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Abstract

We study the sample complexity of approximate policy iteration (PI) for the
Linear Quadratic Regulator (LQR), building on a recent line of work using LQR
as a testbed to understand the limits of reinforcement learning (RL) algorithms
on continuous control tasks. Our analysis quantifies the tension between policy
improvement and policy evaluation, and suggests that policy evaluation is the
dominant factor in terms of sample complexity. Specifically, we show that to obtain
a controller that is within ε of the optimal LQR controller, each step of policy
evaluation requires at most (n + d)3/ε2 samples, where n is the dimension of
the state vector and d is the dimension of the input vector. On the other hand,
only log(1/ε) policy improvement steps suffice, resulting in an overall sample
complexity of (n + d)3ε−2 log(1/ε). We furthermore build on our analysis and
construct a simple adaptive procedure based on ε-greedy exploration which relies
on approximate PI as a sub-routine and obtains T 2/3 regret, improving upon a
recent result of Abbasi-Yadkori et al. [3].

1 Introduction

With the recent successes of reinforcement learning (RL) on continuous control tasks, there has been
a renewed interest in understanding the sample complexity of RL methods. A recent line of work
has focused on the Linear Quadratic Regulator (LQR) as a testbed to understand the behavior and
trade-offs of various RL algorithms in the continuous state and action space setting. These results
can be broadly grouped into two categories: (1) the study of model-based methods which use data to
build an estimate of the transition dynamics, and (2) model-free methods which directly estimate the
optimal feedback controller from data without building a dynamics model as an intermediate step.
Much of the recent progress in LQR has focused on the model-based side, with an analysis of robust
control from Dean et al. [12] and certainty equivalence control by Fiechter [17] and Mania et al.
[26]. These techniques have also been extended to the online, adaptive setting [1, 4, 11, 13, 31]. On
the other hand, for classic model-free RL algorithms such as Q-learning, SARSA, and approximate
policy iteration (PI), our understanding is much less complete within the context ofd LQR. This is
despite the fact that these algorithms are well understood in the tabular (finite state and action space)
setting. Indeed, most of the model-free analysis for LQR [16, 24, 35] has focused exclusively on
derivative-free random search methods.

In this paper, we extend our understanding of model-free algorithms for LQR by studying the
performance of approximate PI on LQR, which is a classic approximate dynamic programming
algorithm. Approximate PI is a model-free algorithm which iteratively uses trajectory data to estimate
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the state-value function associated to the current policy (via e.g. temporal difference learning), and
then uses this estimate to greedily improve the policy. A key issue in analyzing approximate PI is
to understand the trade-off between the number of policy improvement iterations, and the amount
of data to collect for each policy evaluation phase. Our analysis quantifies this trade-off, showing
that if least-squares temporal difference learning (LSTD-Q) [9, 20] is used for policy evaluation,
then a trajectory of length Õ((n+ d)3/ε2) for each inner step of policy evaluation combined with
O(log(1/ε)) outer steps of policy improvement suffices to learn a controller that has ε-error from
the optimal controller. This yields an overall sample complexity of O((n+ d)3ε−2 log(1/ε)). Prior
to our work, the only known guarantee for approximate PI on LQR was the asymptotic consistency
result of Bradtke [10] in the setting of no process noise.

We also extend our analysis of approximate PI to the online, adaptive LQR setting popularized by
Abbasi-Yadkori and Szepesvári [1]. By using a greedy exploration scheme similar to Dean et al. [13]
and Mania et al. [26], we prove a Õ(T 2/3) regret bound for a simple adaptive policy improvement
algorithm. While the T 2/3 rate is sub-optimal compared to the T 1/2 regret from model-based methods
[1, 11, 26], our analysis improves the Õ(T 2/3+ε) regret (for T ≥ C1/ε) from the model-free Follow
the Leader (FTL) algorithm of Abbasi-Yadkori et al. [3]. To the best of our knowledge, we give the
best regret guarantee known for a model-free algorithm. We leave open the question of whether or
not a model-free algorithm can achieve optimal T 1/2 regret.

2 Main Results

In this paper, we consider the following linear dynamical system:

xt+1 = Axt +But + wt , wt ∼ N (0, σ2
wI) , x0 ∼ N (0,Σ0) . (2.1)

We let n denote the dimension of the state xt and d denote the dimension of the input ut. For
simplicity we assume that d ≤ n, e.g. the system is under-actuated. We fix two positive definite cost
matrices (S,R), and consider the infinite horizon average-cost Linear Quadratic Regulator (LQR):

J? := min
{ut(·)}

lim
T→∞

E

[
1

T

T∑
t=1

xTt Sxt + uTt Rut

]
subject to (2.1) . (2.2)

We assume the dynamics matrices (A,B) are unknown to us, and our method of interaction with
(2.1) is to choose an input sequence {ut} and observe the resulting states {xt}.
We study the solution to (2.2) using least-squares policy iteration (LSPI), a well-known approximate
dynamic programming method in RL introduced by Lagoudakis and Parr [20]. The study of approxi-
mate PI on LQR dates back to the Ph.D. thesis of Bradtke [10], where he showed that for noiseless
LQR (when wt = 0 for all t), the approximate PI algorithm is asymptotically consistent. In this paper
we expand on this result and quantify non-asymptotic rates for approximate PI on LQR. Proofs of all
results can be found in the extended version of this paper [19].

Notation. For a positive scalar x > 0, we let x+ = max{1, x}. A square matrix L is called stable
if ρ(L) < 1 where ρ(·) denotes the spectral radius of L. For a symmetric matrix M ∈ Rn×n, we
let dlyap(L,M) denote the unique solution to the discrete Lyapunov equation P = LTPL + M .
We also let svec(M) ∈ Rn(n+1)/2 denote the vectorized version of the upper triangular part of
M so that ‖M‖2F = 〈svec(M), svec(M)〉. Finally, smat(·) denotes the inverse of svec(·), so that
smat(svec(M)) = M .

2.1 Least-Squares Temporal Difference Learning (LSTD-Q)

The first component towards an understanding of approximate PI is to understand least-squares
temporal difference learning (LSTD-Q) for Q-functions, which is the fundamental building block of
LSPI. Given a deterministic policy Keval which stabilizes (A,B), the goal of LSTD-Q is to estimate
the parameters of the Q-function associated to Keval. Bellman’s equation for infinite-horizon average
cost MDPs (c.f. Bertsekas [6]) states that the (relative) Q-function associated to a policy π satisfies
the following fixed-point equation:

λ+Q(x, u) = c(x, u) + Ex′∼p(·|x,u)[Q(x′, π(x′))] . (2.3)
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Here, λ ∈ R is a free parameter chosen so that the fixed-point equation holds. LSTD-Q operates
under the linear architecture assumption, which states that the Q-function can be described as
Q(x, u) = qTφ(x, u), for a known (possibly non-linear) feature map φ(x, u). It is well known that
LQR satisfies the linear architecture assumption, since we have:

Q(x, u) = svec(Q)Tsvec

([
x
u

] [
x
u

]T)
, Q =

[
S 0
0 R

]
+

[
AT

BT

]
V [A B] ,

V = dlyap(A+BKeval, S +KT
evalRKeval) , λ =

〈
Q, σ2

w

[
I

Keval

] [
I

Keval

]T〉
.

Here, we slightly abuse notation and let Q denote the Q-function and also the matrix parameterizing
the Q-function. Now suppose that a trajectory {(xt, ut, xt+1)}Tt=1 is collected. Note that LSTD-Q is
an off-policy method (unlike the closely related LSTD estimator for value functions), and therefore the
inputs ut can come from any sequence that provides sufficient excitation for learning. In particular, it
does not have to come from the policy Keval. In this paper, we will consider inputs of the form:

ut = Kplayxt + ηt , ηt ∼ N (0, σ2
ηI) , (2.4)

where Kplay is a stabilizing controller for (A,B). Once again we emphasize that Kplay 6= Keval in
general. Furthermore, the policy under Keval is stochastic while the policy under Kplay is stochastic,
where the injected noise ηt is needed in order to provide sufficient excitation for learning. In order to
describe the LSTD-Q estimator, we define the following quantities which play a key role throughout
the paper:

φt := φ(xt, ut) , ψt := φ(xt,Kevalxt) ,

f := svec

(
σ2
w

[
I

Keval

] [
I

Keval

]T)
, ct := xTt Sxt + uTt Rut .

The LSTD-Q estimator estimates q via:

q̂ :=

(
T∑
t=1

φt(φt − ψt+1 + f)T

)† T∑
t=1

φtct . (2.5)

Here, (·)† denotes the Moore-Penrose pseudo-inverse. Our first result establishes a non-asymptotic
bound on the quality of the estimator q̂, measured in terms of ‖q̂ − q‖. Before we state our result, we
introduce a key definition that we will use extensively.
Definition 1. Let L be a square matrix. Let τ ≥ 1 and ρ ∈ (0, 1). We say that L is (τ, ρ)-stable if

‖Lk‖ ≤ τρk , k = 0, 1, 2, ... .

While stability of a matrix is an asymptotic notion, Definition 1 quantifies the degree of stability
by characterizing the transient response of the powers of a matrix by the parameter τ . It is closely
related to the notion of strong stability from Cohen et al. [11].

With Definition 1 in place, we state our first result for LSTD-Q.
Theorem 2.1. Fix a δ ∈ (0, 1). Let policies Kplay and Keval stabilize (A,B), and assume that both
A + BKplay and A + BKeval are (τ, ρ)-stable. Let the initial state x0 ∼ N (0,Σ0) and consider
the inputs ut = Kplayxt + ηt with ηt ∼ N (0, σ2

ηI). For simplicity, assume that ση ≤ σw. Let P∞
denote the steady-state covariance of the trajectory {xt}:

P∞ = dlyap((A+BKplay)T, σ2
wI + σ2

ηBB
T) . (2.6)

Define the proxy variance σ2 by:

σ2 := τ2ρ4‖Σ0‖+ ‖P∞‖+ σ2
η‖B‖2 . (2.7)

Suppose that T satisfies:

T ≥ Õ(1) max

{
(n+ d)2,

τ4

ρ4(1− ρ2)2
(n+ d)4

σ4
η

σ2
wσ

2‖Kplay‖4+‖Keval‖8+(‖A‖4 + ‖B‖4)+

}
.

(2.8)
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Then we have with probability at least 1− δ,

‖q̂ − q‖ ≤ Õ(1)
τ2

ρ2(1− ρ2)

(n+ d)

σ2
η

√
T
σwσ‖Kplay‖2+‖Keval‖4+(‖A‖2 + ‖B‖2)+‖QKeval‖F . (2.9)

Here the Õ(1) hides polylog(n, τ, ‖Σ0‖, ‖P∞‖, ‖Kplay‖, T/δ, 1/ση) factors.

Theorem 2.1 states that:

T ≤ Õ
(

(n+ d)4,
1

σ4
η

(n+ d)3

ε2

)
timesteps are sufficient to achieve error ‖q̂ − q‖ ≤ ε w.h.p. Several remarks are in order. First, while
the (n + d)4 burn-in is likely sub-optimal, the (n + d)3/ε2 dependence is sharp as shown by the
asymptotic results of Tu and Recht [35]. Second, the 1/σ4

η dependence on the injected excitation
noise will be important when we study the online, adaptive setting in Section 2.3. We leave improving
the polynomial dependence of the burn-in period to future work.

The proof of Theorem 2.1 rests on top of several recent advances. First, we build off the work of
Abbasi-Yadkori et al. [3] to derive a new basic inequality for LSTD-Q which serves as a starting
point for the analysis. Next, we combine the small-ball techniques of Simchowitz et al. [33] with
the self-normalized martingale inequalities of Abbasi-Yadkori et al. [2]. While an analysis of LSTD-
Q is presented in Abbasi-Yadkori et al. [3] (which builds on the analysis for LSTD from Tu and
Recht [34]), a direct application of their result yields a 1/σ8

η dependence; the use of self-normalized
inequalities is necessary in order to reduce this dependence to 1/σ4

η .

2.2 Least-Squares Policy Iteration (LSPI)

With Theorem 2.1 in place, we are ready to present the main results for LSPI. We describe two
versions of LSPI in Algorithm 1 and Algorithm 2.

Algorithm 1 LSPIv1 for LQR

Input: K0: initial stabilizing controller,
N : number of policy iterations,
T : length of rollout,
σ2
η: exploration variance,
µ: lower eigenvalue bound.

1: Collect D = {(xk, uk, xk+1)}Tk=1 with in-
put uk = K0xk + ηk, ηk ∼ N (0, σ2

ηI).
2: for t = 0, ..., N − 1 do
3: Q̂t = Projµ(LSTDQ(D,Kt)).
4: Kt+1 = G(Q̂t). [See (2.10).]
5: end for
6: return KN .

Algorithm 2 LSPIv2 for LQR

Input: K0: initial stabilizing controller,
N : number of policy iterations,
T : length of rollout,
σ2
η: exploration variance,
µ: lower eigenvalue bound.

1: for t = 0, ..., N − 1 do
2: Collect Dt = {(x(t)k , u

(t)
k , x

(t)
k+1)}Tk=1,

u
(t)
k = K0x

(t)
k + η

(t)
k ,η(t)k ∼ N (0, σ2

ηI).
3: Q̂t = Projµ(LSTDQ(D,Kt)).
4: Kt+1 = G(Q̂t).
5: end for
6: return KN .

In Algorithms 1 and 2, Projµ(·) = arg minX=XT:X�µ·I‖X − ·‖F is the Euclidean projection
onto the set of symmetric matrices lower bounded by µ · I . Furthermore, the map G(·) takes an
(n+ d)× (n+ d) positive definite matrix and returns a d× n matrix:

G

([
Q11 Q12

QT
12 Q22

])
= −Q−122 Q

T
12 . (2.10)

Algorithm 1 corresponds to the version presented in Lagoudakis and Parr [20], where all the data
D is collected up front and is re-used in every iteration of LSTD-Q. Algorithm 2 is the one we will
analyze in this paper, where new data is collected for every iteration of LSTD-Q. The modification
made in Algorithm 2 simplifies the analysis by allowing the controller Kt to be independent of the
data Dt in LSTD-Q. We remark that this does not require the system to be reset after every iteration
of LSTD-Q. We leave analyzing Algorithm 1 to future work.
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Before we state our main finite-sample guarantee for Algorithm 2, we review the notion of a (relative)
value-function. Similarly to (relative)Q-functions, the infinite horizon average-cost Bellman equation
states that the (relative) value function V associated to a policy π satisfies the fixed-point equation:

λ+ V (x) = c(x, π(x)) + Ex′∼p(·|x,π(x))[V (x′)] . (2.11)

For a stabilizing policy K, it is well known that for LQR the value function V (x) = xTV x with

V = dlyap(A+BK,S +KTRK) , λ = 〈σ2
wI, V 〉 .

Once again as we did for Q-functions, we slightly abuse notation and let V denote the value function
and the matrix that parameterizes the value function. Our main result for Algorithm 2 appears in the
following theorem. For simplicity, we will assume that ‖S‖ ≥ 1 and ‖R‖ ≥ 1.

Theorem 2.2. Fix a δ ∈ (0, 1). Let the initial policy K0 input to Algorithm 2 stabilize (A,B).
Suppose the initial state x0 ∼ N (0,Σ0) and that the excitation noise satisfies ση ≤ σw. Recall that
the steady-state covariance of the trajectory {xt} is

P∞ = dlyap((A+BK0)T, σ2
wI + σ2

ηBB
T) .

Let V0 denote the value function associated to the initial policy K0, and V? denote the value function
associated to the optimal policy K? for the LQR problem (2.2). Define the variables µ,L as:

µ := min{λmin(S), λmin(R)} ,
L := max{‖S‖, ‖R‖}+ 2(‖A‖2 + ‖B‖2 + 1)‖V0‖+ .

Fix an ε > 0 that satisfies:

ε ≤ 5

(
L

µ

)2

min

{
1,

2 log(‖V0‖/λmin(V?))

e
,

‖V?‖2
8µ2 log(‖V0‖/λmin(V?))

}
. (2.12)

Suppose we run Algorithm 2 for N := N0 + 1 policy improvement iterations where

N0 :=

⌈
(1 + L/µ) log

(
2 log(‖V0‖/λmin(V?))

ε

)⌉
, (2.13)

and we set the rollout length T to satisfy:

T ≥ Õ(1) max

{
(n+ d)2,

L2

(1− µ/L)2

(
L

µ

)17
(n+ d)4

σ4
η

σ2
w(‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2),

1

ε2
L4

(1− µ/L)2

(
L

µ

)42
(n+ d)3

σ4
η

σ2
w(‖Σ0‖+ ‖P∞‖+ σ2

η‖B‖2)

}
. (2.14)

Then with probability 1 − δ, we have that each policy Kt for t = 1, ..., N stabilizes (A,B) and
furthermore:

‖KN −K?‖ ≤ ε .

Here the Õ(1) hides polylog(n, τ, ‖Σ0‖, ‖P∞‖, L/µ, T/δ,N0, 1/ση) factors.

Theorem 2.2 states roughly that T · N ≤ Õ( (n+d)3

ε2 log(1/ε)) samples are sufficient for LSPI to
recover a controller K that is within ε of the optimal K?. That is, only log(1/ε) iterations of policy
improvement are necessary, and furthermore more iterations of policy improvement do not necessary
help due to the inherent statistical noise of estimating the Q-function for every policy Kt. We
note that the polynomial factor in L/µ is by no means optimal and was deliberately made quite
conservative in order to simplify the presentation of the bound. A sharper bound can be recovered
from our analysis techniques at the expense of a less concise expression.

It is worth taking a moment to compare Theorem 2.2 to classical results in the RL literature regarding
approximate policy iteration. For example, a well known result (c.f. Theorem 7.1 of Lagoudakis and
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Parr [20]) states that if LSTD-Q is able to return Q-function estimates with error L∞ bounded by ε
at every iteration, then letting Q̂t denote the approximate Q-function at the t-th iteration of LSPI:

lim sup
t→∞

‖Q̂t −Q?‖∞ ≤
2γε

(1− γ)2
. (2.15)

Here, γ is the discount factor of the MDP. Theorem 2.2 is qualitatively similar to this result in that
we show roughly that ε error in the Q-function estimate translates to ε error in the estimated policy.
However, there are several fundamental differences. First, our analysis does not rely on discounting
to show contraction of the Bellman operator. Instead, we use the (τ, ρ)-stability of closed loop system
to achieve this effect. Second, our analysis does not rely on L∞ bounds on the estimated Q-function,
although we remark that similar type of results to (2.15) exist also in Lp (see e.g. [27, 29]). Finally,
our analysis is non-asymptotic.

The proof of Theorem 2.2 combines the estimation guarantee of Theorem 2.1 with a new analysis
of policy iteration for LQR, which we believe is of independent interest. Our new policy iteration
analysis combines the work of Bertsekas [7] on policy iteration in infinite horizon average cost MDPs
with the contraction theory of Lee and Lim [22] for non-linear matrix equations.

2.3 LSPI for Adaptive LQR

We now turn our attention to the online, adaptive LQR problem as studied in Abbasi-Yadkori and
Szepesvári [1]. In the adaptive LQR problem, the quantity of interest is the regret, defined as:

Regret(T ) :=

T∑
t=1

xTt Sxt + uTt Rut − T · J? . (2.16)

Here, the algorithm is penalized for the cost incurred from learning the optimal policy K?, and
must balance exploration (to better learn the optimal policy) versus exploitation (to reduce cost). As
mentioned previously, there are several known algorithms which achieve Õ(

√
T ) regret [1, 4, 11,

26, 31]. However, these algorithms operate in a model-based manner, using the collected data to
build a confidence interval around the true dynamics (A,B). On the other hand, the performance of
adaptive algorithms which are model-free is less well understood. We use the results of the previous
section to give an adaptive model-free algorithm for LQR which achieves Õ(T 2/3) regret, which
improves upon the Õ(T 2/3+ε) regret (for T ≥ C1/ε) achieved by the adaptive model-free algorithm
of Abbasi-Yadkori et al. [3]. Our adaptive algorithm based on LSPI is shown in Algorithm 3.

Algorithm 3 Online Adaptive Model-free LQR Algorithm

Input: Initial stabilizing controller K(0), number of epochs E, epoch multiplier Tmult, lower eigen-
value bound µ.

1: for i = 0, ..., E − 1 do
2: Set Ti = Tmult2

i.
3: Set σ2

η,i = σ2
w

(
1
2i

)1/3
.

4: Set K(i+1) = LSPIv2(K0=K(i), N=Õ((i+ 1)Γ?/µ), T=Ti, σ
2
η=σ2

η,i).
5: end for

Using an analysis technique similar to that in Dean et al. [13], we prove the following Õ(T 2/3) regret
bound for Algorithm 3.

Theorem 2.3. Fix a δ ∈ (0, 1). Let the initial feedback K(0) stabilize (A,B) and let V (0) denote
its associated value function. Also let K? denote the optimal LQR controller and let V? denote
the optimal value function. Let Γ? = 1 + max{‖A‖, ‖B‖, ‖V (0)‖, ‖V?‖, ‖K(0)‖, ‖K?‖, ‖Q‖, ‖R‖}.
Suppose that Tmult is set to:

Tmult ≥ Õ(1)poly(Γ?, n, d, 1/λmin(S)) .

and suppose µ is set to µ = min{λmin(S), λmin(R)}. With probability at least 1− δ, we have that
the regret of Algorithm 3 satisfies:

Regret(T ) ≤ Õ(1)poly(Γ?, n, d, 1/λmin(S))T 2/3 .

6



We note that the regret scaling as T 2/3 in Theorem 2.3 is due to the 1/σ4
η dependence from LSTD-Q

(c.f. (2.9)). As mentioned previously, the existing LSTD-Q analysis from Abbasi-Yadkori et al. [3]
yields a 1/σ8

η dependence in LSTD-Q; using this 1/σ8
η dependence in the analysis of Algorithm 3

would translate into T 4/5 regret.

3 Related Work

For model-based methods, in the offline setting Fiechter [17] provided the first PAC-learning bound
for infinite horizon discounted LQR using certainty equivalence (nominal) control. Later, Dean et al.
[12] use tools from robust control to analyze a robust synthesis method for infinite horizon average
cost LQR, which is applicable in regimes of moderate uncertainty when nominal control fails. Mania
et al. [26] show that certainty equivalence control actually provides a fastO(ε2) rate of sub-optimality
where ε is the size of the parameter error, unlike the O(ε) sub-optimality guarantee of [12, 17]. For
the online adaptive setting, [1, 4, 11, 18, 26] give Õ(

√
T ) regret algorithms. A key component of

model-based algorithms is being able to quantify a confidence interval for the parameter estimate, for
which several recent works [14, 32, 33] provide non-asymptotic results.

Turning to model-free methods, Tu and Recht [34] study the behavior of least-squares temporal
difference (LSTD) for learning the discounted value function associated to a stabilizing policy. They
evaluate the LSPI algorithm studied in this paper empirically, but do not provide any analysis. In
terms of policy optimization, most of the work has focused on derivative-free random search methods
[16, 24]. Tu and Recht [35] study a special family of LQR instances and characterize the asymptotic
behavior of both model-based certainty equivalent control versus policy gradients (REINFORCE),
showing that policy gradients has polynomially worse sample complexity. Most related to our work
is Abbasi-Yadkori et al. [3], who analyze a model-free algorithm for adaptive LQR based on ideas
from online convex optimization. LSTD-Q is a sub-routine of their algorithm, and their analysis
incurs a sub-optimal 1/σ8

η dependence on the injected exploration noise, which we improve to 1/σ4
η

using self-normalized martingale inequalities [2]. This improvement allows us to use a simple greedy
exploration strategy to obtain T 2/3 regret. Finally, as mentioned earlier, the Ph.D. thesis of Bradtke
[10] presents an asymptotic consistency argument for approximate PI for discounted LQR in the
noiseless setting (i.e. wt = 0 for all t).

For the general function approximation setting in RL, Antos et al. [5] and Lazaric et al. [21] analyze
variants of LSPI for discounted MDPs where the state space is compact and the action space finite. In
Lazaric et al. [21], the policy is greedily updated via an update operator that requires access to the
underlying dynamics (and is therefore not implementable). Farahmand et al. [15] extend the results
of Lazaric et al. [21] to when the function spaces considered are reproducing kernel Hilbert spaces.
Zou et al. [37] give a finite-time analysis of both Q-learning and SARSA, combining the asymptotic
analysis of Melo et al. [28] with the finite-time analysis of TD-learning from Bhandari et al. [8].
We note that checking the required assumptions to apply the results of Zou et al. [37] is non-trivial
(c.f. Section 3.1, [28]). We are un-aware of any non-asymptotic analysis of LSPI in the average cost
setting, which is more difficult as the Bellman operator is no longer a contraction.

Finally, we remark that our LSPI analysis relies on understanding exact policy iteration for LQR,
which is closely related to the fixed-point Riccati recurrence (value iteration). An elegant analysis for
value iteration is given by Lincoln and Rantzer [23]. Recently, Fazel et al. [16] show that exact policy
iteration is a special case of Gauss-Newton and prove linear convergence results. Our analysis, on the
other hand, is based on combining the fixed-point theory from Lee and Lim [22] with recent work on
policy iteration for average cost problems from Bertsekas [7].

4 Experiments

We first look at the performance of LSPI in the non-adaptive setting (Section 2.2). Here, we compare
LSPI to other popular model-free methods, and the model-based certainty equivalence (nominal)
controller (c.f. [26]). For model-free, we look at policy gradients (REINFORCE) (c.f. [36]) and
derivative-free optimization (c.f. [24, 25, 30]). A full description of the methods we compare to is
given in the full paper [19].
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We consider the LQR instance (A,B, S,R) withA =

[
0.95 0.01 0
0.01 0.95 0.01

0 0.01 0.95

]
,B =

[
1 0.1
0 0.1
0 0.1

]
, S = I3,

and R = I2. We choose an LQR problem where the A matrix is stable, since the model-free methods
we consider need to be seeded with an initial stabilizing controller; using a stable A allows us to start
at K0 = 02×3. We fix the process noise σw = 1. The model-based nominal method learns (A,B)
using least-squares, exciting the system with Gaussian inputs ut with variance σu = 1.

(a) Offline Evaluation
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(b) Adaptive Evaluation
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Figure 1: The performance of various model-free methods compared with the nominal controller. (a) Plot of
non-adaptive performance. The shaded regions represent the lower 10th and upper 90th percentile over 100
trials, and the solid line represents the median performance. Here, PG (simple) is policy gradients with the
simple baseline, PG (vf) is policy gradients with the value function baseline, LSPIv2 is Algorithm 2, LSPIv1 is
Algorithm 1, and DFO is derivative-free optimization. (b) Plot of adaptive performance. The shaded regions
represent the median to upper 90th percentile over 100 trials. Here, LSPI is Algorithm 3 using LSPIv1, MFLQ
is from Abbasi-Yadkori et al. [3], nominal is the ε-greedy adaptive certainty equivalent controller (c.f. [13]), and
optimal has access to the true dynamics.

For policy gradients and derivative-free optimization, we use the projected stochastic gradient
descent (SGD) method with a constant step size µ as the optimization procedure. For policy
iteration, we evaluate both LSPIv1 (Algorithm 1) and LSPIv2 (Algorithm 2). For every iteration of
LSTD-Q, we project the resulting Q-function parameter matrix onto the set {Q : Q � γI} with
γ = min{λmin(S), λmin(R)}. For LSPIv1, we chooseN = 15 by picking theN ∈ [5, 10, 15] which
results in the best performance after T = 106 timesteps. For LSPIv2, we set (N,T ) = (3, 333333)
which yields the lowest cost over the grid N ∈ [1, 2, 3, 4, 5, 6, 7] and T such that NT = 106.

Next, we compare the performance of LSPI in the adaptive setting (Section 2.3). We compare
LSPI against the model-free linear quadratic control (MFLQ) algorithm of Abbasi-Yadkori et al. [3],
nominal certainty equivalence controller (c.f. [13]), and the optimal controller. We use the example

of Dean et al. [12], with A =

[
1.01 0.01 0
0.01 1.01 0.01

0 0.01 1.01

]
, B = I , S = 10I3, R = I3, and σw = 1.

Figure 1 shows the results of these experiments. In Figure 1a, we plot the relative error (J(K̂) −
J?)/J? versus the number of timesteps. We see that the model-based certainty equivalence (nominal)
method is more sample efficient than the other model-free methods considered. We also see that the
value function baseline is able to dramatically reduce the variance of the policy gradient estimator
compared to the simple baseline. The DFO method performs the best out of all the model-free
methods considered on this example after 106 timesteps, although the performance of policy iteration
is comparable. In Figure 1b, we plot the regret (c.f. Equation 2.16). We see that LSPI and MFLQ
both perform similarly with MFLQ slightly outperforming LSPI. We also note that the model-based
nominal methods performs significantly better than both LSPI and MFLQ.

8



5 Conclusion

We studied the sample complexity of approximate PI on LQR, showing that roughly (n +
d)3ε−2 log(1/ε) samples are sufficient to estimate a controller that is within ε of the optimal. We
also show how to turn this offline method into an adaptive LQR method with T 2/3 regret. Several
questions remain open with our work. The first is if policy iteration is able to achieve T 1/2 regret,
which is possible with other model-based methods. The second is whether or not model-free methods
provide advantages in situations of partial observability for LQ control. Finally, an asymptotic
analysis of LSPI, in the spirit of Tu and Recht [35], is of interest in order to clarify which parts of our
analysis are sub-optimal due to the techniques we use versus are inherent in the algorithm.
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