
More comparison with related interpretable methods (R1, R2, R3): In our paper, we discussed the main difference1

between our ProtoPNet and related attention models in terms of the type of explanations offered: our ProtoPNet2

not only offers attention on several parts (akin to attention models), but also provides similar prototypical cases3

to those parts (which attention models cannot provide) as built-in justification for classification. In terms of how4

attention is generated: some attention models generate attention with auxiliary part-localization models trained5

with part annotations (e.g. part-based R-CNN (Zhang et al., ECCV 2014), SPDA-CNN (Zhang et al., CVPR 2016),6

pose-normalized CNN (Branson et al., 2014), DeepLAC (Lin et al., CVPR 2015), part-stacked CNN (Huang et al.,7

CVPR 2016)); other attention models generate attention with “black-box” methods – e.g. RA-CNN (Fu et al.,8

CVPR 2017) uses another neural network (attention proposal network) to decide where to look next; multi-attention9

CNN (Zheng et al., ICCV 2017) uses aggregated conv-feature maps as “part attentions.” There is no explanation for10

why the attention proposal network decides to look at some region over others, or why certain parts are highlighted11

in those conv-feature maps. In contrast, our ProtoPNet generates attention based on similarity with learned12

prototypes: it requires no part annotations for training, and explains its attention naturally – it is looking at this region13

of input because this region is similar to that prototypical example. Although other attention models focus on similar14

regions (e.g. head, wing, etc.) as our ProtoPNet, they cannot be made into a case-based reasoning model like ours:15

the only way to find prototypes on other attention models is to analyze posthoc what activates a conv-filter of the model16

most strongly and think of that as a prototype – however, since such prototypes do not participate in the actual model17

computation, any explanations produced this way are not always faithful to the classification decisions.18

Hyperparameter choices (R1, R2, R3): In our experiments, we chose H1 = 1 and W1 = 1: given that the spatial19

dimension of conv-output for a 224× 224 image is only 7× 7, a 1× 1 prototype is already large enough to represent a20

significant part of the original image in the pixel space (we want to learn prototypes focused on specific parts). The21

number of prototypes can be chosen with prior domain knowledge or hyperparameter search: we used 10 prototypes per22

class, which should be enough to capture a variety of bird parts (or different views of a car). Section S8 of supplement23

also discusses prototype pruning to remove non-essential prototypes. The result of pruning is a model with fewer and24

different number of prototypes for various classes. We also performed an experiment to see the effect of changing the25

number of prototypes per class: test accuracy of VGG16-based ProtoPNet is 72.4% with 5 prototypes per class, 76.1%26

with 10 prototypes per class, and 76.2% with 15 prototypes per class. This shows that having too few prototypes limits27

performance, but having too many prototypes does not further improve accuracy.28

Training algorithm and time complexity (R2): In the algorithm chart (bottom of page): wbase and wadd denote the29

parameters of base and additional conv-layers; NSGD and Nconvex denote the number of training epochs in stage 1 and 3;30

L and Lconvex denote the loss function of stage 1 and 3; η(t)base, η
(t)
add, η(t)p , ηconvex are learning rates (t denotes epoch #).31

Prototypes are initialized randomly from uniform distribution over [0, 1]H1×W1×D – the last conv-layer uses sigmoid32

activation, so the conv-features all lie in [0, 1]. In our experiments, we setNSGD = 10 andNconvex = 20. This means that33

prototype projection happens after every 10 SGD epochs. Feedforward computation of prototype layer has the same34

time complexity as that of a regular conv followed by global average pooling, a configuration common in standard35

CNNs (e.g. ResNet, DenseNet), because the former takes the max of similarity scores computed over all prototype-sized36

patches while the latter takes the average of dot-products computed over all filter-sized patches. Similarly, prototype37

projection has the same time complexity as feedforward part of SGD on standard conv+pooling, because the38

former takes the min distance over all prototype-sized patches, and the latter takes the average of dot-products over39

all patches. Hence, using prototype layer (to replace the common conv+pooling in a standard CNN) does not40

introduce extra time complexity. For a fixed architecture, time complexity of training/testing ProtoPNet is linear in41

the number of examples, just like any CNN. Empirically, prototype projection takes < 250 seconds for about 600042

training images, roughly the same time as an SGD epoch on the same training set using same hardware (1 GPU).43

Other questions: (1) Similarity scores and prediction confidence (R1): A higher similarity score with a prototype44

of the predicted class contributes to a more confident final class prediction. (2) Domains where finding prototypes45

are useful in itself (R1): We are currently using this technique to find prototypical tumors in radiology, which can46

enhance doctors’ understanding. (3) Choice of L2 (R3): We choose L2 because it is a distance metric that is intuitive47

to understand, and allows us to easily specify the desired cluster and separation properties of the latent space.48

1 initialize t0 ← 0; wbase ← weights pre-trained on ImageNet; wadd ← Kaiming uniform initialization (He et al., 2015);
2 ∀j: prototype pj ← Uniform([0, 1]H1×W1×D); ∀k, j: w(k,j)

h ← 1 if pj ∈ Pk, w(k,j)
h ← 0 if pj /∈ Pk;

3 while NOT(converge AND Clst < −Sep) do
4 for SGD training epoch t = t0 + 1, ..., t0 +NSGD do /* Stage 1: SGD of layers before the last */
5 foreach batch [X,Y] from [X,Y] do /* see Section S9.3 of supplement for learning rates */
6 wbase ← wbase − η(t)base∇wbaseL(X,Y); wadd ← wadd − η(t)add∇waddL(X,Y); P← P− η(t)p ∇PL(X,Y);
7 t0 ← t0 +NSGD;
8 foreach prototype pj do /* Stage 2: projection of prototypes */
9 k ← class of pj ; pj ← argminz∈{z̃:z̃∈patches(f(x)) ∀(x,y)∈[X,Y] s.t. y=k} ‖z− pj‖2;

10 for convex training epoch t′ = 1, ..., Nconvex do /* Stage 3: convex optimization of last layer */
11 foreach batch [X,Y] from [X,Y] do wh ← wh − ηconvex∇whLconvex(X,Y) ;

49


