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Comparison to existing literature (R1,R3): As for R3’s major comment, our setting is fundamentally more general
than [3], which assumes stochastic and i.i.d. delays, while our delays can be arbitrary. For other literature, [1] assumes
a constant delay parameter d. [10] considers stochastic rewards and delays. [11] considers the full information case
and not the bandit feedback case. It also assumes that all feedback is received before 7', and that Z;T:l d; is known -
which we do not assume. Our paper is the first to address adversarial (arbitrary) delays and costs with bandit
feedback. Additionally, none of them consider zero-sum games with delays, that we show are surprisingly more
robust against delays than the single-agent setting. We now include this discussion, with more details.

Choosing the step size 7; when ZL d; is unknown (R1,R3): We provide Algorithm 2 as an adaptive algorithm

that does not require prior knowledge of 23:1 dy and T'. As shown by the counterexample of R3, standard doubling
trick epochs are not enough. We now address this issue in detail, fixing Algorithm 2 and providing a full proof

that a regret of O (\/ In K (K AR dt>) is achievable even when Zthl dy (and T') is unknown, using a novel

doubling trick. Let m; be the number of missing feedback samples at time ¢, (including the ¢-th feedback). The
idea is to start a new epoch every time Zi:l m,, that tracks Zt d,, doubles. Define the e-th epoch as 7. =

T=1
{t |2¢71 < 23:1 me < 2"‘}, with step size . = /75 InK  Define by M. the set of feedback samples for costs in

epoch e that are not received within epoch e. These feedback samples are discarded once received, and the strategy p,
is initialized at the beginning of every epoch. A compact version of the proof is provided next. The K? replacing K,
which has no affect when d; > K, can be improved with a more careful computation. To answer R3, Lemma 3 is a
general version of Theorem 1 for any arbitrary non-increasing 7, in particular for any constant 7.

Define T, = max 7., and note that 7. = [T._1 + 1, T.]. Applying Lemma 3 on epoch e yields
{Z (L p,) —min > z(”} L <§|E|+2 3 dt> +2(M.|. )
teTe teTe e teTe tEMe
Now we want to find the maximal |M.| such that Zf 7. e1mr < 2¢~1 s still possible. The “cheapest”
way to increase |M.| is when the feedback from round T is delayed by one (contributes 1 to Zf T 41 M7

the feedback from round 7T, — 1 is delayed by two (contributes 2 to ZZ:Tﬂ_l 4+1™M7) and so on, which gives

ZL/:‘A;' i = % <271 — | M,.| < 25. Hence, by choosing 7, = \/h;?we obtain

: K
Re < VInK (25 +27% (2 ITel+2 > df,>> 423 < 25 V/IMK 4272 T KVInK + 2351 ©

tETe tg Me (a)
where (a) follows since every ¢ € T, s.t. t ¢ M, contributes d; to ET 7., 11 M (the t-th feedback is missing for
d; rounds between T,_q + 1 and T,). Therefore EteTe,tgéMe dy < ZT:TE,1+1 m, < 2¢71. We conclude that

E E E E
E{R(T)} = >_R. SQ(\/an+1) S 2% +§\/an2|7}|2_% gzx@(\/an+1) 22 -1,
e=1 e=1 e=1

2
V2 -1

t=1

E T T
KVInK 37 |Te[27% < 10 (V1“K+1)\I;+5K\/T1nl<—o (J1HK<K2T+Zdt>) 6)
e=1 (a) t=1

where FE is the last epoch and in (a) we used that Zthl dy > Zthl min{d;, T —t+ 1} = Zt L me > Z Zoms >

2F-1 and also that 37 | |72 27% subjectto ., |7.| = T is maximized when E = [log, T'], with maximal length
[logy 71
2¢ for epoch e, s0 .7 |T;]27% < sMosa Tl o5 < \/52\/25771_1 < 5VT.

Unbounded delays (R1): We mean that Theorem 2 holds even for some unbounded delays s.t. d; < f(t) for
increasing f (t) (e.g., f (t) = tlogt). f (t) = e, or even f (t) = t2 grow too fast. This is better explained now.

Ergodic Average (R1): This is a weighted average that coincides with the standard average for 7, = % Its importance
is mostly just being computable, so a computation of a NE is still possible by sampling/simulating the game even with
superlinear delays. When d; = 0, n; = % is a valid choice for Theorem 2 which gives the classical result.

No Exploration Term (R1): It was shown that the exploration term of the original EXP3 is not necessary (see “Regret
Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems” by Bubeck & Cesa-Bianchi). In any case,
our self sufficient proof independently shows that no exploration term is needed. We have now clarified this issue.

Minor Comments (R1,R3): We have fixed all minor issues (a-e for R1, reorganization and line 118 for R3). With
some effort, the results are extendable to the continuous case, which is exactly the subject of our current work.



