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Abstract

We characterize the effectiveness of a classical algorithm for recovering the Markov
graph of a general discrete pairwise graphical model from i.i.d. samples. The algo-
rithm is (appropriately regularized) maximum conditional log-likelihood, which
involves solving a convex program for each node; for Ising models this is `1-
constrained logistic regression, while for more general alphabets an `2,1 group-
norm constraint needs to be used. We show that this algorithm can recover any
arbitrary discrete pairwise graphical model, and also characterize its sample com-
plexity as a function of model width, alphabet size, edge parameter accuracy, and
the number of variables. We show that along every one of these axes, it matches
or improves on all existing results and algorithms for this problem. Our analysis
applies a sharp generalization error bound for logistic regression when the weight
vector has an `1 (or `2,1) constraint and the sample vector has an `∞ (or `2,∞)
constraint. We also show that the proposed convex programs can be efficiently
solved in Õ(n2) running time (where n is the number of variables) under the same
statistical guarantees. We provide experimental results to support our analysis.

1 Introduction

Undirected graphical models provide a framework for modeling high dimensional distributions with
dependent variables and have many applications including in computer vision (Choi et al., 2010), bio-
informatics (Marbach et al., 2012), and sociology (Eagle et al., 2009). In this paper we characterize
the effectiveness of a natural, and already popular, algorithm for the structure learning problem.
Structure learning is the task of finding the dependency graph of a Markov random field (MRF)
given i.i.d. samples; typically one is also interested in finding estimates for the edge weights as
well. We consider the structure learning problem in general (non-binary) discrete pairwise graphical
models. These are MRFs where the variables take values in a discrete alphabet, but all interactions are
pairwise. This includes the Ising model as a special case (which corresponds to a binary alphabet).

The natural and popular algorithm we consider is (appropriately regularized) maximum conditional
log-likelihood for finding the neighborhood set of any given node. For the Ising model, this becomes
`1-constrained logistic regression; more generally for non-binary graphical models the regularizer
becomes an `2,1 norm. We show that this algorithm can recover all discrete pairwise graphical
models, and characterize its sample complexity as a function of the parameters of interest: model
width, alphabet size, edge parameter accuracy, and the number of variables. We match or improve
dependence on each of these parameters, over all existing results for the general alphabet case when
no additional assumptions are made on the model (see Table 1). For the specific case of Ising models,
some recent work has better dependence on some parameters (see Table 2 in Appendix A).

We now describe the related work, and then outline our contributions.
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Paper Assumptions Sample complexity (N )

Greedy
algorithm (Hamilton
et al., 2017)

1. Alphabet size k ≥ 2

O(exp(k
O(d) exp(O(d2λ))

ηO(1) ) ln(nkρ ))
2. Model width ≤ λ
3. Degree ≤ d
4. Minimum edge weight ≥ η > 0
5. Probability of success ≥ 1− ρ

Sparsitron (Klivans
and Meka, 2017)

1. Alphabet size k ≥ 2
O(λ

2k5 exp(14λ)
η4 ln(nkρη ))2. Model width ≤ λ

`2,1-constrained
logistic regression
(this paper)

3. Minimum edge weight ≥ η > 0

O(λ
2k4 exp(14λ)

η4 ln(nkρ ))4. Probability of success ≥ 1− ρ

Table 1: Sample complexity comparison for different graph recovery algorithms. The pairwise
graphical model has alphabet size k. For k = 2 (i.e., Ising models), our algorithm reduces to the
`1-constrained logistic regression (see Table 2 in Appendix A for related work on learning Ising
models). Our sample complexity has a better dependency on the alphabet size (Õ(k4) versus Õ(k5))
than that in (Klivans and Meka, 2017)2.

Related Work

In a classic paper, Ravikumar et al. (2010) considered the structure learning problem for Ising models.
They showed that `1-regularized logistic regression provably recovers the correct dependency graph
with a very small number of samples by solving a convex program for each variable. This algorithm
was later generalized to multi-class logistic regression with `2,1 group sparse regularization, for
learning MRFs with higher-order interactions and non-binary variables (Jalali et al., 2011). A well-
known limitation of (Ravikumar et al., 2010; Jalali et al., 2011) is that their theoretical guarantees
only work for a restricted class of models. Specifically, they require that the underlying learned model
satisfies technical incoherence assumptions, that are difficult to validate or check.

A large amount of recent work has since proposed various algorithms to obtain provable learning
results for general graphical models without requiring the incoherence assumptions. We now describe
the (most related part of the extensive) related work, followed by our results and comparisons (see
Table 1). For a discrete pairwise graphical model, let n be the number of variables and k be the
alphabet size; define the model width λ as the maximum neighborhood weight (see Definition 1
and 2 for the precise definition). For structure learning algorithms, a popular approach is to focus
on the sub-problem of finding the neighborhood of a single node. Once this is correctly learned, the
overall graph structure is a simple union bound. Indeed all the papers we now discuss are of this
type. As shown in Table 1, Hamilton et al. (2017) proposed a greedy algorithm to learn pairwise (and
higher-order) MRFs with general alphabet. Their algorithm generalizes the approach of Bresler (2015)
to learning Ising models. The sample complexity in (Hamilton et al., 2017) grows logarithmically
in n, but doubly exponentially in the width λ (only single exponential is necessary (Santhanam
and Wainwright, 2012)). Klivans and Meka (2017) provided a different algorithmic and theoretical
approach by setting this up as an online learning problem and leveraging results from the Hedge
algorithm therein. Their algorithm Sparsitron achieves single-exponential dependence on λ.

Our Contributions
• Our main result: We show that a classical algorithm `2,1-constrained3 logistic regression can

recover the edge weights of a discrete pairwise graphical model from i.i.d. samples (see Theorem 2).
For the special case of Ising models (see Theorem 1), this reduces to an `1-constrained logistic
regression. For the general setting with non-binary alphabet, since each edge has a group of
parameters, it is natural to use an `2,1 group sparse constraint to enforce sparsity at the level of

2Theorem 8.4 in (Klivans and Meka, 2017) has a typo. The correct dependence should be k5 instead of k3.
In Section 8 of (Klivans and Meka, 2017), after re-writing the conditional distribution as a sigmoid function, the
weight vector w is a vector of length (n− 1)k + 1. Their derivation uses an incorrect bound ‖w‖1 ≤ 2λ, while
it should be ‖w‖1 ≤ 2kλ. This gives rise to an additional k2 factor on the final sample complexity.

3It may be possible to prove a similar result for the regularized version of the optimization problem using
techniques from (Negahban et al., 2012). One needs to prove that the objective function satisfies restricted strong
convexity (RSC) when the samples are from a graphical model distribution (Vuffray et al., 2016; Lokhov et al.,
2018). It would be interesting to see if the proof presented in this paper is related to the RSC condition.
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groups. We make no incoherence assumption on the graphical models. As shown in Table 1,
our sample complexity scales as Õ(k4), which improves4 the previous best result with Õ(k5)
dependency5. Our analysis applies a sharp generalization error bound for logistic regression when
the weight vector has an `2,1 (or `1) constraint and the sample vector has an `2,∞ (or `∞) constraint
(see Lemma 8 and 11 in Appendix E). Our key insight is that a generalization bound can be used to
control the squared distance between the predicted and true logistic functions (see Lemma 1 and 2
in Appendix B), which then implies an `∞ norm bound between the weight vectors (see Lemma 5
and 6 in Appendix B).

• We show that the proposed algorithms can run in Õ(n2) time without affecting the statistical
guarantees (see Section 2.3). Note that Õ(n2) is an efficient runtime for graph recovery over n
nodes. Previous algorithms in (Hamilton et al., 2017; Klivans and Meka, 2017) also require Õ(n2)
runtime for structure learning of pairwise graphical models.

• We construct examples that violate the incoherence condition proposed in (Ravikumar et al., 2010)
(see Figure 1). We then run `1-constrained logistic regression and show that it can recover the
graph structure as long as given enough samples. This verifies our analysis and shows that our
conditions for graph recovery are weaker than those in (Ravikumar et al., 2010).

• We empirically compare the proposed algorithm with the Sparsitron algorithm in (Klivans and
Meka, 2017) over different alphabet sizes, and show that our algorithm needs fewer samples for
graph recovery (see Figure 2).

Notation. We use [n] to denote the set {1, 2, · · · , n}. For a vector x ∈ Rn, we use xi or x(i) to
denote its i-th coordinate. The `p norm of a vector is defined as ‖x‖p = (

∑
i |xi|p)1/p. We use

x−i ∈ Rn−1 to denote the vector after deleting the i-th coordinate. For a matrix A ∈ Rn×k, we use
Aij orA(i, j) to denote its (i, j)-th entry. We useA(i, :) ∈ Rk andA(:, j) ∈ Rn to the denote the i-th
row vector and the j-th column vector. The `p,q norm of a matrix A ∈ Rn×k is defined as ‖A‖p,q =
‖[‖A(1, :)‖p, ..., ‖A(n, :)‖p]‖q. We define ‖A‖∞ = maxij |A(i, j)|. We use 〈·, ·〉 to represent the
dot product between two vectors 〈x, y〉 =

∑
i xiyi or two matrices 〈A,B〉 =

∑
ij A(i, j)B(i, j).

2 Main results

We start with the special case of binary variables (i.e., Ising models), and then move to the general
case with non-binary variables.

2.1 Learning Ising models

We first give a definition of an Ising model distribution.
Definition 1. Let A ∈ Rn×n be a symmetric weight matrix with Aii = 0 for i ∈ [n]. Let θ ∈ Rn be
a mean-field vector. The n-variable Ising model is a distribution D(A, θ) on {−1, 1}n that satisfies

P
Z∼D(A,θ)

[Z = z] ∝ exp

 ∑
1≤i<j≤n

Aijzizj +
∑
i∈[n]

θizi

 . (1)

The dependency graph of D(A, θ) is an undirected graph G = (V,E), with vertices V = [n] and
edges E = {(i, j) : Aij 6= 0}. Define the width of D(A, θ) as

λ(A, θ) = max
i∈[n]

∑
j∈[n]

|Aij |+ |θi|

 . (2)

Let η(A, θ) be the minimum edge weight, i.e., η(A, θ) = min(i,j)∈E |Aij |.
4This improvement essentially comes from the fact that we are using an `2,1 norm constraint instead of

an `1 norm constraint for learning general (i.e., non-binary) pairwise graphical models (see our remark after
Theorem 2). The Sparsitron algorithm proposed by Klivans and Meka (2017) learns a `1-constrained generalized
linear model. This `1-constraint gives rise to a k5 dependency for learning non-binary pairwise graphical models.

5In an independent and concurrent work, Vuffray et al. (2019) generalize the Interaction Screening algo-
rithm (Vuffray et al., 2016). Their sample complexity is O(k4γ̂4 exp(12λ) ln(nk)/η4) for learning pairwise
non-binary graphical models (see Corollary 4 in their paper), where γ̂ is an upper bound on the `1 norm of the
node-wise weight vectors. Since γ̂ can scale as k2λ, their dependence on k can be much worse than ours.
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One property of an Ising model distribution is that the conditional distribution of any variable given
the rest variables follows a logistic function. Let σ(z) = 1/(1 + e−z) be the sigmoid function.
Fact 1. Let Z ∼ D(A, θ) and Z ∈ {−1, 1}n. For any i ∈ [n], the conditional probability of the i-th
variable Zi ∈ {−1, 1} given the states of all other variables Z−i ∈ {−1, 1}n−1 is

P[Zi = 1|Z−i = x] =
exp(

∑
j 6=iAijxj + θi)

exp(
∑
j 6=iAijxj + θi) + exp(−

∑
j 6=iAijxj − θi)

= σ(〈w, x′〉), (3)

where x′ = [x, 1] ∈ {−1, 1}n, and w = 2[Ai1, · · · , Ai(i−1), Ai(i+1), · · · , Ain, θi] ∈ Rn. Moreover,
w satisfies ‖w‖1 ≤ 2λ(A, θ), where λ(A, θ) is the model width defined in Definition 1.

Following Fact 1, the natural approach to estimating the edge weights Aij is to solve a logistic
regression problem for each variable. For ease of notation, let us focus on the n-th variable (the
algorithm directly applies to the rest variables). Given N i.i.d. samples {z1, · · · , zN}, where
zi ∈ {−1, 1}n from an Ising model D(A, θ), we first transform the samples into {(xi, yi)}Ni=1,
where xi = [zi1, · · · , zin−1, 1] ∈ {−1, 1}n and yi = zin ∈ {−1, 1}. By Fact 1, we know that
P[yi = 1|xi = x] = σ(〈w∗, x〉) where w∗ = 2[An1, · · · , An(n−1), θn] ∈ Rn satisfies ‖w∗‖1 ≤
2λ(A, θ). Suppose that λ(A, θ) ≤ λ, we are then interested in recovering w∗ by solving the following
`1-constrained logistic regression problem

ŵ ∈ arg min
w∈Rn

1

N

N∑
i=1

`(yi
〈
w, xi

〉
) s.t. ‖w‖1 ≤ 2λ, (4)

where ` : R→ R is the loss function

`(yi
〈
w, xi

〉
) = ln(1 + e−y

i〈w,xi〉) =

{
− lnσ(

〈
w, xi

〉
), if yi = 1

− ln(1− σ(
〈
w, xi

〉
)), if yi = −1

(5)

Eq. (5) is essentially the negative log-likelihood of observing yi given xi at the current w.

Let ŵ be a minimizer of (4). It is worth noting that in the high-dimensional regime (N < n), ŵ may
not be unique. In this case, we will show that any one of them would work. After solving the convex
problem in (4), the edge weight is estimated as Ânj = ŵj/2.

The pseudocode of the above algorithm is given in Algorithm 1. Solving the `1-constrained logistic
regression problem will give us an estimator of the true edge weight. We then form the graph by
keeping the edge that has estimated weight larger than η/2 (in absolute value).

Algorithm 1: Learning an Ising model via `1-constrained logistic regression

Input: N i.i.d. samples {z1, · · · , zN}, where zm ∈ {−1, 1}n for m ∈ [N ]; an upper bound on
λ(A, θ) ≤ λ; a lower bound on η(A, θ) ≥ η > 0.

Output: Â ∈ Rn×n, and an undirected graph Ĝ on n nodes.
1 for i← 1 to n do
2 ∀m ∈ [N ], xm ← [zm−i, 1], ym ← zmi
3 ŵ ← arg minw∈Rn

1
N

∑N
m=1 ln(1 + e−y

m〈w,xm〉) s.t. ‖w‖1 ≤ 2λ

4 ∀j ∈ [n], Âij ← ŵj̃/2, where j̃ = j if j < i and j̃ = j − 1 if j > i

5 end
6 Form an undirected graph Ĝ on n nodes with edges {(i, j) : |Âij | ≥ η/2, i < j}.

Theorem 1. Let D(A, θ) be an unknown n-variable Ising model distribution with dependency graph
G. Suppose that the D(A, θ) has width λ(A, θ) ≤ λ. Given ρ ∈ (0, 1) and ε > 0, if the number
of i.i.d. samples satisfies N = O(λ2 exp(12λ) ln(n/ρ)/ε4), then with probability at least 1 − ρ,
Algorithm 1 produces Â that satisfies

max
i,j∈[n]

|Aij − Âij | ≤ ε. (6)

Corollary 1. In the setup of Theorem 1, suppose that the Ising model distribution D(A, θ) has
minimum edge weight η(A, θ) ≥ η > 0. If we set ε < η/2 in (6), which corresponds to sample
complexity N = O(λ2 exp(12λ) ln(n/ρ)/η4), then with probability at least 1 − ρ, Algorithm 1
recovers the dependency graph, i.e., Ĝ = G.
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2.2 Learning pairwise graphical models over general alphabet

Definition 2. Let k be the alphabet size. LetW = {Wij ∈ Rk×k : i 6= j ∈ [n]} be a set of weight
matrices satisfying Wij = WT

ji . Without loss of generality, we assume that every row (and column)
vector of Wij has zero mean. Let Θ = {θi ∈ Rk : i ∈ [n]} be a set of external field vectors. Then the
n-variable pairwise graphical model D(W,Θ) is a distribution over [k]n where

P
Z∼D(W,Θ)

[Z = z] ∝ exp

 ∑
1≤i<j≤n

Wij(zi, zj) +
∑
i∈[n]

θi(zi)

 . (7)

The dependency graph of D(W,Θ) is an undirected graph G = (V,E), with vertices V = [n] and
edges E = {(i, j) : Wij 6= 0}. The width of D(W,Θ) is defined as

λ(W,Θ) = max
i,a

∑
j 6=i

max
b∈[k]
|Wij(a, b)|+ |θi(a)|

 . (8)

We define η(W,Θ) = min(i,j)∈E maxa,b |Wij(a, b)|.

Remark (centered rows and columns). The assumption that Wij has centered rows and columns
(i.e.,

∑
bWij(a, b) = 0 and

∑
aWij(a, b) = 0 for any a, b ∈ [k]) is without loss of generality (see

Fact 8.2 in (Klivans and Meka, 2017)). If the a-th row of Wij is not centered, i.e.,
∑
bWij(a, b) 6= 0,

we can define W ′ij(a, b) = Wij(a, b)−
∑
bWij(a, b)/k and θ′i(a) = θi(a) +

∑
bWij(a, b)/k, and

notice that D(W,Θ) = D(W ′,Θ′). Because the sets of matrices with centered rows and columns
(i.e., {M ∈ Rk×k :

∑
bM(a, b) = 0,∀a ∈ [k]} and {M ∈ Rk×k :

∑
aM(a, b) = 0,∀b ∈ [k]}) are

two linear subspaces, alternatively projecting Wij onto the two sets will converge to the intersection
of the two subspaces (Von Neumann, 1949). As a result, the condition of centered rows and
columns is necessary for recovering the underlying weight matrices, since otherwise different
parameters can give the same distribution. Note that in the case of k = 2, Definition 2 is the same
as Definition 1 for Ising models. To see their connection, simply define Wij ∈ R2×2 as follows:
Wij(1, 1) = Wij(2, 2) = Aij , Wij(1, 2) = Wij(2, 1) = −Aij .
For a pairwise graphical model distribution D(W,Θ), the conditional distribution of any variable
(when restricted to a pair of values) given all the other variables follows a logistic function, as shown
in Fact 2. This is analogous to Fact 1 for the Ising model distribution.
Fact 2. Let Z ∼ D(W,Θ) and Z ∈ [k]n. For any i ∈ [n], any α 6= β ∈ [k], and any x ∈ [k]n−1,

P[Zi = α|Zi ∈ {α, β}, Z−i = x] = σ(
∑
j 6=i

(Wij(α, xj)−Wij(β, xj)) + θi(α)− θi(β)). (9)

Given N i.i.d. samples {z1, · · · , zN}, where zm ∈ [k]n ∼ D(W,Θ) for m ∈ [N ], the goal is to
estimate matrices Wij for all i 6= j ∈ [n]. For ease of notation and without loss of generality, let us
consider the n-th variable. Now the goal is to estimate matrices Wnj for all j ∈ [n− 1].

To use Fact 2, fix a pair of values α 6= β ∈ [k], let S be the set of samples satisfying zn ∈ {α, β}.
We next transform the samples in S to {(xt, yt)}|S|t=1 as follows: xt = OneHotEncode([zt−n, 1]) ∈
{0, 1}n×k, yt = 1 if ztn = α, and yt = −1 if ztn = β. Here OneHotEncode(·) : [k]n → {0, 1}n×k
is a function that maps a value t ∈ [k] to the standard basis vector et ∈ {0, 1}k, where et has a single
1 at the t-th entry. For each sample (x, y) in the set S, Fact 2 implies that P[y = 1|x] = σ(〈w∗, x〉),
where w∗ ∈ Rn×k satisfies

w∗(j, :) = Wnj(α, :)−Wnj(β, :),∀j ∈ [n− 1]; w∗(n, :) = [θn(α)− θn(β), 0, ..., 0]. (10)

Suppose that the width of D(W,Θ) satisfies λ(W,Θ) ≤ λ, then w∗ defined in (10) satisfies
‖w∗‖2,1 ≤ 2λ

√
k, where ‖w∗‖2,1 :=

∑
j‖w∗(j, :)‖2. We can now form an `2,1-constrained logistic

regression over the samples in S:

wα,β ∈ arg min
w∈Rn×k

1

|S|

|S|∑
t=1

ln(1 + e−y
t〈w,xt〉) s.t. ‖w‖2,1 ≤ 2λ

√
k. (11)
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Let wα,β be a minimizer of (11). We then create a new matrix Uα,β ∈ Rn×k by centering the first
n− 1 rows of wα,β :

Uα,β(j, b) = wα,β(j, b)− 1

k

∑
a∈[k]

wα,β(j, a), ∀j ∈ [n− 1], ∀b ∈ [k]; (12)

Uα,β(n, b) = wα,β(n, b) +
1

k

∑
j∈[n−1],a∈[k]

wα,β(j, a), ∀b ∈ [k].

Since each row of the x matrix in (11) is a standard basis vector (i.e., all zeros except a single one),〈
Uα,β , x

〉
=
〈
wα,β , x

〉
, which implies that Uα,β is also a minimizer of (11).

The key step in our proof (see (30) in Appendix D) is to show that given enough samples, the obtained
Uα,β ∈ Rn×k matrix is close to w∗ defined in (10). Specifically, we will prove that

|Wnj(α, b)−Wnj(β, b)− Uα,β(j, b)| ≤ ε, ∀j ∈ [n− 1], ∀α, β, b ∈ [k]. (13)

Recall that our goal is to estimate the original matrices Wnj for all j ∈ [n− 1]. Summing (13) over
β ∈ [k] and using the fact that

∑
βWnj(β, b) = 0 gives

|Wnj(α, b)−
1

k

∑
β∈[k]

Uα,β(j, b)| ≤ ε, ∀j ∈ [n− 1], ∀α, b ∈ [k]. (14)

In other words, Ŵnj(α, :) =
∑
β∈[k] U

α,β(j, :)/k is a good estimate of Wnj(α, :).

The above algorithm is given in Algorithm 2. Suppose that η(W,Θ) ≥ η, once we obtain the estimates
Ŵij , the last step is to form a graph by keeping the edge (i, j) that satisfies maxa,b |Ŵij(a, b)| ≥ η/2.

Algorithm 2: Learning a pairwise graphical model via `2,1-constrained logistic regression

Input: alphabet size k; N i.i.d. samples {z1, · · · , zN}, where zm ∈ [k]n for m ∈ [N ]; an upper
bound on λ(W,Θ) ≤ λ; a lower bound on η(W,Θ) ≥ η > 0.

Output: Ŵij ∈ Rk×k for all i 6= j ∈ [n]; an undirected graph Ĝ on n nodes.
1 for i← 1 to n do
2 for each pair α 6= β ∈ [k] do
3 S ← {zm,m ∈ [N ] : zmi ∈ {α, β}}
4 ∀zt ∈ S, xt ← OneHotEncode([zt−i, 1]), yt ← 1 if zti = α; yt ← −1 if zti = β

5 wα,β ← arg minw∈Rn×k
1
|S|
∑|S|
t=1 ln(1 + e−y

t〈w,xt〉) s.t. ‖w‖2,1 ≤ 2λ
√
k

6 Define Uα,β ∈ Rn×k by centering the first n− 1 rows of wα,β (see (12)).
7 end
8 for j ∈ [n]\i and α ∈ [k] do
9 Ŵij(α, :)← 1

k

∑
β∈[k] U

α,β(j̃, :), where j̃ = j if j < i and j̃ = j − 1 if j > i.
10 end
11 end
12 Form graph Ĝ on n nodes with edges {(i, j) : maxa,b |Ŵij(a, b)| ≥ η/2, i < j}.

Theorem 2. Let D(W,Θ) be an n-variable pairwise graphical model distribution with width
λ(W,Θ) ≤ λ. Given ρ ∈ (0, 1) and ε > 0, if the number of i.i.d. samples satisfies N =

O(λ2k4 exp(14λ) ln(nk/ρ)/ε4), then with probability at least 1− ρ, Algorithm 2 produces Ŵij ∈
Rk×k that satisfies

|Wij(a, b)− Ŵij(a, b)| ≤ ε, ∀i 6= j ∈ [n], ∀a, b ∈ [k]. (15)

Corollary 2. In the setup of Theorem 2, suppose that the pairwise graphical model distribution
D(W,Θ) satisfies η(W,Θ) ≥ η > 0. If we set ε < η/2 in (15), which corresponds to sample
complexity N = O(λ2k4 exp(14λ) ln(nk/ρ)/η4), then with probability at least 1− ρ, Algorithm 2
recovers the dependency graph, i.e., Ĝ = G.
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Remark (`2,1 versus `1 constraint). The w∗ ∈ Rn×k matrix defined in (10) satisfies ‖w∗‖2,1 ≤
2λ
√
k and ‖w∗‖1 ≤ 2λk. Instead of solving the `2,1-constrained logistic regression defined in

(11), we could solve an `1-constrained logistic regression with ‖w‖1 ≤ 2λk. This additional
√
k

dependence in the constraint (i.e., 2λk versus 2λ
√
k) will lead to a worse sample complexity Õ(k5) .

Remark (dependence on the alphabet size). A simple lower bound of the sample complexity is
Ω(k2). To see why, consider a graph with two nodes (i.e., n = 2). Let W be a k-by-k weight matrix
between the two nodes, defined as follows: W (1, 1) = W (2, 2) = 1, W (1, 2) = W (2, 1) = −1,
and W (i, j) = 0 otherwise. This definition satisfies the condition that every row and column is
centered (Definition 2). Besides, we have λ = 1 and η = 1, which means that the two quantities
do not scale in k. To distinguish W from the zero matrix, we need to observe samples in the set
{(1, 1), (2, 2), (1, 2), (2, 1)}. This requires Ω(k2) samples because any specific sample (a, b) (where
a ∈ [k] and b ∈ [k]) has a probability of approximately 1/k2 to show up.

2.3 Learning pairwise graphical models in Õ(n2) time

Our results so far assume that the `1-constrained logistic regression (in Algorithm 1) and the `2,1-
constrained logistic regression (in Algorithm 2) is exactly solved. This would require Õ(n4) com-
plexity if an interior-point based method is used (Koh et al., 2007). Our key result in this section is
Theorem 3, which says that the statistical guarantees in Theorem 1 and 2 still hold if the constrained
logistic regression is only approximately solved.

Theorem 3 (Informal). Suppose that the constrained logistic regression in Algorithm 1 and 2 is
optimized by the mirror descent method given in Appendix J. Given ρ ∈ (0, 1) and ε > 0, if the
number of mirror descent iterations satisfies T = O(λ2k3 exp(O(λ)) ln(n)/ε4), then (6) and (15)
still hold with probability at least 1− ρ. The time and space complexity of Algorithm 1 is O(TNn2)
andO(TN+n2). The time and space complexity of Algorithm 2 isO(TNn2k2) andO(TN+n2k2).

Proof of Theorem 3 requires bounding ‖w̄ − w∗‖∞ (where w̄ is the value after T mirror descent
iterations). This is non-trivial because we are in the high-dimensional regime as the number of
samples N = O(ln(n)), the empirical loss functions in (11) and (4) are not strongly convex. Due to
the space limit, more details of this section can be found in Appendix I, J and K.

Note that Õ(n2) is an efficient time complexity for graph recovery over n nodes. Previous structural
learning algorithms of Ising models require either Õ(n2) complexity (Bresler, 2015; Klivans and
Meka, 2017) or a worse time complexity (Ravikumar et al., 2010; Vuffray et al., 2016).

It is possible to improve the time complexity given in Theorem 3 (especially the dependence on
ε and λ), by using stochastic or accelerated versions of mirror descent algorithms (instead of the
batch version given in Appendix J). In fact, the Sparsitron algorithm proposed by Klivans and Meka
(2017) can be seen as an online mirror descent algorithm for optimizing the `1-constrained logistic
regression (see Algorithm 3 in Appendix J). Furthermore, Algorithm 1 and 2 can be parallelized as
every node has an independent regression problem.

We would like to remark that our goal here is not to give the fastest first-order optimization algorithm.
Instead, our goal is to provably show that it is possible to run Algorithm 1 and Algorithm 2 in Õ(n2)
time without affecting the original statistical guarantees.

3 Proof outline

We give a proof outline for Theorem 1. The proof of Theorem 2 follows a similar outline. Let D be
a distribution over {−1, 1}n × {−1, 1}, where (x, y) ∼ D satisfies P[y = 1|x] = σ(〈w∗, x〉). Let
L(w) = E(x,y)∼D ln(1 + e−y〈w,x〉) and L̂(w) =

∑N
i=1 ln(1 + e−y

i〈w,xi〉)/N be the expected and
empirical logistic loss. Suppose ‖w∗‖1 ≤ 2λ. Let ŵ ∈ arg minw L̂(w) s.t. ‖w‖1 ≤ 2λ. Our goal is
to prove that ‖ŵ−w∗‖∞ is small when the samples are constructed from an Ising model distribution.

Our proof can be summarized in three steps:
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1. If the number of samples satisfies N = O(λ2 ln(n/ρ)/γ2), then L(ŵ) − L(w∗) ≤ O(γ).
This is obtained using a sharp generalization bound when ‖w‖1 ≤ 2λ and ‖x‖∞ ≤ 1 (see
Lemma 8 in Appendix E).

2. For any w, we show that L(w)−L(w∗) ≥ Ex[σ(〈w, x〉)−σ(〈w∗, x〉)]2 (see Lemma 10 and
Lemma 9 in Appendix E). Hence, Step 1 implies that Ex[σ(〈ŵ, x〉)− σ(〈w∗, x〉)]2 ≤ O(γ)
(see Lemma 1 in Appendix B).

3. We now use a result from (Klivans and Meka, 2017) (see Lemma 5 in Appendix B),
which says that if the samples are from an Ising model and if γ = O(ε2 exp(−6λ)), then
Ex[σ(〈ŵ, x〉)− σ(〈w∗, x〉)]2 ≤ O(γ) implies that ‖ŵ − w∗‖∞ ≤ ε. The required number
of samples is N = O(λ2 ln(n/ρ)/γ2) = O(λ2 exp(12λ) ln(n/ρ)/ε4).

For the general setting with non-binary alphabet (i.e., Theorem 2), the proof is similar to that
of Theorem 1. The main difference is that we need to use a sharp generalization bound when
‖w‖2,1 ≤ 2λ

√
k and ‖x‖2,∞ ≤ 1 (see Lemma 11 in Appendix E). This would give us Lemma 2 in

Appendix B which bounds the squared distance between the two sigmoid functions. The last step is
to use Lemma 6 to bound the infinity norm between the two weight matrices.

4 Experiments

In both of the simulations below, the external field is set to be zero. Sampling is done via exactly
computing the distribution. We implement the algorithm in Matlab. All experiments are done using a
personal desktop. Source code can be found at https://github.com/wushanshan/GraphLearn.

Learning Ising models. In Figure 1 we construct a diamond-shape graph and plot the incoherence
value at Node 1. This value becomes bigger than 1 (and hence violates the incoherence condition
in (Ravikumar et al., 2010)) when we increase the graph size n and edge weight a. We then run 100
times of Algorithm 1 and plot the fraction of runs that exactly recovers the underlying graph structure.
In each run we generate a different set of samples. The result shown in Figure 1 is consistent with our
analysis and also indicates that our conditions for graph recovery are weaker than those in (Ravikumar
et al., 2010).
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Figure 1: Left: The graph structure used in this simulation. It has n nodes and 2(n− 2) edges. Every
edge has the same weight a > 0. Middle: Incoherence value at Node 1. The incoherence condition
required by (Ravikumar et al., 2010) is violated for n ≥ 10 and a ≥ 0.2. Right: We simulate 100
runs of Algorithm 1 for edge weight a = 0.2 across different n values.

Learning general pairwise graphical models. We compare our algorithm (Algorithm 2) with the
Sparsitron algorithm in (Klivans and Meka, 2017) on a two-dimensional 3-by-3 grid (shown in
Figure 2). We test two alphabet sizes in the experiments: k = 4, 6. For each value of k, we simulate
both algorithms 100 runs, and in each run we generate random Wij matrices with entries ±0.2.
To ensure that each row (as well as each column) of Wij is centered (Definition 2), we randomly
choose Wij between two options: for example, if k = 2, then Wij = [0.2,−0.2;−0.2, 0.2] or
Wij = [−0.2, 0.2; 0.2,−0.2]. As shown in the Figure 2, our algorithm requires fewer samples for
successfully recovering the graphs. More details about this experiment can be found in Appendix L.
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Figure 2: Left: A two-dimensional 3-by-3 grid graph used in the simulation. Middle and right: Our
algorithm needs fewer samples than the Sparsitron algorithm (Klivans and Meka, 2017) for graph
recovery.

5 Conclusion

The main contribution of this paper is to show that an existing and popular algorithm (i.e., group-sparse
regularized logistic regression) actually gives the state-of-the-art performance (in a setting where
alternative algorithms are being proposed). Specifically, we have shown that the `2,1-constrained
logistic regression can recover the Markov graph of any discrete pairwise graphical model from i.i.d.
samples. For the special case of Ising model, the algorithm reduces to the `1-constrained logistic
regression. This algorithm has better sample complexity than the previous state-of-the-art result (k4

versus k5), and can be efficiently optimized in Õ(n2) time. One interesting direction for future work
is to see if the 1/η4 dependency in the sample complexity can be improved. It is also interesting to
see a thorough empirical evaluation of different structural learning algorithms.

Another interesting direction is to consider MRFs with higher-order interactions. Intuitively, it should
not be difficult to prove that `1-constrained logistic regression can recover the structure of binary
t-wise MRFs. One can prove it by combining results from Section 7 of (Klivans and Meka, 2017) and
the following fact: the Sparsitron algorithm can be viewed as an online mirror descent algorithm that
approximately solves an `1-constrained logistic regression. This observation is actually the starting
point of our paper. For higher-order MRFs with non-binary alphabet, we conjecture that similar result
can be proved for group-sparse regularized logistic regression. Extending the current proof/method
to higher-order MRFs is definitely an interesting direction for future research.
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