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Abstract

We consider the classical stochastic multi-armed bandit problem with a constraint
on the total cost incurred by switching between actions. Under the unit switching
cost structure, where the constraint limits the total number of switches, we prove
matching upper and lower bounds on regret and provide near-optimal algorithms
for this problem. Surprisingly, we discover phase transitions and cyclic phenomena
of the optimal regret. That is, we show that associated with the multi-armed bandit
problem, there are equal-length phases defined by the number of arms and switching
costs, where the regret upper and lower bounds in each phase remain the same and
drop significantly between phases. The results enable us to fully characterize the
trade-off between regret and incurred switching cost in the stochastic multi-armed
bandit problem, contributing new insights to this fundamental problem. Under
the general switching cost structure, our analysis reveals a surprising connection
between the bandit problem and the shortest Hamiltonian path problem.

1 Introduction

The multi-armed bandit (MAB) problem is one of the most fundamental problems in online learning,
with diverse applications ranging from pricing and online advertising to clinical trails. In a traditional
MAB problem, the learner (i.e., decision-maker) is allowed to switch freely between actions, and
an effective learning policy may incur frequent switching — indeed, the learner’s task is to balance
the exploration-exploitation trade-off, and both exploration (i.e., acquiring new information) and
exploitation (i.e., optimizing decisions based on up-to-date information) require switching. However,
in many real-world scenarios, it is costly to switch between different alternatives, and a learning
policy with limited switching behavior is preferred. The learner thus has to consider the cost of
switching in her learning task.

The conventional model: switching cost as a penalty. There is rich literature studying stochastic
MAB with switching costs. Most of the papers model the switching cost as a penalty in the learner’s
objective, i.e., they measure a policy’s regret and incurred switching cost using the same metric and
the objective is to minimize the sum of these two terms (e.g., [1, 2, 7, 8]; there are other variations
with discounted rewards [5, 4, 6], see [12] for a survey). Though this conventional “switching
penalty” model has attracted significant research interest in the past, it has two limitations. First,
under this model, the learner’s total switching cost is a complete output determined by the learning
algorithm. However, in many real-world applications, there are strict limits on the learner’s switching
behavior, which should be modeled as a hard constraint, and hence the learner’s total budget of
switching cost should be an input that helps determine the algorithm. In particular, while the algorithm
in [8] developed for the “switching penalty” model can achieve Õ(

√
T ) (distribution-free) regret

with O(log log T ) switches, if the learner wants a policy that always incurs finite switching cost
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independent of T , then prior literature does not provide an answer. Second, the “switching penalty”
model has fundamental weakness in studying the trade-off between regret and incurred switching
cost in stochastic MAB — since the O(log log T ) bound on the incurred switching cost of a policy is
negligible compared with the Õ(

√
T ) bound on its optimal regret, when adding the two terms up,

the term associated with incurred switching cost is always dominated by the regret, thus no trade-off
can be identified. As a result, to the best of our knowledge, prior literature has not characterized the
fundamental trade-off between regret and incurred switching cost in stochastic MAB.

The BwSC model: switching as a limited resource. In this paper, we introduce the Bandits with
Switching Constraints (BwSC) problem. The BwSC model addresses the issues associated with the
“switching penalty” model in several ways. First, it introduces a hard constraint on the total switching
cost, making the switching budget an input to learning policies, enabling us to design good policies
that guarantee limited switching cost. While O(log log T ) switches has proven to be sufficient for a
learning policy to achieve near-optimal regret in MAB, in BwSC, we are mostly interested in the setting
of finite or o(log log T ) switching budget, which is highly relevant in practice. Second, by focusing
on rewards in the objective function and incurred switching cost in the switching constraint, the BwSC
framework enables the characterization of the fundamental trade-off between regret and maximum
incurred switching cost in MAB. Third, while most prior research assumes specific structures on
switching costs (e.g., unit or homogeneous costs), in reality, switching between different pairs of
actions may incur heterogeneous costs that do not follow any parametric form. The BwSC model
allows general switching costs, which makes it a powerful modeling framework.

Motivating examples. The BwSC framework has numerous applications, including dynamic pricing,
online assortment optimization, online advertising, clinical trails and vehicle routing. A representative
example is the dynamic pricing problem. Dynamic pricing with demand learning has proven its
effectiveness in online retailing. However, it is well known that in practice, sellers often face business
constraints that prevent them from conducting extensive price experimentation and making frequent
price changes. For example, according to [10], Groupon limits the number of price changes, either
because of implementation constraints, or for fear of confusing customers and receiving negative
customer feedback. In such scenarios, the seller’s sequential decision-making problem can be
modeled as a BwSC problem, where changing from each price to another price incurs some cost, and
there is a limit on the total cost incurred by price changes.

Main contributions. In this paper, we introduce the BwSC model, a general framework with strong
modeling power. The model overcomes the limitations of the prior “switching penalty” model and
has both practical and theoretical values.

We first study the unit-switching-cost BwSC problem in Section 4. We develop an upper bound on
regret by proposing a simple and intuitive policy with carefully-designed switching rules, and prove
an information-theoretic lower bound that matches the above upper bound, indicating that our policy
is rate-optimal up to logarithmic factors. Methodologically, the proof of the lower bound involves
a novel “tracking the cover time” argument that has not appeared in prior literature and may be of
independent interest. With the analysis described above we obtain some surprising and insightful
results, namely, phase transitions and cyclic phenomena of the optimal regret. That is, we show that
associated with the BwSC problem, there are equal-length phases, defined by the number of arms and
switching costs, where the regret upper and lower bounds in each phase remain the same and drop
significantly between phases, see the precise definitions in Section 4.3.

We then study the general-switching-cost BwSC problem in Section 5. We propose an efficient policy
and prove regret upper and lower bounds in the general setting. The results reveal a surprising
connection between the BwSC problem and the shortest Hamiltonian path problem.

For the full version of this paper (containing additional results and missing proofs), see [14].

2 Notations, Model and Definitions

Notations. For all n1, n2 ∈ N such that n1 ≤ n2, we use [n1] to denote the set {1, . . . , n1}, and use
[n1 : n2] (resp. (n1 : n2]) to denote the set {n1, n1 + 1, . . . , n2} (resp. {n1 + 1, . . . , n2}). For all
x ≥ 0, we use bxc to denote the largest integer less than or equal to x. For ease of presentation, we
define bxc = 0 for all x < 0. Throughout the paper, we use big O,Ω,Θ notations to hide constant
factors, and use Õ, Ω̃, Θ̃ notations to hide constant factors and logarithmic factors.
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Problem formulation. Consider a k-armed bandit problem where a learner chooses actions from
a fixed set [k] = {1, . . . , k}. There is a total of T rounds. In each round t ∈ [T ], the learner first
chooses an action it ∈ [k], then observes a reward rt(it) ∈ R. For each action i ∈ [k], the reward of
action i is i.i.d. drawn from an (unknown) distribution Di with (unknown) expected value µi. We
assume that the distributions Di are standardized sub-Gaussian.Without loss of generality, we assume
supi,j∈[k] |µi − µj | ∈ [0, 1].

In our problem, the learner incurs a switching cost ci,j = cj,i ≥ 0 each time she switches between
action i and action j (i, j ∈ [k]). In particular, ci,i = 0 for i ∈ [k]. There is a pre-specified switching
budget S ≥ 0 representing the maximum amount of switching costs that the learner can incur in total.
Once the total switching cost exceeds the switching budget S, the learner cannot switch her actions
any more. The learner’s goal is to maximize the expected total reward over T rounds.

Admissible policies. Let π denote the learner’s (non-anticipating) learning policy, and πt ∈ [k]
denote the action chosen by policy π at round t ∈ [T ]. More formally, πt establishes a probability
kernel acting from the space of historical actions and observations to the space of actions at round
t. Let PπD and EπD be the probability measure and expectation induced by policy π and latent
distributions D = (D1, . . . ,Dk). According to the problem formulation, we only need to restrict our
attention to the S-switching-budget policies, which take S, k and T as input and are defined below.

Definition 1 A policy π is said to be an S-switching-budget policy if for all D,

PπD

[
T−1∑
t=1

cπt,πt+1
≤ S

]
= 1.

Let ΠS denote the set of all S-switching-budget policies, which is also the admissible policy class of
the BwSC problem.

Regret. The performance of a learning policy is measured against a clairvoyant policy that maximizes
the expected total reward given foreknowledge of the environment (i.e., latent distributions) D. Let
µ∗ = maxi∈[k] µi. We define the regret of policy π as the worst-case difference between the expected
performance of the optimal clairvoyant policy and the expected performance of policy π:

Rπ(T ) = sup
D

{
Tµ∗ − EπD

[
T∑
t=1

µπt

]}
.

The minimax (optimal) regret of BwSC is defined as R∗S(T ) = infπ∈ΠS
Rπ(T ).

In our paper, when we say a policy is “near-optimal” or “optimal up to logarithmic factors”, we mean
that its regret bound is optimal in T up to logarithmic factors of T , irrespective of whether the bound
is optimal in k, since typically k is much smaller than T (e.g., k = O(1)).

Remark. There are two notions of regret in the stochastic bandit literature. The Rπ(T ) regret that
we consider is called distribution-free, as it does not depend on D. On the other hand, one can
also define the distribution-dependent regret RπD(T ) = Tµ∗ − EπD

[∑T
t=1 µπt

]
that depends on

D. This second notion of regret is only meaningful when µ1, . . . , µk are well-separated. Unlike the
classical MAB problem where there are policies simultaneously achieving near-optimal bounds under
both regret notions, in the BwSC problem, due to the limited switching budget, finding a policy that
simultaneously achieves near-optimal bounds under both regret notions is usually impossible. In this
paper, we focus on the distribution-free regret. Extensions to the distribution-dependent regret can be
found in the full version of this paper [14].

Relationship between BwSC and MAB. Obviously, BwSC and MAB share the same definition of
Rπ(S), and the only difference between BwSC and MAB is the existence of a switching constraint
π ∈ ΠS , determined by (ci,j) ∈ Rk×k≥0 and S ∈ R≥0 (when S = ∞, BwSC degenerates to MAB).
This makes BwSC a natural framework to study the trade-off between regret and incurred switching
cost in MAB. That is, the trade-off between the optimal regret R∗S(T ) and switching budget S in
BwSC completely characterizes the trade-off between a policy’s best achievable regret and its worst
possible incurred switching cost in MAB. We are interested in how R∗S(T ) behaves over a range of
switching budget S, and how it is affected by the structure of switching costs (ci,j).
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3 Other Related Work

This paper is not the first one to study online learning problems with limited switches. Indeed, a few
authors have realized the practical significance of limited switching budget. [10] considers a dynamic
pricing model where the demand function is unknown but belongs to a known finite set, and a pricing
policy is allowed to make at most m price changes. [9] studies a multi-period stochastic inventory
replenishment and pricing problem with unknown parametric demand and limited price changes. We
note that both [10, 9] only focus on specific decision-making problems, and their results rely on some
strong assumptions about the unknown environment. By contrast, the BwSC model in our paper is
generic and assumes no prior knowledge of the environment. The learning task in BwSC is thus more
challenging than previous models. In the adversarial setting, [3] studies the adversarial MAB with
limited number of switches. Since our problem is stochastic while their problem is adversarial, the
results and methodologies in our paper are fundamentally different from their paper. It is worth noting
that the switching constraint in BwSC is also more general than the number-of-switch constraints in
the above-mentioned models.

The BwSC problem is also related to the batched bandit problem proposed by [13]. The M -batched
bandit problem is defined as follows: given a classical bandit problem, assumes that the learner
must split her learning process into M batches and is only able to observe the realized rewards
from a given batch after the entire batch is completed. [13] studies the problem in the case of two
arms. Very recently, [11] extends the results to k arms. The batched bandit problem and the BwSC
problem are two different problems: the batched bandit problem limits observations and allows
unlimited switching, while the BwSC problem limits switching and allows unlimited observations.
Surprisingly, we discover some non-trivial connections between the batched bandit problem and the
unit-switching-cost BwSC problem, which are presented in the full version of this paper [14].

4 Unit Switching Costs

In this section, we consider the BwSC problem with unit switching costs, where ci,j = 1 for all i 6= j.
In this case, since every switch incurs a unit cost, the switching budget S can be interpreted as the
maximum number of switches that the learner can make in total. Thus, the unit-switching-cost BwSC
problem can be simply interpreted as “MAB with limited number of switches”.

4.1 Upper Bound on Regret

We first propose a simple and intuitive policy that provides an upper bound on the regret. Our
policy, called the S-Switch Successive Elimination (SS-SE) policy, is described in Algorithm 1. The
design philosophy behind the SS-SE policy is to divide the entire horizon into several pre-determined
intervals (i.e. batches) and to control the number of switches in each interval. The policy thus has
some similarities with the 2-armed batched policy of [13] and the k-armed batched policy of [11] ,
which proves to be near-optimal in the batched bandit problem. However, since we are studying a
different problem, directly applying a batched policy to the BwSC problem does not work. In particular,
in the batched bandit problem, the number of intervals (i.e., batches) is a given constraint, while in
the BwSC problem, the switching budget is the given constraint. We thus add two key ingredients into
the SS-SE policy: (1) an index m(S) suggesting how many intervals should be used to partition the
entire horizon; (2) a switching rule ensuring that the total number of switches within k actions cannot
exceed the switching budget S. These two ingredients make the SS-SE policy substantially different
from an ordinary batched policy.

Intuition about the policy. The policy divides the T rounds into bS−1
k−1 c + 1 intervals in advance.

The sizes of the intervals are designed to balance the exploration-exploitation trade-off. An active
set of “good” actions Al is maintained for each interval l and at the end of each interval some “bad”
actions are eliminated before the start of the next interval. The policy controls the number of switches
by ensuring that only |Al| − 1 switches happen within each interval l and at most one switch happens
between two consecutive intervals. Finally, in the last interval only the empirical best action is chosen.

We show that the SS-SE policy is indeed an S-switching-budget policy and establish the following
upper bound on its regret.
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Algorithm 1 S-Switch Successive Elimination (SS-SE)
Input: Number of arms k, Switching budget S, Horizon T
Partition: Calculate m(S) =

⌊
S−1
k−1

⌋
.

Divide the entire time horizon 1, . . . , T into m(S) + 1 intervals: (t0 : t1], (t1 : t2], . . . , (tm(S) :
tm(S)+1], where the endpoints are defined by t0 = 0 and

ti =

⌊
k

1− 2−2−(i−1)

2−2−m(S) T
2−2−(i−1)

2−2−m(S)

⌋
, ∀i = 1, . . . ,m(S) + 1.

Initialization: Let the set of all active actions in the l-th interval be Al. Set A1 = [k]. Let a0 be a
random action in [k].
Policy:

1: for l = 1, . . . ,m(S) do
2: if atl−1

∈ Al then
3: Let atl−1+1 = atl−1

. Starting from this action, choose each action in Al for tl−tl−1

|Al|
consecutive rounds. Mark the last chosen action as atl .

1

4: else if atl−1
/∈ Al then

5: Starting from an arbitrary active action in Al, choose each action in Al for tl−tl−1

|Al| consecu-
tive rounds. Mark the last chosen action as atl .

6: end if
7: Statistical test: deactivate all actions i s.t. ∃ action j with UCBtl(i) < LCBtl(j), where

UCBtl(i) = empirical mean of action i in[1 : tl] +

√
2 log T

number of plays of action i in[1 : tl]
,

LCBtl(i) = empirical mean of action i in[1 : tl]−

√
2 log T

number of plays of action i in[1 : tl]
.

8: end for
9: In the last interval, choose the action with the highest empirical mean (up to round tm(S)).

Theorem 1 Let π be the SS-SE policy, then π ∈ ΠS . There exists an absolute constant C ≥ 0 such
that for all k ≥ 1, S ≥ 1 and T ≥ k,

Rπ(T ) ≤ C(log k log T )k
1− 1

2−2−m(S) T
1

2−2−m(S) ,

where m(S) =
⌊
S−1
k−1

⌋
.

Theorem 1 provides an upper bound on the optimal regret of the unit-switching-cost BwSC problem:

R∗S(T ) = Õ(T 1/(2−2−b(S−1)/(k−1)c)).

4.2 Lower Bound on Regret

The SS-SE policy, though achieves sublinear regret, seems to have many limitations that could have
weaken its performance, and on the surface it may suggest that the regret bound is not optimal. We
discuss two points here. (1) The SS-SE policy does not make full use of its switching budget. Consider
the case of 11 actions and 20 switching budget. Since m(20) = b(20− 1)/(11− 1)c = 1 = m(11),
the SS-SE policy will just run as if it could only make 11 switches, despite the fact that it has 9
additional switching budget (which will never be used). It seems that by tracking and allocating
the switching budget in a more careful way, one can achieve lower regret. (2) The SS-SE policy
learns from data infrequently. Note that the SS-SE policy pre-determines the number, sizes and
locations of its intervals before seeing any data, and executes actions within each interval based on a
pre-determined schedule. Consider again the case of 11 actions and 20 switching budget, the SS-SE
policy will split the entire horizon into two intervals and will only learn from data at the end of the
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first interval, after which it will choose a single action to be applied throughout the entire second
interval. It seems that by learning from data more frequently, one can achieve lower regret.

While the above arguments are based on our first instinct and seem very reasonable, surprisingly,
all of them prove to be wrong: no S-switch policy can theoretically do better! In fact, we match
the upper bound provided by SS-SE by showing an information-theoretic lower bound in Theorem
2. This indicates that the SS-SE policy is rate-optimal up to logarithmic factors, and R∗S(T ) =

Θ̃(T 1/(2−2−b(S−1)/(k−1)c)). Note that the tightness of T is acheived per instance, i.e., for every k and
every S. That is, our lower bound is substantially stronger than a single lower bound demonstrated for
specific k and S. The proof of the lower bound involves a novel “tracking the cover time” argument
that (to the best of our knowledge) has not appeared in previous literature and may be of independent
interest. We state the lower bound and give a sketch of the proof below.

Theorem 2 There exists an absolute constant C > 0 such that for all k ≥ 1, S ≥ 1, T ≥ k and for
all policy π ∈ ΠS ,

Rπ(T ) ≥

{
C
(
k
− 3

2−
1

2−2−m(S) (m(S) + 1)−2
)
T

1

2−2−m(S) , if m(S) ≤ log2 log2(T/k),

C
√
kT , if m(S) > log2 log2(T/k),

where m(S) =
⌊
S−1
k−1

⌋
.

Proof idea. For any k ≥ 1, S ≥ 1 and T ≥ k, for any S-switch policy π ∈ ΠS , we want to find an
environment D such that RπD(T ) is larger than the desired lower bound. A key challenge here is that
π is an arbitrary and abstract S-switch policy — we need more information about π to construct D.
With this goal in mind, we first design a concrete “primal environment” α. We use this environment
to evaluate policy π, such that we can observe some key patterns revealed by policy π under α. These
patterns are characterized by a series of ordered stopping times τ1 ≤ τ2 ≤ · · · ≤ τm(S)+1, some of
which may be∞, that are recursively defined as follows:

• τ1 is the first time that all the actions in [k] have been chosen in period [1 : τ1],
• τ2 is the first time that all the actions in [k] have been chosen in period [τ1 : τ2],
• Generally, τi is the first time that all the actions in [k] have been chosen in period [τi−1 : τi],

for i = 2, . . . ,m(S) + 1.

We then compare the realization of τ1, . . . , τm(S) with a series of fixed values t1, . . . , tm(S), which are
the endpoints of the intervals defined in Algorithm 1. Based on the possible outcomes of comparisons,
we define m(S) + 1 key events:

• E1 = {τ1 > t1},
• Ej = {τj−1 ≤ tj−1, τj > tj}, for j = 2, . . . ,m(S),
• Em(S)+1 = {τm(S) ≤ tm(S)},

at least one of which must occur under π and α with probability at least 1/(m(S) + 1). We then
do a case by case analysis as follows. In the first case, {τ1 > t1} occurs with certain probability,
indicating that the action chosen in round τ1 was not chosen in [1 : t1] with certain probability; in
the second case, ∃j ∈ [2 : m(S)] such that {τj−1 ≤ tj−1, τj > tj} occurs with certain probability,
indicating that the action chosen in round τj was not chosen in [tj−1 : tj ] with certain probability;
in the third case, {τm(S) ≤ tm(S)} with certain probability, indicating that the number of switches
occurs in [tm(S) : T ] is at most k − 1. For each case, we construct an “auxiliary environment” β by
carefully adjusting α based on the aforementioned indication. The environment β ensures two things:
(1) β is “hard for π to distinguish from α”, such that a crucial event E (constructed based on the
indication) that occurs under π and α with certain probability also occurs under π and β with similar
probability; and (2) β is “different enough from α” such that the certain occurrence probability of
the event E under β makes Rπβ(T ) larger than the desired lower bound. Theorem 2 then follows by
Rπ(T ) ≥ Rπβ(T ). For the complete proof of Theorem 2, see the full version of this paper [14].

Combining Theorem 1 and Theorem 2, we have

Corollary 1 For any fixed k ≥ 1, for any S ≥ 1, R∗S(T ) = Θ̃(T 1/(2−2−b(S−1)/(k−1)c)).

6



Remark. We briefly explain why the upper and lower bounds in Theorem 1 and Theorem 2 match in
T . When m(S) ≤ log2 log2(T/k), which is the case we are mostly interested in, (m(S) + 1)2 =
o(log T ), thus the upper and lower bounds match within o((log T )2). Whenm(S) > log2 log2(T/k),
the upper bound is O(

√
T log T ), thus the upper and lower bounds directly match within O(log T ).

4.3 Phase Transitions and Cyclic Phenomena

Corollary 1 allows us to characterize the trade-off between the switching budget S and the optimal
regret R∗S(T ). To illustrate this trade-off, Table 1 depicts the behavior of R∗S(T ) as a function of
S given a fixed k. Note that as discussed in Section 2, the relationship between R∗S(T ) and S also
characterizes the inherent trade-off between regret and maximum number of switches in the classical
MAB problem.

Table 1: Regret as a Function of Switching Budget

S [0, k) [k, 2k − 1) [2k − 1, 3k − 2) [3k − 2, 4k − 3) [4k − 3, 5k − 4)

R∗S(T ) Θ̃(T ) Θ̃(T 2/3) Θ̃(T 4/7) Θ̃(T 8/15) Θ̃(T 16/31)

R∗S(T )/R∗∞(T ) Θ̃(T 1/2) Θ̃(T 1/6) Θ̃(T 1/14) Θ̃(T 1/30) Θ̃(T 1/62)

As we have shown, R∗S(T ) = Θ̃(T 1/(2−2−b(S−1)/(k−1)c)). To the best of knowledge, this is the first
time that a floor function naturally arises in the order of T in the optimal regret of an online learning
problem. As a direct consequence of this floor function, we discover several surprising phenomena
regarding the trade-off between S and R∗S(T ) for any given k.

Definition 2 (Phases and Transition Points) For a k-armed unit-switching-cost BwSC, we call the
interval [(j−1)(k−1)+1, j(k−1)+1) the j-th phase, and call j(k−1)+1 the j-th transition point
(j ∈ Z>0).

Fact 1 (Phase Transitions) As S increases from 0 to Θ(log log T ), S will leave the j-th phase and
enter the (j + 1)-th phase at the j-th transition point (j ∈ Z>0). Each time S arrives at a transition
point, R∗S(T ) will drop significantly, and stay at the same level until S arrives the next transition
point.

Fact 2 (Cyclic Phenomena) The length of each phase is always equal to k − 1, independent of S
and T . We call the quantity k − 1 the budget cycle, which is the length of each phase.

Phase transitions are clearly presented in Table 1. This phenomenon seems counter-intuitive, as
it suggests that increasing switching budget would not help to decrease the best achievable regret,
as long as the budget does not reach the next transition point. Note that phase transitions are only
exhibited when S is in the range of 0 to Θ(log log T ). After S exceeds Θ(log log T ), R∗S(T ) will
reamin unchanged at the level of Θ̃(

√
T ) — the optimal regret will only vary within logarithmic

factors and there is no significant regret drop any more. Therefore, one can also view Θ(log log T ) as
a “final transition point” that marks the disappearance of phase transitions.

Cyclic Phenomena indicate that, assuming that the learner’s switching budget is at a transition point,
then the extra switching budget that the learner needs to achieve the next regret drop (i.e., to arrive at
the next transition point) is always k − 1. Cyclic phenomena also seem counter-intuitive: when the
learner has more switching budget, she can conduct more statistical tests, eliminate more bad actions
(which can be thought of as reducing k) and allocate her switching budget in a more flexible way —
all of these suggest that the budget cycle should be a quantity decreasing with S. However, the cyclic
phenomena tell us that the budget cycle is always a constant and no learning policy in the unit-cost
BwSC (and in MAB) can escape this cycle, no matter how large S is , as long as S = o(log log T ).

On the other hand, as S contains more and more budget cycles, the gap between R∗S(T ) and
R∗∞(T ) = Θ̃(

√
T ) does decrease dramatically. In fact, R∗S(T ) decreases doubly exponentially fast

as S contains more budget cycles. From Table 1, we can verify that 3 or 4 budget cycles are already
enough for an S-switching-budget policy to achieve close-to-optimal regret in MAB (compared with
the optimal policy with unlimited switching budget).
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Finally, we give some comments on the scope of our results. Note that phase transitions and cyclic
phenomena are associated with theoretical bounds of the worst-case regret, so if (1) the underlying
distributions are not the worst-case distributions and we are focusing on the “actual incurred regret”,
or (2) T is not large enough to dominate the constants in the bounds, phase transitions and cyclic
phenemona may not be exhibited.

5 General Switching Costs

We now proceed to the general case of BwSC, where ci,j (= cj,i) can be any non-negative real number
and even∞. The problem is significantly more challenging in this general setting. For this purpose,
we need to enhance the framework of Section 2 to better characterize the structure of switching costs.
We do this by representing switching costs via a weighted graph.

Let G = (V,E) be a (weighted) complete graph, where V = [k] (i.e., each vertex corresponds to an
action), and the edge between i and j is assigned a weight ci,j (∀i 6= j). We call the weighted graph
G the switching graph. In this paper, we assume the switching costs satisfy the triangle inequality:
∀i, j, l ∈ [k], ci,j ≤ ci,l + cl,j .

The results of the unit-switching-cost model suggest that an effective policy that minimizes the
worst-case regret must repeatedly visit all actions, in a manner similar to the SS-SE policy. This
indicates that in the general-switching-cost model, an effective policy should repeatedly visit all
vertices in the switching graph, in a most economical way to stay within budget. Motivated by this
idea, we propose the Hamiltonian-Switching Successive Elimination (HS-SE) policy, and present
its details in Algorithm 2. The HS-SE policy enhances the original SS-SE policy by adding two
additional ingredients: (1) a pre-specified switching order: within each interval, the HS-SE policy
switches based on an order determined by the shortest Hamiltonian path of the switching graph G;
(2) a reversing policy: the HS-SE policy switches along one direction in the odd intervals, and along
the reverse direction in the even intervals. Note that while the shortest Hamiltonian path problem is
NP-hard, solving this problem is entirely an “offline” step in the HS-SE policy. That is, for a given
switching graph, the learner only needs to solve this problem once.

Let H denote the total weight of the shortest Hamiltonian path of G. We give an upper bound on the
regret of the HS-SE policy in Theorem 3.

Theorem 3 Let π be the HS-SE policy, then π ∈ ΠS . There exists an absolute constant C ≥ 0 such
that for all G, k = |G|, S ≥ 0, T ≥ k,

Rπ(T ) ≤ C(log k log T )k
1− 1

2−2
−mU

G
(S)
T

1

2−2
−mU

G
(S)
,

where mU
G(S) =

⌊
S−maxi,j∈[k] ci,j

H

⌋
.

We then give a lower bound that is close to the above upper bound, see Theorem 4. Compared to
the proof of Theorem 2 (see Section 4.2 for a proof sketch), we would like to highlight an important
new step in the proof of Theorem 4. Recall that in the proof sketch of Theorem 2, we mention a
step of constructing the “primal environment” α. In the proof of Theorem 4, our construction of α
ensures that α has an additional property: (arg maxi∈[k] minj 6=i ci,j) is the optimal action in α. This
property makes (maxi∈[k] minj 6=i ci,j) a lower bound on the cost incurred by switching between a
sub-optimal action and the optimal action in α. Our new proof utilizes this property and makes the
quantity (maxi∈[k] minj 6=i ci,j) appear in the lower bound. For the complete proof of Theorem 4,
see the full version of this paper [14].

Theorem 4 There exists an absolute constant C > 0 such that for all G, k = |G|, S ≥ 0, T ≥ k
and for all policy π ∈ ΠS ,

Rπ(T ) ≥

C
(
k
− 3

2−
1

2−2
−mL

G
(S)

(mG(S) + 1)−2

)
T

1

2−2
−mL

G
(S)
, if mL

G(S) ≤ log2 log2(T/k),

C
√
kT , if mL

G(S) > log2 log2(T/k),

where mL
G(S) =

⌊
S−maxi∈[k] minj 6=i ci,j

H

⌋
.
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Algorithm 2 Hamiltonian-Switching Successive Elimination (HS-SE)
Input: Switching Graph G, Switching budget S, Horizon T
Offline Step: Find the shortest Hamiltonian path in G: i1 → · · · → ik. Denote the total weight of
the shortest Hamiltonian path as H . Calculate mU

G(S) =
⌊
S−maxi,j∈[k] ci,j

H

⌋
.

Partition: Run the partition step in the SS-SE policy with m(S) = mU
G(S).

Initialization: Let the set of all active actions in the l-th interval be Al. Set A1 = [k], a0 = i1.
Policy:

1: for l = 1, . . . ,mU
G(S) do

2: if atl−1
∈ Al and l is odd then

3: Let atl−1+1 = atl−1
. Starting from this action, along the direction of i1 → · · · → ik,

choose each action in Al for tl−tl−1

|Al| consecutive rounds. Mark the last chosen action as atl .
4: else if atl−1

∈ Al and l is even then
5: Let atl−1+1 = atl−1

. Starting from this action, along the direction of ik → · · · → i1,
choose each action in Al for tl−tl−1

|Al| consecutive rounds. Mark the last chosen action as atl .
6: else if atl−1

/∈ Al and l is odd then
7: Along the direction of i1 → · · · → ik, find the first action that still remains in Al. Starting

from this action, along the direction of i1 → · · · → ik, choose each action in Al for tl−tl−1

|Al|
consecutive rounds. Mark the last chosen action as atl .

8: else if atl−1
/∈ Al and l is even then

9: Along the direction of ik → · · · → i1, find the first action that still remains in Al. Starting
from this action, along the direction of ik → · · · → i1, choose each action in Al for tl−tl−1

|Al|
consecutive rounds. Mark the last chosen action as atl .

10: end if
11: Statistical test: deactivate all actions i s.t. ∃ action j with UCBtl(i) < LCBtl(j), where

UCBtl(i) = empirical mean of action i in[1 : tl] +

√
2 log T

number of plays of action i in[1 : tl]
,

LCBtl(i) = empirical mean of action i in[1 : tl]−

√
2 log T

number of plays of action i in[1 : tl]
.

12: end for
13: In the last interval, choose the action with the highest empirical mean (up to round tmU

G(S)).

Finally, we illustrate how tight the above upper and lower bounds are. When the switching costs
satisfy the condition maxi,j∈[k] ci,j = maxi∈[k] minj 6=i ci,j , the two bounds directly match. When
this condition is not satisfied, for any switching graph G, the above two bounds still match for a wide
range of S:[

0, H + max
i∈[k]

min
j 6=i

ci,j

)⋃{ ∞⋃
n=1

[
nH + max

i,j∈[k]
ci,j , (n+ 1)H + max

i∈[k]
min
j 6=i

ci,j

)}
.

Even when S is not in this range, we still have mU
G(S) ≤ mL

G(S) ≤ mU
G(S) + 1 for any G and any

S, which means that the difference between the two indices is at most 1 and the regret bounds are
always very close. In fact, it can be shown that as S increases, the gap between the upper and lower
bounds decreases doubly exponentially. Therefore, the HS-SE policy is quite effective for the general
BwSC problem.

For additional theoretical results for the general BwSC problem, see the full version of this paper [14].
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