
Comparison to existing literature (R1,R3): As for R3’s major comment, our setting is fundamentally more general1

than [3], which assumes stochastic and i.i.d. delays, while our delays can be arbitrary. For other literature, [1] assumes2

a constant delay parameter d. [10] considers stochastic rewards and delays. [11] considers the full information case3

and not the bandit feedback case. It also assumes that all feedback is received before T , and that
∑T
t=1 dt is known -4

which we do not assume. Our paper is the first to address adversarial (arbitrary) delays and costs with bandit5

feedback. Additionally, none of them consider zero-sum games with delays, that we show are surprisingly more6

robust against delays than the single-agent setting. We now include this discussion, with more details.7

Choosing the step size ηt when
∑T
t=1 dt is unknown (R1,R3): We provide Algorithm 2 as an adaptive algorithm8

that does not require prior knowledge of
∑T
t=1 dt and T . As shown by the counterexample of R3, standard doubling9

trick epochs are not enough. We now address this issue in detail, fixing Algorithm 2 and providing a full proof10

that a regret of O
(√

lnK
(
K2T +

∑T
t=1 dt

))
is achievable even when

∑T
t=1 dt (and T ) is unknown, using a novel11

doubling trick. Let mt be the number of missing feedback samples at time t, (including the t-th feedback). The12

idea is to start a new epoch every time
∑t
τ=1mτ , that tracks

∑t
τ=1 dτ , doubles. Define the e-th epoch as Te =13 {

t |2e−1 ≤
∑t
τ=1mτ < 2e

}
, with step size ηe =

√
lnK
2e . Define by Me the set of feedback samples for costs in14

epoch e that are not received within epoch e. These feedback samples are discarded once received, and the strategy pt15

is initialized at the beginning of every epoch. A compact version of the proof is provided next. The K2 replacing K,16

which has no affect when dt ≥ K, can be improved with a more careful computation. To answer R3, Lemma 3 is a17

general version of Theorem 1 for any arbitrary non-increasing ηt, in particular for any constant η.18

Define Te = max Te, and note that Te = [Te−1 + 1, Te]. Applying Lemma 3 on epoch e yields19
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Now we want to find the maximal |Me| such that
∑Te

τ=Te−1+1mτ ≤ 2e−1 is still possible. The “cheapest”20

way to increase |Me| is when the feedback from round Te is delayed by one (contributes 1 to
∑Te

τ=Te−1+1mτ ),21

the feedback from round Te − 1 is delayed by two (contributes 2 to
∑Te

τ=Te−1+1mτ ) and so on, which gives22 ∑|Me|
i=1 i = |Me|(|Me|+1)

2 ≤ 2e−1 =⇒ |Me| ≤ 2
e
2 . Hence, by choosing ηe =

√
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2e we obtain23
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where (a) follows since every t ∈ Te s.t. t /∈ Me contributes dt to
∑Te

τ=Te−1+1mτ (the t-th feedback is missing for24

dt rounds between Te−1 + 1 and Te). Therefore
∑
t∈Te,t/∈Me

dt ≤
∑Te

τ=Te−1+1mτ ≤ 2e−1. We conclude that25
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where E is the last epoch and in (a) we used that
∑T
t=1 dt ≥

∑T
t=1 min {dt, T − t+ 1} =

∑T
t=1mt ≥

∑TE

τ=1mτ ≥26

2E−1, and also that
∑E
e=1 |Te| 2−

e
2 subject to

∑E
e=1 |Te| = T is maximized whenE = dlog2 T e, with maximal length27

2e for epoch e, so
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T .28

Unbounded delays (R1): We mean that Theorem 2 holds even for some unbounded delays s.t. dt ≤ f (t) for29

increasing f (t) (e.g., f (t) = t log t). f (t) = et, or even f (t) = t2 grow too fast. This is better explained now.30

Ergodic Average (R1): This is a weighted average that coincides with the standard average for ηt = 1
T . Its importance31

is mostly just being computable, so a computation of a NE is still possible by sampling/simulating the game even with32

superlinear delays. When dt = 0, ηt = 1
T is a valid choice for Theorem 2 which gives the classical result.33

No Exploration Term (R1): It was shown that the exploration term of the original EXP3 is not necessary (see “Regret34

Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems” by Bubeck & Cesa-Bianchi). In any case,35

our self sufficient proof independently shows that no exploration term is needed. We have now clarified this issue.36

Minor Comments (R1,R3): We have fixed all minor issues (a-e for R1, reorganization and line 118 for R3). With37

some effort, the results are extendable to the continuous case, which is exactly the subject of our current work.38


