
Efficient Regret Minimization Algorithm for
Extensive-Form Correlated Equilibrium∗

Gabriele Farina
Computer Science Department

Carnegie Mellon University
gfarina@cs.cmu.edu

Chun Kai Ling
Computer Science Department

Carnegie Mellon University
chunkail@cs.cmu.edu

Fei Fang
Institute for Software Research

Carnegie Mellon University
feif@cs.cmu.edu

Tuomas Sandholm
Computer Science Department, CMU

Strategic Machine, Inc.
Strategy Robot, Inc.

Optimized Markets, Inc.
sandholm@cs.cmu.edu

Abstract

Self-play methods based on regret minimization have become the state of the art
for computing Nash equilibria in large two-players zero-sum extensive-form games.
These methods fundamentally rely on the hierarchical structure of the players’
sequential strategy spaces to construct a regret minimizer that recursively minimizes
regret at each decision point in the game tree. In this paper, we introduce the first
efficient regret minimization algorithm for computing extensive-form correlated
equilibria in large two-player general-sum games with no chance moves. Designing
such an algorithm is significantly more challenging than designing one for the Nash
equilibrium counterpart, as the constraints that define the space of correlation plans
lack the hierarchical structure and might even form cycles. We show that some of
the constraints are redundant and can be excluded from consideration, and present
an efficient algorithm that generates the space of extensive-form correlation plans
incrementally from the remaining constraints. This structural decomposition is
achieved via a special convexity-preserving operation that we coin scaled extension.
We show that a regret minimizer can be designed for a scaled extension of any
two convex sets, and that from the decomposition we then obtain a global regret
minimizer. Our algorithm produces feasible iterates. Experiments show that it
significantly outperforms prior approaches and for larger problems it is the only
viable option.

1 Introduction

In recent years, self-play methods based on regret minimization, such as counterfactual regret
minimization (CFR) [Zinkevich et al., 2007] and its faster variants [Tammelin et al., 2015; Brown
et al., 2017; Brown and Sandholm, 2019a] have emerged as powerful tools for computing Nash
equilibria in large extensive-form games, and have been instrumental in several recent milestones
in poker [Bowling et al., 2015; Brown and Sandholm, 2017a,b; Moravčík et al., 2017; Brown and
Sandholm, 2019b]. These methods exploit the hierarchical structure of the sequential strategy spaces
of the players to construct a regret minimizer that recursively minimizes regret locally at each decision

∗The full version of this paper is available on arXiv.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

point in the game tree. This has inspired regret-based algorithms for other solution concepts in game
theory, such as extensive-form perfect equilibria [Farina et al., 2017], Nash equilibrium with strategy
constraints [Farina et al., 2017, 2019a,b; Davis et al., 2019], and quantal-response equilibrium [Farina
et al., 2019a].

In this paper, we give the first efficient regret-based algorithm for finding an extensive-form correlated
equilibrium (EFCE) [von Stengel and Forges, 2008] in two-player general-sum games with no chance
moves. EFCE is a natural extension of the correlated equilibrium (CE) solution concept to the setting
of extensive-form games. Here, the strategic interaction of rational players is complemented by a
mediator that privately recommends behavior, but does not enforce it: it is up to the mediator to
make recommendations that the players are incentivized to follow. Designing a regret minimization
algorithm that can efficiently search over the space of extensive-form correlated strategies (known as
correlation plans) is significantly more difficult than designing one for Nash equilibrium. This is
because the constraints that define the space of correlation plans lack the hierarchical structure of
sequential strategy spaces and might even form cycles. Existing general-purpose regret minimization
algorithms, such as follow-the-regularized-leader [Shalev-Shwartz and Singer, 2007] and mirror
descent, as well as those proposed by Gordon et al. [2008] in the context of convex games, are not
practical: they require the evaluation of proximal operators (generalized projections problems) or the
minimization of linear functions on the space of extensive-form correlation plans. In the former case,
no distance-generating function is known that can be minimized efficiently over this space, while in
the latter case current linear programming technology does not scale to large games, as we show in
the experimental section of this paper. The regret minimization algorithm we present in this paper
computes the next iterate in linear time in the dimension of the space of correlation plans.

We show that some of the constraints that define the polytope of correlation plans are redundant and
can be eliminated, and present an efficient algorithm that generates the space of correlation plans
incrementally from the remaining constraints. This structural decomposition is achieved via a special
convexity-preserving operation that we coin scaled extension. We show that a regret minimizer can
be designed for a scaled extension of any two convex sets, and that from the decomposition we then
obtain a global regret minimizer. Experiments show that our algorithm significantly outperforms prior
approaches—the LP-based approach [von Stengel and Forges, 2008] and a very recent subgradient
descent algorithm [Farina et al., 2019c]—and for larger problems it is the only viable option.

2 Preliminaries
Extensive-form games (EFGs) are played on a game tree. Each node in the game tree belongs to
a player, who acts at that node; for the purpose of this paper, we focus on two-player games only.
Edges leaving a node correspond to actions that can be taken at that node. In order to capture private
information, the game tree is supplemented with information sets. Each node belongs to exactly one
information set, and each information set is a nonempty set of tree nodes for the same Player i, which
are the set of nodes that Player i cannot distinguish among, given what they have observed so far. We
will focus on perfect-recall EFGs, that is, EFGs where no player forgets what the player knew earlier.
We denote by I1 and I2 the sets of all information sets that belong to Player 1 and 2, respectively. All
nodes that belong to an information set I ∈ I1 ∪I2 share the same set of available actions (otherwise
the player acting at those nodes would be able to distinguish among them); we denote by AI the set
of actions available at information set I . We define the set of sequences of Player i as the set Σi :=
{(I, a) : I ∈ Ii, a ∈ AI} ∪ {∅}, where the special element ∅ is called empty sequence. Given an in-
formation set I ∈ Ii, we denote by σ(I) the parent sequence of I , defined as the last pair (I ′, a′) ∈ Σi

1 2

3 4 5 6 789 789

A

B C D

Figure 1: Small example.

encountered on the path from the root to any node v ∈ I; if no such pair
exists (that is, Player i never acts before any node v ∈ I), we let σ(I) = ∅.
We (recursively) define a sequence τ ∈ Σi to be a descendent of sequence
τ ′ ∈ Σi, denoted by τ � τ ′, if τ = τ ′ or if τ = (I, a) and σ(I) � τ ′. We
use the notation τ � τ ′ to mean τ � τ ′ ∧ τ 6= τ ′. Figure 1 shows a small
example EFG; black round nodes belong to Player 1, white round nodes
belong to Player 2, action names are not shown, gray round sets define
information sets, and the numbers along the edges define concise names
for sequences (for example, ‘7’ denotes sequence (D, a) where a is the
leftmost action at D).

Sequence-Form Strategies In the sequence-form representation [Romanovskii, 1962; Koller et
al., 1996; von Stengel, 1996], a strategy for Player i is compactly represented via a vector x indexed

2

by sequences σ ∈ Σi. When σ = (I, a), the entry x[σ] ≥ 0 defines the product of the probabilities
according to which Player i takes their actions on the path from the root to information set I , up to
and including action a; furthermore, x[∅] = 1. Hence, in order to be a valid sequence-form strategy,
x must satisfy the ‘probability mass conservation’ constraint: for all I ∈ Ii,

∑
a∈AI

x[(I, a)] =

x[σ(I)]. That is, every information sets partitions the probability mass received from the parent
sequence onto its actions. In this sense, the constraints that define the space of sequence-form
strategies naturally exhibit a hierarchical structure.

2.1 Extensive-Form Correlated Equilibria

Extensive-form correlated equilibrium (EFCE) [von Stengel and Forges, 2008] is a natural extension
of the solution concept of correlated equilibrium (CE) [Aumann, 1974] to extensive-form games. In
EFCE, a mediator privately reveals recommendations to the players as the game progresses. These
recommendations are incremental, in the sense that recommendations for the move to play at each
decision point of the game are revealed only if and when the decision point is reached. This is in
contrast with CE, where recommendations for the whole game are privately revealed upfront when the
game starts. Players are free to not follow the recommended moves, but once a player does not follow
a recommendation, he will not receive further recommendations. In an EFCE, the recommendations
are incentive-compatible—that is, the players are motivated to follow all recommendations. EFCE
and CE are good candidates to model strategic interactions in which intermediate forms of centralized
control can be achieved [Ashlagi et al., 2008].

In a recent preprint, Farina et al. [2019c] show that in two-player perfect-recall extensive-form games,
an EFCE that guarantees a social welfare (that is, sum of player’s utilities) at least τ is the solution to
a bilinear saddle-point problem, that is an optimization problem of the form minx∈X maxy∈Y x>Ay,
where X and Y are convex and compact sets and A is a matrix of real numbers. In the case of
EFCE, X = Ξ is known as the polytope of correlation plans (see Section 2.2) and Y is the convex
hull of certain sequence-form strategy spaces. In general, Ξ cannot be captured by a polynomially
small set of constraints, since computing an optimal EFCE in a two-player perfect-recall game is
computationally hard [von Stengel and Forges, 2008].2 However, in the special case of games with
no chance moves, this is not the case, and Ξ is the intersection of a polynomial (in the game tree
size) number of constraints, as discussed in the next subsection. In fact, most of the current paper
is devoted to studying the structure of Ξ. We will largely ignore Y , for which an efficient regret
minimizer can already be built, for instance by using the theory of regret circuits [Farina et al., 2019b]
(see also Appendix A in the full paper). Similarly, we will not use any property of matrixA (except
that it can be computed and stored efficiently).

2.2 Polytope of Extensive-Form Correlation Plans in Games with no Chance Moves

In their seminal paper, von Stengel and Forges [2008] characterize the constraints that define the
space of extensive-form correlation plans Ξ in the case of two-player perfect-recall games with no
chance moves. The characterization makes use of the following two concepts:
Definition 1 (Connected information sets, I1
 I2). Let I1, I2 be information sets for Player 1
and 2, respectively. We say that I1 and I2 are connected, denoted I1
 I2, if there exist two nodes
u ∈ I1, v ∈ I2 such that u is on the path from the root to v, or v is on the path from the root to u.
Definition 2 (Relevant sequence pair, σ1 ./ σ2). Let σ1 ∈ Σ1, σ2 ∈ Σ2. We say that (σ1, σ2) is
a relevant sequence pair, and write σ1 ./ σ2, if either σ1 or σ2 or both is the empty sequence, or
if σ1 = (I1, a1) and σ2 = (I2, a2) and I1
 I2. Similarly, given σ1 ∈ Σ1 and I2 ∈ I2, we say
that (σ1, I2) forms a relevant sequence-information set pair, and write σ1 ./ I2, if σ1 = ∅ or if
σ1 = (I1, a1) and I1
 I2 (a symmetric statement holds for I1 ./ σ2).
Definition 3 (von Stengel and Forges [2008]). In a two-player perfect-recall extensive-form game
with no chance moves, the space Ξ of correlation plans is a convex polytope containing nonnegative
vectors indexed over relevant sequences pairs, and is defined as

Ξ :=

ξ ≥ 0 :
• ξ[∅,∅] = 1

•
∑

a∈AI
ξ[(I1, a), σ2] = ξ[σ(I1), σ2] ∀I1 ∈ I1, σ2 ∈ Σ2 s.t. I1 ./ σ2

•
∑

a∈AJ
ξ[σ1, (I2, a)] = ξ[σ1, σ(I2)] ∀I2 ∈ I2, σ1 ∈ Σ1 s.t. σ1 ./ I2

.
2A feasible EFCE can be found in theoretical polynomial time [Huang and von Stengel, 2008; Huang, 2011]

using the ellipsoid-against-hope algorithm [Papadimitriou and Roughgarden, 2008; Jiang and Leyton-Brown,
2015]. Unfortunately, that algorithm is known to not scale beyond small games.

3

In particular, Ξ is the intersection of at most 1 + |I1| · |Σ2|+ |Σ1| · |I2| constraints, a polynomial
number in the input game size.

2.3 Regret Minimization and Relationship with Bilinear Saddle-Point Problems

A regret minimizer is a device that supports two operations: (i) RECOMMEND, which provides
the next decision xt+1 ∈ X , where X is a nonempty, convex, and compact subset of a Euclidean
space Rn; and (ii) OBSERVELOSS, which receives/observes a convex loss function `t that is used
to evaluate decision xt [Zinkevich, 2003]. In this paper, we will consider linear loss functions,
which we represent in the form of a vector `t ∈ Rn. A regret minimizer is an online decision
maker in the sense that each decision is made by taking into account only past decisions and their
corresponding losses. The quality metric for the regret minimizer is its cumulative regret RT , defined
as the difference between the loss cumulated by the sequence of decisions x1, . . . ,xT and the loss
that would have been cumulated by the best-in-hindsight time-independent decision x̂. Formally,
RT :=

∑T
t=1〈`t,xt〉 − minx̂∈X

∑T
t=1〈`t, x̂〉. A ‘good’ regret minimizer has RT sublinear in T ;

this property is known as Hannan consistency. Hannan consistent regret minimizers can be used
to converge to a solution of a bilinear saddle-point problem (Section 2.1). To do so, two regret
minimizers, one for X and one for Y , are set up so that at each time t they observe loss vectors
`tx := −Ayt and `ty := A>xt, respectively, where xt ∈ X and yt ∈ Y are the decisions output
by the two regret minimizers. A well-known folk theorem asserts that in doing so, at time T the
average decisions (x̄T , ȳT) := (1

T

∑T
t=1 x

t, 1
T

∑T
t=1 y

t) have saddle-point gap (a standard measure
of how close a point is to being a saddle-point) γ(x̄T , ȳT) := maxx̂∈X x̂>AȳT −minŷ∈Y(x̄T)>Aŷ
bounded above by γ(x̄T , ȳT) ≤ (RT

X +RT
Y)/T where RT

X and RT
Y are the cumulative regrets of the

regret minimizers. Since the regrets grow sublinearly, γ(x̄T , ȳT)→ 0 as T → +∞. As discussed in
the introduction, this approach has been extremely successful in computational game theory.

3 Scaled Extension: A Convexity-Preserving Operation for Incrementally
Constructing Strategy Spaces

In this section, we introduce a new convexity-preserving operation between two sets. We show that
it provides an alternative way of constructing the strategy space of a player in an extensive-form
game that is different from the construction based on convex hulls and Cartesian products described
by Farina et al. [2019b]. Our new construction enables one to incrementally extend the strategy
space in a top-down fashion, whereas the construction by Farina et al. [2019b] was bottom-up.
Most importantly, as we will show in Section 3.1, this new operation enables one to incrementally,
recursively construct the extensive-form correlated strategy space (again in a top-down fashion).
Definition 4. Let X and Y be nonempty, compact and convex sets, and let h : X → R+ be a
nonnegative affine real function. The scaled extension of X with Y via h is defined as the set

X h
/ Y := {(x,y) : x ∈ X , y ∈ h(x)Y}.

Since we will be composing multiple scaled extensions together, it is important to verify that the
operation above not only preserves convexity, but also preserves the non-emptiness and compactness
of the sets (a proof of the following Lemma is available in Appendix B in the full paper):

Lemma 1. Let X ,Y and h be as in Definition 4. Then X h
/ Y is nonempty, compact and convex.

3.1 Construction of the Set of Sequence-Form Strategies

The scaled extension operation can be used to construct the polytope of a perfect-recall player’s
strategy in sequence-form in an extensive-form game. We illustrate the approach in the small example
of Figure 1; the generalization to any extensive-form strategy space is immediate. As noted in
Section 2, any valid sequence-form strategy must satisfy probability mass constraints, and can be
constructed incrementally in a top-down fashion, as follows (in the following we refer to the same
naming scheme as in Figure 1 for the sequences of Player 1):

i. First, the empty sequence is set to value x[∅] = 1.
ii. (Info set A) Next, the value x[∅] is partitioned into the two non-negative values x[1]+x[2]=x[∅].

4

iii. (Info set B) Next, the value x[1] is partitioned into two non-negative values x[3] + x[4] = x[1].
iv. (Info set C) Next, the value x[1] is partitioned into two non-negative values x[5] + x[6] = x[1].
v. (Info set D) Next, the value x[2] is partitioned into 3 non-negative values x[7]+x[8]+x[9]=x[2].

The incremental choices in the above recipe can be directly translated—in the same order—into set
operations by using scaled extensions, as follows:

i. First, the set of all feasible values of sequence x[∅] is the singleton X0 := {1}.
ii. Then, the set of all feasible values of (x[∅], x[1], x[2]) is the set X1 := X0 ×∆2 = X0 /

h1 ∆2,
where h1 is the linear function h1 : X0 3 x[∅] 7→ x[∅] (the identity function).

iii. In order to characterize the set of all feasible values of (x[∅], . . . , x[4]) we start from X1, and
extend any element (x[∅], x[1], x[2]) ∈ X1 with the two sequences x[3] and x[4], drawn from
the set {(x[3], x[4]) ∈ R+

2 : x[3] +x[4] = x[1]} = x[1]∆2. We can express this extension using
scaled extension: X2 := X1 /

h2 ∆2, where h2 : X1 3 (x[∅], x[1], x[2]) 7→ x[1].
iv. Similarly, we can extend every element in X2 to include (x[5], x[6]) ∈ x[1]∆2: in this case,
X3 := X2 /

h3 ∆2, where h3 : X2 3 (x[∅], x[1], x[2], x[3], x[4]) 7→ x[1].
v. The set of all feasible(x[∅], .., x[9]) is X4 :=X3 /

h4∆3, where h4 :X33(x[∅], . . . ,x[6]) 7→x[2].

Hence, the polytope of sequence-form strategies for Player 1 in Figure 1 can be expressed as

{1} h1
/ ∆2 h2

/ ∆2 h3
/ ∆2 h4

/ ∆3, where the scaled extension operation is intended as left associative.

3.2 Regret Minimizer for Scaled Extension

It is always possible to construct a regret minimizer for Z = X h
/ Y , where h(x) = 〈a,x〉 + b,

starting from a regret minimizer for X ⊆ Rm and Y ⊆ Rn. The fundamental technical insight of the
construction is that, given any vector ` = (`x, `y) ∈ Rm × Rn, the minimization of a linear function
z 7→ 〈`, z〉 over Z can be split into two separate linear minimization problems over X and Y:

min
z∈Z
〈`, z〉 = min

x∈X ,y∈Y

{
〈`x,x〉+ h(x)〈`y,y〉

}
= min

x∈X

{
〈`x,x〉+ h(x) min

y∈Y
〈`y,y〉

}
= min

x∈X

{〈
`x + a ·min

y∈Y
〈`y,y〉,x

〉}
+ b ·min

y∈Y
〈`y,y〉.

Thus, it is possible to break the problem of minimizing regret over Z into two regret minimization
subproblems over X and Y (more details in Appendix C in the full paper). In particular:
Proposition 1. Let RMX and RMY be two regret minimizer over X and Y respectively, and let
RT
X , R

T
Y denote their cumulative regret at time T . Then, Algorithm 1 provides a regret minimizer over

Z whose cumulative regretRT
Z is bounded above asRT

Z ≤ RT
X +h∗RT

Y , where h∗ := maxx∈X h(x).

Algorithm 1 Regret minimizer over the scaled extension X / h Y .
1: function RECOMMEND()
2: xt ← RMX .RECOMMEND()

3: yt ← RMY .RECOMMEND()

4: return (xt, h(xt)yt)

1: function OBSERVELOSS(`t = (`tx, `
t
y))

2: yt ← RMY .RECOMMEND()
3: ˜̀t

x ← `tx + 〈`ty,yt〉 · a
4: RMX .OBSERVELOSS(˜̀tx)

5: RMY .OBSERVELOSS(`ty)

Algorithm 1 can be composed recursively to construct a regret minimizer for any set that is expressed
via a chain of scaled extensions, such as the polytope of sequence-form strategies (Section 3.1) or
that of extensive-form correlation plans (Section 4). When used on the polytope of sequence-form
strategies, Algorithm 1 coincides with the CFR algorithm if all regret minimizers for the individual
simplexes in the chain of scaled extensions are implemented using the regret matching algorithm [Hart
and Mas-Colell, 2000].

4 Unrolling the Structure of the Correlated Strategy Polytope

In this section, we study the combinatorial structure of the polytope of correlated strategies (Sec-
tion 2.2) of a two-player perfect-recall extensive-form game with no chance moves. The central
result of this section, Theorem 1, asserts that the correlated strategy polytope Ξ can be expressed via
a chain of scaled extensions. This matches the similar result regarding the sequence-form strategy
polytope that we discussed in Section 3.1. However, unlike the sequence-form strategy polytope, the

5

constraints that define the correlated strategy polytope do not exhibit a natural hierarchical structure:
the constraints that define Ξ (Definition 3) are such that the same entry of the correlation plan ξ
can appear in multiple constraints, and furthermore the constraints will in general form cycles. This
makes the problem of unrolling the structure of Ξ significantly more challenging.

The key insight is that some of the constraints that define Ξ are redundant (that is, implied by the
remaining constraints) and can therefore be safely eliminated. Our algorithm identifies one such
set of redundant constraints, and removes them. The set is chosen in such a way that the remaining
constraints can be laid down in a hierarchical way that can be captured via a chain of scaled extensions.

4.1 Example

Before we delve into the technical details of the construction, we illustrate the key idea of the
algorithm in a small example. In particular, consider the small game tree of Figure 2 (left), where we
used the same conventions as in Section 2 and Figure 1. All sequence pairs are relevant; the set of
constraints that define Ξ is shown in Figure 2 (middle).

1

1 2

2

3 4

A

B C

In this game, Ξ is defined by the following constraints:
ξ[∅,∅] = 1,
ξ[σ1, 1] + ξ[σ1, 2] = ξ[σ1,∅] ∀σ1 ∈ {∅, 1, 2},
ξ[σ1, 3] + ξ[σ1, 4] = ξ[σ1,∅] ∀σ1 ∈ {∅, 1, 2},
ξ[1, σ2] + ξ[2, σ2] = ξ[∅, σ2] ∀σ2 ∈ {∅, 1, 2, 3, 4}.

∅ 1 2 3 4

∅

1

2

1

2 3 3

4 4

Figure 2: (Left) Example game (Section 4.1). (Middle) Constraints that define Ξ in the example game. (Right)
Fill-in order of ξ. The cell at the intersection of row σ1 and column σ2 represents the entry ξ[σ1, σ2] of ξ.

In order to generate all possible correlation plans ξ ∈ Ξ, we proceed as follows. First, we assign
ξ[∅,∅] = 1. Then, we partition ξ[∅,∅] into two non-negative values (ξ[1,∅], ξ[2,∅]) ∈ ξ[∅,∅]∆2

in accordance with the constraint ξ[1,∅] + ξ[2,∅] = ξ[∅,∅]. Next, using the constraints
ξ[σ1, 1]+ξ[σ1, 2] = ξ[σ1,∅] and ξ[σ1, 3]+ξ[σ1, 4] = ξ[σ1,∅], we pick values (ξ[σ1, 1], ξ[σ1, 2]) ∈
ξ[σ1,∅]∆2 and (ξ[σ1, 3], ξ[σ1, 4]) ∈ ξ[σ1,∅]∆2 for σ1 ∈ {1, 2}. So far, our strategy for filling the
correlation plan has been to split entries according to the information structure of the players. As
shown in Section 3.1, these steps can be expressed via scaled extension operations.

Next, we fill in the four remaining entries in ξ, that is ξ[∅, σ2] for σ2 ∈ {1, 2, 3, 4}, in accordance
with constraint ξ[1, σ2] + ξ[2, σ2] = ξ[∅, σ2]. In this step, we are not splitting any value; rather, we
fill in ξ[∅, σ2] in the only possible way (that is, ξ[∅, σ2] = ξ[1, σ2] + ξ[2, σ2]), by means of a linear
combination of already-filled-in entries. This operation can be also expressed via scaled extensions,
with the singleton set {1}: {(ξ[1, σ2], ξ[2, σ2], ξ[∅, σ2])} = {(ξ[1, σ2], ξ[2, σ2])} / h{1}, where
h : (ξ[1, σ2], ξ[2, σ2]) 7→ ξ[1, σ2] + ξ[2, σ2] (note that h respects the requirements of Definition 4).
This way, we have filled in all entries in ξ. However, only 9 out of the 11 constraints have been
taken into account in the construction, and we still need to verify that the two leftover constraints
ξ[∅, 1] + ξ[∅, 2] = ξ[∅,∅] and ξ[∅, 3] + ξ[∅, 4] = ξ[∅,∅] are automatically satisfied by our way
of filling in the entries of ξ. Luckily, this is always the case: by construction, ξ[∅, 1]+ξ[∅, 2] =
(ξ[1, 1]+ξ[1, 2])+(ξ[2, 1]+ξ[2, 2]) = ξ[1,∅]+ξ[2,∅] = ξ[∅,∅] (the proof for ξ[∅, 3] + ξ[∅, 4] is
analogous). We summarize the construction steps pictorially in Figure 2 (right).
Remark 1. Similar construction that starts from assigning values for ξ[∅, σ2] (σ2 ∈ {1, 2, 3, 4}
using constraints ξ[∅, 1] + ξ[∅, 2] = ξ[∅,∅], ξ[∅, 3] + ξ[∅, 4] = ξ[∅,∅] and fills out ξ[σ1, σ2] for
(σ1, σ2) ∈ {1, 2}×{1, 2, 3, 4} would have not been successful: if (ξ[1, 1], ξ[1, 2]) and (ξ[1, 3], ξ[1, 4])
are filled in independently, there is no way of guaranteeing that ξ[1, 1] + ξ[1, 2] = ξ[1, 3] + ξ[1, 4]
(= ξ[1,∅]) as required by the constraints.

4.2 An Unfavorable Case that Cannot Happen in Games with No Chance Moves

We now show that there exist game instances in which the general approach used in the previous
subsection fails. In particular, consider a relevant sequence pair (σ1, σ2) such that both σ1 and σ2 are
parent sequences of two information sets of Player 1 and Player 2 respectively, and assume that all
sequence pairs in the game are relevant. Then, no matter what the order of operations is, the situation
described in Remark 1 cannot be avoided. Luckily, in two-player perfect-recall games with no chance
moves, one can prove that this occurrence never happens (see Appendix D in the full paper for a
proof):

6

Proposition 2. Consider a two-player perfect-recall game with no chance moves, and let (σ1, σ2)
be a relevant sequence pair, let I1, I ′1 be two distinct information sets of Player 1 such that σ(I1) =
σ(I ′1) = σ1, and let I2, I ′2 be two distinct information sets of Player 2 such that σ(I2) = σ(I ′2) = σ2.
It is not possible that both I1
 I2 and I ′1
 I ′2.

In other words, if I1
 I2, then any pair of sequences (σ′1, σ
′
2) where σ′1 belongs to I ′1 and σ′2 belongs

to I ′2 is irrelevant. As we show in the next subsection, this is enough to yield a polynomial-time
algorithm to ‘unroll’ the process of filling in the entries of ξ ∈ Ξ in any two-player perfect-recall
extensive-form game with no chance moves. The following definition is crucial for that algorithm:
Definition 5. Let (σ1, σ2) be a relevant sequence pair, and let I1 ∈ I1 be an information set for
Player 1 such that σ(I1) = σ1. Information set I1 is called critical for σ2 if there exists at least one
I2 ∈ I2 with σ(I2) = σ2 such that I1
 I2. (A symmetric definition holds for an I2 ∈ I2.)

It is a simple corollary of Proposition 2 that for any relevant sequence pair, at least one player has at
most one critical information set for the opponent’s sequence. We call such a player critical for that
relevant sequence pair.

4.3 A Polynomial-Time Algorithm that Decomposes Ξ using Scaled Extensions

In this section, we present the central result of the paper: an efficient algorithm that expresses Ξ as a
chain of scaled extensions of simpler sets. In particular, as we have already seen in Section 4.1, each
set in the decomposition is either a simplex (when splitting an already-filled-in entry) or the singleton
set {1} (when summing already filled-in entries and assigning the result to a new entry of ξ).

The algorithm consists of a recursive function, DECOMPOSE, which takes three arguments: a relevant
sequence pair (σ1, σ2), a subset S of the set of all relevant sequence pairs, and a set D of vectors with
entries indexed by the elements in S . S represents the set of indices of ξ that have already been filled
in, whileD is the set of all partially-filled-in correlation plans (see Section 4.1). The decomposition for
the whole polytope Ξ is obtained by evaluating DECOMPOSE((∅,∅),S = {(∅,∅)},D = {(1)}),
which corresponds to the starting situation in which only the entry ξ[∅,∅] has been filled in (with
the value 1 as per Definition 3). Each call to DECOMPOSE returns a pair (S ′,D′) of updated
indices and partial vectors, to reflect the new entries that were filled in during the call. Each call to
DECOMPOSE((σ1, σ2),S,D) works as follows:

• First, the algorithm finds one critical player for the relevant sequence pair (σ1, σ2) (see end of
Section 4.2). Assume without loss of generality that Player 1 is critical (the other case is symmetric),
and let I∗ ⊆ I1 be the set of critical information sets for σ2 that belong to Player 1. By definition
of critical player, I∗ is either a singleton or it is an empty set.

• For each I ∈ I1 such that σ(I) = σ1 and I ./ σ2, we:
– Fill in all entries {ξ[(I∗, a), σ2] : a ∈ AI} by splitting ξ[σ1, σ2]. This is reflected by updating

the set of filled-in-indices S ← S ∪ {((I, a), σ2)} and extending D via a scaled extension:
D ← D / h ∆|AI | where h extracts ξ[σ1, σ2] from any partially-filled-in vector.

– Then, for each a ∈ AI we assign (S,D)← DECOMPOSE(((I, a), σ2),S,D).
After this step, all the indices in {(σ′1, σ′2) : σ′1 � σ1, σ

′
2 � σ2} ∪ {(σ1, σ2)} have been filled in,

and none of the indices in {(σ1, σ
′
2) : σ′2 � σ2} have been filled in yet.

• Finally, we fill out all indices in {(σ1, σ
′
2) : σ′2 � σ2}. We do so by iterating over all information

sets J ∈ I2 such that σ(J) � σ2 and σ1 ./ J . For each such J , we split into two cases, according
to whether I∗ = {I∗} (for some I∗ ∈ I1, as opposed to I∗ being empty) and J
 I∗, or not:

– If I∗ = {I∗} and J
 I∗, then for all a ∈ AJ we fill in the sequence pair ξ[σ1, (J, a)] by as-
signing its value in accordance with the constraint ξ[σ1, (J, a)] =

∑
a∗∈AI∗

ξ[(I∗, a∗), (J, a)]

via the scaled extension D ← D / h{1} where the linear function h maps a partially-filled-in
vector to the value of

∑
a∗∈AI∗

ξ[(I∗, a∗), (J, a)].
– Otherwise, we fill in the entries {ξ[σ1, (J, a)] : a ∈ AJ}, by splitting the value ξ[σ1, σ(J)].

In other words, we let D ← D / h ∆|AJ | where h extracts the entry ξ[σ1, σ(J)] from a
partially-filled-in vector in D.

• At this point, all the entries corresponding to indices S̃ = {(σ′1, σ′2) : σ′1 � σ1, σ
′
2 � σ2} have

been filled in, and we return (S ∪ S̃,D).

Every call to DECOMPOSE increases the cardinality of S by at least one unit. Since S is a subset of
the set of relevant sequence pairs, and since the total number of relevant sequence pair is polynomial

7

in the input game tree size, the algorithm runs in polynomial time. See Appendix E in the full paper
for pseudocode, as well as a proof of correctness of the algorithm. Since every change to D is done
via scaled extensions (with either a simplex or the singleton set {1}), we conclude that:
Theorem 1. In a two-player perfect-recall EFG with no chance moves, the space of correlation
plans Ξ can be expressed via a sequence of scaled extensions with simplexes and singleton sets:

Ξ = {1} h1
/ X1

h2
/ X2

h3
/ · · · hn

/ Xn, where, for i = 1, . . . , n, either Xi = ∆si or Xi = {1}, (1)
and hi(·) = 〈ai, ·〉 is a linear function. Furthermore, an exact algorithm exists to compute such
expression in polynomial time.

We can recursively use Algorithm 1 on the expression (1) to obtain a regret minimizer for Ξ. The
resulting algorithm, shown in Algorithm 3 of Appendix F in the full paper, is contingent on a choice of
“local” regret minimizers RMi for each of the simplex domains ∆si in (1). By virtue of Algorithm 1,
if each local regret minimizer RMi for ∆si runs in linear time (i.e., computes recommendations and
observes losses by running an algorithm whose complexity is linear in si)3, then the overall regret
minimization algorithm for Ξ runs in linear time in the number of relevant sequence pairs of the
game. Furthermore, Proposition 1 immediately implies that if each RMi is Hannan consistent, then
so is our overall algorithm for Ξ. Putting these observations together, we conclude:
Theorem 2. For any two-player extensive-form game with no chance moves, there exists a Hannan
consistent regret minimizer for Ξ that runs in linear time in the number of relevant sequence pairs.

5 Experimental Evaluation

We experimentally evaluate the scalability of our regret-minimization algorithm for computing an
extensive-form correlated equilibrium. In particular, we implement a regret minimizer for the space
of correlation plans by computing the structural decomposition of Ξ into a chain of scaled extensions
(Section 4.3) and repeatedly applying the construction of Section 3.2. This regret minimizer is then
used on the saddle-point formulation of an EFCE (Section 2.1) as explained in Section 2.3, with
two modifications that are standard in the literature on regret minimization algorithms for game
theory [Tammelin et al., 2015; Burch et al., 2019]: (i) alternating updates and (ii) linear averaging of
the iterates4. We use regret-matching-plus [Tammelin et al., 2015] to minimize the regret over the
simplex domains in the structural decomposition. These variants are known to be beneficial in the case
of Nash equilibrium, and we observed the same for EFCE. We compare our algorithm to two known
algorithms in the literature. The first is based on linear programming [von Stengel and Forges, 2008].

Board Num Ship |Σ1| |Σ2|
Num. rel.

size turns length seq. pairs

(3, 2) 3 1 15k 47k 3.89M
(3, 2) 4 1 145k 306k 26.4M
(3, 2) 4 2 970k 2.27M 111M

Table 1: Game metrics for the different
instances of the Battleship game we test on.

The second is a very recent subgradient descent algorithm
for this problem [Farina et al., 2019c], which leverages a
recent subgradient descent technique [Wang and Bertsekas,
2013]. All algorithms were run on a machine with 16 GB
of RAM and an Intel i7 processor with 8 cores. We used
the Gurobi commercial solver (while allowing it to use
any number of threads) to solve the LP when evaluating
the scalability of the LP-based method proposed by von
Stengel and Forges [2008].

Game instances. We test the scalability of our algorithm in a benchmark game for EFCE that was
recently proposed by Farina et al. [2019b]: a parametric variant of the classical war game Battleship.
Table 1 shows some statistics about the three game instances that we use, including the number of
relevant sequence pairs in the game (Definition 2). ‘Board size’ refers to the size of the Battleship
playfield; each player has a field of that size in which to place his ship. ‘Num turns’ refers to the
maximum number of shots that each player can take (in turns). ‘Ship length’ is the length of the
one ship that each player has. Despite the seemingly small board sizes and the presence of only one
ship per player, the game trees for these instances are quite large, with each player having tens of
thousands to millions of sequences.

Scalability of the Linear Programming Approach [von Stengel and Forges, 2008]. Only the
small instance could be solved by Gurobi, Figure 3 (left). (Out of the LP algorithms provided by

3Linear-time regret minimizers for simplexes include regret-matching [Hart and Mas-Colell, 2000], regret-
matching-plus [Tammelin et al., 2015], mirror-descent and follow-the-regularized-leader (e.g, Hazan [2016]).

4The linear average of n vectors ξ1, . . . , ξn is (
∑n

t=1 t · ξt)/(
∑n

t=1 t) = 2(
∑n

t=1 t · ξt)/(n(n+ 1)).

8

0 100 200 300 400 500 600
10−10

10−8

10−6

10−4

10−2

100

102

Gurobi
Ours

Subgradient

Runtime [s]

M
ax

de
vi

at
io

n

Small Battleship instance

0 500 1,000 1,500

10−4

10−3

10−2

10−1

100

Ours, Medium

Subgradient, Medium

Ours, Large

Runtime [s]

M
ax

de
vi

at
io

n

Medium and large Battleship instance

Figure 3: Experimental results. The y-axis shows the maximum utility increase upon deviation.

Gurobi, the barrier method was faster than the primal- and dual-simplex methods.) On the medium
and large instance, Gurobi was killed by the system for trying to allocate too much memory. Farina
et al. [2019c] report that the large instance needs more than 500GB of memory in order for Gurobi
to run. The Gurobi run time shown in Figure 3 does not include the time needed to construct and
destruct the Gurobi LP objects, which is negligible.

Scalability of the Very Recent Subgradient Technique [Farina et al., 2019c]. The very recent
subgradient descent algorithm for this problem was able to solve the small and medium instances if
the algorithm’s step size was tuned well. An advantage of our technique is that it has no parameters
to tune. Another issue is that the iterates Ξ of the subgradient algorithm are not feasible while ours
are. Furthermore, on the large instance, the subgradient technique was already essentially unusable
because each iteration took over an hour (mainly due to computing the projection).

Figure 3 shows the experimental performance of the subgradient descent algorithm. We used a step
size of 10−3 in the small instance and of 10−6 in the medium instance. Since the iterates produced by
the subgradient technique are not feasible, extra care has to be taken when comparing the performance
of the subgradient method to that of our approach or Gurobi. Figure 5 in Appendix G in the full paper
reports the infeasibility of the iterates produced by the subgradient technique over time.

Scalability of Our Approach. We implemented the structural decomposition algorithm of Sec-
tion 4.3. Our parallel implementation using 8 threads has a runtime of 2 seconds on the small instance,
6 seconds on the medium instance, and 40 seconds on the large instance (each result was averaged
over 10 runs). Finally, we evaluated the performance of the regret minimizer constructed according
to Section 3.2; the results are in Figure 3 (left) for the small instance and Figure 3 (right) for the
medium and large instance. The plots do not include the time needed to construct and destruct the
regret minimizers in memory, which again is negligible. As expected, on the small instance, the rate
of convergence of our regret minimizer (a first-order method) is slower than that of the barrier method
(a second-order method). However, the barrier method incurs a large overhead at the beginning, since
Gurobi spends time factorizing the constraint matrix and computing a good ordering of variables for
the elimination tree. The LP-based approach could not solve the medium or large instance, while ours
could. Even on the largest instance, no more than 2GB of memory was reserved by our algorithm.

6 Conclusions

We introduced the first efficient regret minimization algorithm for finding an extensive-form correlated
equilibrium in large two-player general-sum games with no chance moves. This is more challenging
than designing an algorithm for Nash equilibrium because the constraints that define the space of
correlation plans lack the hierarchical structure of sequential strategy spaces and might even form
cycles. We showed that some of the constraints are redundant and can be excluded from consideration,
and presented an efficient algorithm that generates the space of extensive-form correlation plans
incrementally from the remaining constraints. We achieved this decomposition via a special convexity-
preserving operation that we coined scaled extension. We showed that a regret minimizer can be
designed for a scaled extension of any two convex sets, and that from the decomposition we then
obtain a global regret minimizer. Our algorithm produces feasible iterates. Experiments showed that
it significantly outperforms prior approaches—the LP-based approach and a very recent subgradient
descent algorithm—and for larger problems it is the only viable option.

9

Acknowledgments

This material is based on work supported by the National Science Foundation under grants IIS-
1718457, IIS-1617590, and CCF-1733556, and the ARO under award W911NF-17-1-0082. Gabriele
Farina is supported by a Facebook fellowship. Co-authors Ling and Fang are supported in part by a
research grant from Lockheed Martin.

References
Itai Ashlagi, Dov Monderer, and Moshe Tennenholtz. On the value of correlation. Journal of Artificial

Intelligence Research, 33:575–613, 2008.

Robert Aumann. Subjectivity and correlation in randomized strategies. Journal of Mathematical
Economics, 1:67–96, 1974.

Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit hold’em
poker is solved. Science, 347(6218), January 2015.

Noam Brown and Tuomas Sandholm. Safe and nested subgame solving for imperfect-information
games. In Proceedings of the Annual Conference on Neural Information Processing Systems
(NIPS), pages 689–699, 2017.

Noam Brown and Tuomas Sandholm. Superhuman AI for heads-up no-limit poker: Libratus beats
top professionals. Science, page eaao1733, Dec. 2017.

Noam Brown and Tuomas Sandholm. Solving imperfect-information games via discounted regret
minimization. In AAAI Conference on Artificial Intelligence (AAAI), 2019.

Noam Brown and Tuomas Sandholm. Superhuman AI for multiplayer poker. Science, 365(6456):885–
890, 2019.

Noam Brown, Christian Kroer, and Tuomas Sandholm. Dynamic thresholding and pruning for regret
minimization. In AAAI Conference on Artificial Intelligence (AAAI), 2017.

Neil Burch, Matej Moravcik, and Martin Schmid. Revisiting CFR+ and alternating updates. Journal
of Artificial Intelligence Research, 64:429–443, 2019.

Trevor Davis, Kevin Waugh, and Michael Bowling. Solving large extensive-form games with strategy
constraints. In AAAI Conference on Artificial Intelligence (AAAI), 2019.

Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Regret minimization in behaviorally-
constrained zero-sum games. In International Conference on Machine Learning (ICML), 2017.

Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Online convex optimization for sequential
decision processes and extensive-form games. In AAAI Conference on Artificial Intelligence
(AAAI), 2019.

Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Regret circuits: Composabilty of regret
minimizers. In International Conference on Machine Learning (ICML), 2019.

Gabriele Farina, Chun Kai Ling, Fei Fang, and Tuomas Sandholm. Correlation in extensive-form
games: Saddle-point formulation and benchmarks. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NeurIPS), 2019.

Geoffrey J Gordon, Amy Greenwald, and Casey Marks. No-regret learning in convex games. In
Proceedings of the 25th international conference on Machine learning, pages 360–367. ACM,
2008.

Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to correlated equilibrium.
Econometrica, 68:1127–1150, 2000.

Elad Hazan. Introduction to online convex optimization. Foundations and Trends in Optimization,
2(3-4):157–325, 2016.

10

Wan Huang and Bernhard von Stengel. Computing an extensive-form correlated equilibrium in
polynomial time. In International Workshop On Internet And Network Economics (WINE), pages
506–513. Springer, 2008.

Wan Huang. Equilibrium computation for extensive games. PhD thesis, London School of Economics
and Political Science, January 2011.

Albert Xin Jiang and Kevin Leyton-Brown. Polynomial-time computation of exact correlated
equilibrium in compact games. Games and Economic Behavior, 91:347–359, 2015.

Daphne Koller, Nimrod Megiddo, and Bernhard von Stengel. Efficient computation of equilibria for
extensive two-person games. Games and Economic Behavior, 14(2), 1996.

Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level artificial
intelligence in heads-up no-limit poker. Science, 356(6337), May 2017.

Christos H Papadimitriou and Tim Roughgarden. Computing correlated equilibria in multi-player
games. Journal of the ACM, 55(3):14, 2008.

I. Romanovskii. Reduction of a game with complete memory to a matrix game. Soviet Mathematics,
3, 1962.

Shai Shalev-Shwartz and Yoram Singer. A primal-dual perspective of online learning algorithms.
Machine Learning, 69(2-3):115–142, 2007.

Oskari Tammelin, Neil Burch, Michael Johanson, and Michael Bowling. Solving heads-up limit
Texas hold’em. In Proceedings of the 24th International Joint Conference on Artificial Intelligence
(IJCAI), 2015.

Bernhard von Stengel and Françoise Forges. Extensive-form correlated equilibrium: Definition and
computational complexity. Mathematics of Operations Research, 33(4):1002–1022, 2008.

Bernhard von Stengel. Efficient computation of behavior strategies. Games and Economic Behavior,
14(2):220–246, 1996.

Mengdi Wang and Dimitri P Bertsekas. Incremental constraint projection-proximal methods for
nonsmooth convex optimization. SIAM J. Optim.(to appear), 2013.

Martin Zinkevich, Michael Bowling, Michael Johanson, and Carmelo Piccione. Regret minimization
in games with incomplete information. In Proceedings of the Annual Conference on Neural
Information Processing Systems (NIPS), 2007.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
International Conference on Machine Learning (ICML), pages 928–936, Washington, DC, USA,
2003.

11

