
We thank the reviewers for their time and the many positive comments, in particular their appreciation of the novelty,1

originality, and clarity of our work. As a result of the thoughtful reviews, we have strengthened our work by 1)2

Re-running all quantification on training data in addition to validation data, showing that M-PHATE can evaluate3

performance without validation data; 2) Showing via running M-PHATE on white noise that generalization results4

are not purely due to MNIST being predominantly zeros; 3) Defining the results of the task-switch experiment5

quantitatively; and 4) Repeating experiments on CIFAR10, showing that our results are robust. Specific points below6

will be incorporated into the manuscript.7

Validation set (R1): The new runs on training data show that our method identifies generalizability without requiring8

access to validation data. As opposed to differences in loss/accuracy, the dynamics of units revealed through M-PHATE9

retain key geometric features of the network when evaluated with both training and validation data. Thus M-PHATE is10

applicable even when a validation loss cannot be computed. We applied this to the generalization experiment using only11

training data and obtained ρ = 0.93, consistent with prior results.12

Other datasets (R1,R2,R3): We added a generalization experiment on both CIFAR10, (ρ = 0.95; consistent with13

MNIST results) and white noise (finding homogeneous structure similar to scrambled classes, see Fig. 1b).14

Quantitative evaluation of task-switch (R1): We added a metric to measure loss of structure by computing Adjusted15

Rand Index averaged over clusterings of the visualized units pre- and post-task switch (4 task switches × 6 parameters16

(3–8 clusters) × 20 repetitions). High structure preservation is strongly associated with low validation loss (ρ = 0.90).17

Weaknesses and future directions (R2,R3): Other architectures: Extending M-PHATE to CNNs/RNNs is a very18

interesting future direction. Defining appropriate similarity measures to enable comparison of units across layers for19

these networks will require non-trivial extensions beyond the scope of this work. Also, using M-PHATE in its current20

form on such networks will be slow due to the O(n2) complexity. We plan to explore such extensions, both in designing21

appropriate metrics and developing computationally efficient models (e.g., online computation). Overcrowding: There22

is always information loss in low-dimensional visualizations of all units at all time points, especially in large networks23

over many epochs. Despite this, we show in specific tasks that local structure of the units can still be informative.24

Higher dimensions (R3): We will add supplementary figures and quantitative measures for 2D vs 3D embeddings.25

Beyond 3D, dimensionality reduction methods become difficult to visually interpret (the initial intended use).26

User studies (R2): We agree feedback is invaluable and will publish our code to get such feedback from the community.27

Kernel details (R3): The “standard” kernel differs for each algorithm: t-SNE uses the perplexity kernel, ISOMAP the28

k-NN kernel, and PHATE and DM use the adaptive bandwidth Gaussian kernel (defined in the paper).29

t-SNE/neighborhood preservation (R2, R3): It is well known that t-SNE does not preserve global structure, and that30

PHATE does [Moon et al. 2017, Linderman and Steinerberger 2019]. Here, preserving interslice vs. intraslice neighbors31

has an inherent trade-off. t-SNE guarantees almost perfect interslice neighborhood preservation by clustering each32

hidden unit with only itself, at the cost of losing all of the intraslice neighbors. We further show t-SNE’s lack of utility33

in Figure 1a, in which you see no useful difference in the embeddings between the dropout and scrambled networks34

from the generalization experiment; M-PHATE showed significant, obvious, and interpretable differences. t-SNE (as all35

other methods) was run with default parameters in scikit-learn.36

Visualization quality metrics (R3): Since standard algorithms do not provide any useful visualization of the data37

(see Fig 1a as an example), an algorithm that faithfully represents the structure of the raw data (e.g. as measured38

by coranking) is not expected to perform well. We will extend the notion of coranking to interslice and intraslice39

neighborhoods and report the result of this to give a notion of global structure in the multislice context.40

Neighboring unit interactions (R3): Kernel construction over all node similarities and ignoring a priori knowledge of41

the data yields standard PHATE (paper, Figure 2), which is a poor visualization of the data. In addition, the construction42

of the multislice kernel such that K((τ, i), (ν, j)) = 0 for τ 6= ν, i 6= j is standard in prior work in multislice graph43

construction (Mucha et al., 2010).44

Deeper insights/conclusions from M-PHATE (R1,R2): The collapse in Adam is likely due to the extremely large45

gradients causing a rapid build-up of momentum and pushing all units in the same direction much farther than their46

current spread. The lack of heterogeneity of the activity regularizers is a direct consequence of their formulation:47

forcing all activities to be small induces similar activations. For continual learning, in appendix Fig. S4, S5 we show48

separate plots for the layers of the task switch network. These visualizations depict that the significant changes to the49

Figure 1: A) tSNE on FFNNs with (left) scrambled labels (right)
dropout; B) M-PHATE on an FFNN trained on white noise.

network due to the task switch are happening in50

layer 2, which seems to undergo rapid learning af-51

ter each task change and then stays static. Layer 152

is highly heterogeneous, indicating a more univer-53

sal representation which is evolving more smoothly54

throughout training when compared to layer 2.55

These layer-specific insights are not accessible from56

plotting global validation metrics.57


