ŝ
1 Estimate the curvature using (8);
2 Estimate λi, i = 1, . . . , n as in §5, set β as in (2);
3 Ŝ ← 0;
4 for iter = 1: T do
5 Find the kNN for each point using X̃ − Ŝ and construct the restriction operators {Pi}ni=1;
6 Construct the local data matrices X̃(i) = Pi(X̃) using Pi and the noisy data X̃;
7 Ŝ ← minimizer of (17) iteratively using FISTA;
8 end
9 Compute each L̂(i)

τ∗ from (18) and assign X̂ from (19).

neighborhood assignment when constructing the local patches. Therefore, once Ŝ is obtained and
removed from the data, we update the neighborhood assignment and re-compute Ŝ. This procedure is
repeated T times.
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7 Numerical experiment

Simulated Swiss roll: We demonstrate the superior performance of NRPCA on a synthetic dataset
following the mixed noise model (1). We sampled 2000 noiseless data Xi uniformly from a 3D Swiss
roll and generated the Gaussian noise matrix with i.i.d. entries obeying N (0, 0.25). The sparse noise
matrix S is generated by randomly replacing 100 entries of a zero p× n matrix with i.i.d. samples
generated from (−1)y · z where y ∼ Bernoulli(0.5) and z ∼ N (5, 0.09). We applied NRPCA to the
simulated data with patch size k = 15. Figure 2 reports the denoising results in the original space
(3D) looking down from above. We compare two ways of using the outputs of NRPCA: 1). only
remove the sparse noise from the data X̃ − Ŝ; 2). remove both the sparse and Gaussian noise from
the data: X̂ . In addition, we plotted X̃− Ŝ with and without the neighbourhood update. These results
are all superior to an ad-hoc application of the Robust PCA on the individual local patches.

Figure 2: NRPCA applied to the noisy 3D Swiss roll dataset. X̃ − Ŝ is the result after subtracting
the sparse noise estimated by setting T = 1 in NRPCA, i.e., no neighbour update; “X̃ − Ŝ with one
neighbor update” used the Ŝ obtained by setting T = 2 in NRPCA; clearly, the neighbour update
helped to remove more sparse noise; X̂ is the data obtained via fitting the denoised tangent spaces as
in (3). Compared to“X̃ − Ŝ with one neighbor update”, it further removed the Gaussian noise from
the data; ”Patch-wise Robust PCA” refers to the ad-hoc application of the vanilla Robust PCA to each
local patch independently, whose performance is worse than the proposed joint-recovery formulation.

The MNIST datasest: We observed some interesting dimension reduction result of MNIST with the
help of NRPCA. It is well-known that the handwritten digits 4 and 9 are so similar that the popular
dimension reduction methods Isomap and Laplacian Eigenmaps fail to separate them into two clusters
(first column of Figure 3). We conjecture that the similarity between the two clusters is caused by
personalized writing styles of the beginning and finishing strokes. As this type of variation can be
better modeled by sparse noise than Gaussian or Poisson noises, we applied NRPCA to the raw
MNIST images. The right column of Figure 3 shows that after the NRPCA denoising (with k = 11),
the separability of the two clusters in the first two coordinates of Isomap and Laplacian Eigenmaps
increases. In addition, these new embeddings seem to suggest that some trajectory patterns exist in
the data. We provide additional plots in the supplementary material to support this observation.

Biological data: We illustrate the potential usefulness of NRPCA algorithm on an embryoid body
(EB) differentiation dataset over a 27-day time course, which consists of gene expressions for 31,000
cells measured with single-cell RNA-sequencing technology (scRNAseq) [13, 16]. This EB data
comprising expression measurement for cells originated from embryoid at different stages is hence
developmental in nature, which should exhibit a progressive type of characters such as tree structure
because all cells arise from a single oocyte and then develop into different highly-differentiated
tissues. This progression character is often missing when we directly apply dimension reduction
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Figure 3: Laplacian eigenmaps and Isomap results for the original and the NRPCA denoised digits 4
and 9 from the MNIST dataset.

methods to the data as shown in Figure 4 because biological data including scRNAseq is highly noisy
and often is contaminated with outliers from different sources including environmental effects and
measurement error. In this case, we aim to reveal the progressive nature of the single-cell data from
transcript abundance as measured by scRNAseq.

We first normalized the scRNAseq data following the procedure described in [16] and randomly
selected 1000 cells using the stratified sampling framework to maintain the ratios among different
developmental stages. We applied our NRPCA method to the normalized subset of EB data and
then applied Locally Linear Embedding (LLE) to the denoised results. The two-dimensional LLE
results are shown in Figure 4. Our analysis demonstrated that although LLE is unable to show the
progression structure using noisy data, after the NRPCA denoising, LLE successfully extracted the
trajectory structure in the data, which reflects the underlying smooth differentiating processes of
embryonic cells. Interestingly, using the denoised data from X̃ − Ŝ with neighbor update, the LLE
embedding showed a branching at around day 9 and increased variance in later time points, which
was confirmed by manual analysis using 80 biomarkers in [16].

Figure 4: LLE results for denoised scRNAseq data set.

8 Conclusion

In this paper, we proposed the first outlier correction method for nonlinear data analysis that can
correct outliers caused by the addition of large sparse noise. The method is a generalization of the
Robust PCA method to the nonlinear setting. We provided procedures to treat the non-linearity
by working with overlapping local patches of the data manifold and incorporating the curvature
information into the denoising algorithm. We established a theoretical error bound on the denoised
data that holds under conditions only depending on the intrinsic properties of the manifold. We tested
our method on both synthetic and real dataset that were known to have nonlinear structures and
reported promising results.
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