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Abstract

When maximum likelihood estimation is infeasible, one often turns to score match-
ing, contrastive divergence, or minimum probability flow to obtain tractable param-
eter estimates. We provide a unifying perspective of these techniques as minimum
Stein discrepancy estimators, and use this lens to design new diffusion kernel
Stein discrepancy (DKSD) and diffusion score matching (DSM) estimators with
complementary strengths. We establish the consistency, asymptotic normality, and
robustness of DKSD and DSM estimators, then derive stochastic Riemannian gra-
dient descent algorithms for their efficient optimisation. The main strength of our
methodology is its flexibility, which allows us to design estimators with desirable
properties for specific models at hand by carefully selecting a Stein discrepancy.
We illustrate this advantage for several challenging problems for score matching,
such as non-smooth, heavy-tailed or light-tailed densities.

1 Introduction

Maximum likelihood estimation [9] is a de facto standard for estimating the unknown parameters in a
statistical model {Pθ : θ ∈ Θ}. However, the computation and optimization of a likelihood typically
requires access to the normalizing constants of the model distributions. This poses difficulties for
complex statistical models for which direct computation of the normalisation constant would entail
prohibitive multidimensional integration of an unnormalised density. Examples of such models
arise naturally in modelling images [27, 39], natural language [54], Markov random fields [61]
and nonparametric density estimation [63, 69]. To by-pass this issue, various approaches have
been proposed to address parametric inference for unnormalised models, including Monte Carlo
maximum likelihood [22], contrastive divergence [28], minimum probability flow learning [62],
noise-contrastive estimation [10, 26, 27] and score matching (SM) [34, 35].

The SM estimator is a minimum score estimator [16] based on the Hyvärinen scoring rule that avoids
normalizing constants by depending on Pθ only through the gradient of its log density∇x log pθ. SM
estimators have proven to be a widely applicable method for estimation for models with unnormalised
smooth positive densities, with generalisations to bounded domains [35] and compact Riemannian
manifolds [51]. Despite the flexibility of this approach, SM has three important and distinct limitations.
Firstly, as the Hyvärinen score depends on the Laplacian of the log-density, SM estimation will be
expensive in high dimension and will break down for non-smooth models or for models in which
the second derivative grows very rapidly. Secondly, as we shall demonstrate, SM estimators can
behave poorly for models with heavy tailed distributions. Thirdly, the SM estimator is not robust to
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outliers in many applications of interest. Each of these situations arise naturally for energy models,
particularly product-of-experts models and ICA models [33].

In a separate strand of research, new approaches have been developed to measure discrepancy between
an unnormalised distribution and a sample. In [23, 25, 50, 24], it was shown that Stein’s method can
be used to construct discrepancies that control weak convergence of an empirical measure to a target.

In this paper we consider minimum Stein discrepancy (SD) estimators and show that SM, minimum
probability flow and contrastive divergence estimators are all special cases. Within this class we
focus on SDs constructed from reproducing kernel Hilbert Spaces (RKHS), establishing the consis-
tency, asymptotic normality and robustness of these estimators. We demonstrate that these SDs are
appropriate for estimation of non-smooth distributions and heavy- or light- tailed distributions. The
remainder of the paper is organized as follows. In Section 2 we introduce the class of minimum SD
estimators, then investigate asymptotic properties of SD estimators based on kernels in Section 3,
demonstrating consistency and asymptotic normality under general conditions, as well as conditions
for robustness. Section 4 presents three toy problems where SM breaks down, but our new estimators
are able to recover the truth. All proofs are in the supplementary materials.

2 Minimum Stein Discrepancy Estimators

Let PX the set of Borel probability measures on X . Given identical and independent (IID) realisations
from Q ∈ PX on an open subset X ⊂ Rd, the objective is to find a sequence of measures Pn
that approximate Q in an appropriate sense. More precisely we will consider a family PΘ =
{Pθ : θ ∈ Θ} ⊂ PX together with a function D : PX × PX → R+ which quantifies the
discrepancy between any two measures in PX , and wish to estimate an optimal parameter θ∗
satisfying θ∗ ∈ arg minθ∈ΘD(Q‖Pθ). In practice, it is often difficult to compute the discrepancy
D explicitly, and it is useful to consider a random approximation D̂({Xi}ni=1‖Pθ) based on a IID
sample X1, . . . , Xn ∼ Q, such that D̂({Xi}ni=1‖Pθ)

a.s.−−→ D(Q‖Pθ) as n→∞. We then consider
the sequence of estimators

θ̂Dn ∈ argminθ∈ΘD̂({Xi}ni=1‖Pθ).

The choice of discrepancy will impact the consistency, efficiency and robustness of the estimators.
Examples of such estimators include minimum distance estimators [4, 58] where the discrepancy
will be a metric on probability measures, including minimum maximum mean discrepancy (MMD)
estimation [18, 42, 8] and minimum Wasserstein estimation [19, 21, 6].

More generally, minimum scoring rule estimators [16] arise from proper scoring rules, for ex-
ample Hyvärinen, Bregman and Tsallis scoring rules. These discrepancies are often statistical
divergences, i.e., D(Q‖P) = 0 ⇔ P = Q for all P,Q in a subset of PX . Suppose that Pθ
and Q are absolutely continuous with respect to a common measure λ on X , with respective
positive densities pθ and q. Then a well-known statistical divergence is the Kullback-Leibler
(KL) divergence KL(Q‖Pθ) ≡

∫
X log(dQ/dPθ)dQ =

∫
X log qdQ −

∫
X log pθdQ. Minimising

KL(Q‖Pθ) is equivalent to maximising
∫
X log pθdQ, which can be estimated using the likelihood

K̂L({Xi}ni=1‖Pθ) ≡ 1
n

∑n
i=1 log pθ(Xi). Informally, we see that minimising the KL-divergence is

equivalent to performing maximum likelihood estimation.

For our purposes we are interested in discrepancies that can be evaluated when Pθ is only known
up to normalisation, precluding the use of KL divergence. We instead consider a related class of
discrepancies based on integral probability pseudometric (IPM) [55] and Stein’s method [3, 11, 65].
Let Γ(Y) ≡ Γ(X ,Y) ≡ {f : X → Y}. A map SP : G ⊂ Γ(Rd) → Γ(R) is a Stein operator
over a Stein class G if

∫
X SP[f ]dP = 0 ∀f ∈ G for any P. We can then define an associated Stein

discrepancy (SD) [23] using an IPM with entry-dependent function space F ≡ SPθ [G]

SDSPθ [G](Q‖Pθ) ≡ supf∈SPθ [G]

∣∣∫
X fdPθ −

∫
X fdQ

∣∣ = supg∈G
∣∣∫
X SPθ [g]dQ

∣∣. (1)

The Stein discrepancy depends on Q only through expectations, and does not require the existence of
a density, therefore permitting Q to be an empirical measure. If P has a C1 density p on X , one can
consider the Langevin-Stein discrepancy arising from the Stein operator Tp[g] ≡ 〈∇ log p, g〉+∇ ·
g [23, 25]. In this case, the Stein discrepancy will not depend on the normalising constant of p.
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In this paper, for an arbitrary m ∈ Γ(Rd×d) which we call diffusion matrix, we shall consider the
more general diffusion Stein operators [25]: Smp [g] ≡ (1/p)∇ · (pmg) , Smp [A] ≡ (1/p)∇ · (pmA),

where g ∈ Γ(Rd), A ∈ Γ(Rd×d), and the associated minimum Stein discrepancy estimators which
minimise (1). As we will only have access to a sample {Xi}ni=1 ∼ Q, we will focus on the estimators
minimising an approximation ŜDSPθ [G]({Xi}ni=1‖Pθ) based on a U -statistic of the Q-integral:

θ̂Stein
n ≡ argminθ∈ΘŜDSPθ [G]({Xi}ni ‖Pθ).

Related and complementary approaches to inference using SDs include the nonparametric estimator
of [41], the density ratio approach of [47] and the variational inference algorithms of [49, 60]. We
now highlight several instances of SDs which will be studied in detail in this paper.

2.1 Example 1: Diffusion Kernel Stein Discrepancy Estimators

A convenient choice of Stein class is the unit ball of reproducing kernel Hilbert spaces (RKHS)
[5] of a scalar kernel function k. For the Langevin Stein operator Tp, the resulting kernel Stein
discrepancy (KSD) first appeared in [57] and has since been considered extensively in the context
of hypothesis testing, measuring sample quality and approximation of probability measures in [12–
14, 17, 24, 44, 46, 43]. In this paper, we consider a more general class of discrepancies based on the
diffusion Stein operator and matrix-valued kernels.

Consider an RKHSHd of functions f ∈ Γ(Rd) with (matrix-valued) kernel K ∈ Γ(X × X ,Rd×d),
Kx ≡ K(x, ·) (see Appendix A.3 and A.4 for further details). The Stein operator Smp [f ] induces
an operator Sm,2p Sm,1p : Γ

(
X × X ,Rd×d

)
→ Γ

(
R
)

which acts first on the first variable and then
on the second one. We briefly mention two simple examples of matrix kernels constructed from
scalar kernels. If we want the components of f to be orthogonal, we can use the diagonal kernel
(i) K = diag(λ1k

1, . . . , λdk
d) where λi > 0 and ki is a C2 kernel on X , for i = 1, . . . , d; else we

can “correlate" the components by setting (ii) K = Bk where k is a (scalar) kernel on X and B is a
(constant) symmetric positive definite matrix.

We propose to study diffusion kernel Stein discrepancies indexed by K and m (see Appendix B):
Theorem 1 (Diffusion Kernel Stein Discrepancy). For any kernel K, we find that Smp [f ](x) =

〈Sm,1p Kx, f〉Hd for any f ∈ Hd. Moreover if x 7→ ‖Sm,1p Kx‖Hd ∈ L1(Q), we have

DKSDK,m(Q‖P)2 ≡ suph∈Hd
‖h‖≤1

∣∣∫
X S

m
p [h]dQ

∣∣2 =
∫
X
∫
X k

0(x, y)dQ(x)dQ(y)

k0(x, y) ≡ Sm,2p Sm,1p K(x, y) = 1
p(y)p(x)∇y · ∇x ·

(
p(x)m(x)K(x, y)m(y)>p(y)

)
. (2)

In order to use these for minimum SD estimation, we propose the following U -statistic approximation:

D̂KSDK,m({Xi}ni=1‖Pθ)2 = 2
n(n−1)

∑
1≤i<j≤n k

0
θ(Xi, Xj) = 1

n(n−1)

∑
i 6=j k

0
θ(Xi, Xj), (3)

with associated estimators: θ̂DKSD
n ∈ argminθ∈ΘD̂KSDK,m({Xi}ni=1‖Pθ)2.

As the proof shows, the Stein kernel k0 is indeed a (scalar) kernel obtained from the feature map
φ : X → Hd, φ(x) ≡ Sm,1p [K]|x. For K = Ik, m = Ih, DKSD is a KSD with scalar kernel
h(x)k(x, y)h(y), and if h = 1 our objective becomes the usual Langevin-based KSD of [14, 24, 46,
57] (see Appendix B.4). The work of [45] discussed the potential of optimizing the KSD with gradient
descent but did not evaluate its merits. In the sections to follow, we will see the advantages conferred
by introducing more flexible diffusion operators, matrix kernels, and Riemannian optimization.

Now that our DKSD estimators are defined, an important remaining question is under which conditions
can DKSD discriminate distinct probability measures. To answer, we will need several definitions.
We say a matrix kernel K is in the Stein class of Q if

∫
X S

m,1
q [K]dQ = 0, and that it is strictly

integrally positive definite (IPD) if
∫
X×X dµ>(x)K(x, y)dµ(y) > 0 for any finite non-zero signed

vector Borel measure µ. From Smp [f ](x) = 〈Sm,1p Kx, f〉Hd we have that f ∈ Hd is in the Stein
class (i.e.,

∫
X S

m
q [f ]dQ = 0) when K is also in the class. Setting sp ≡ m>∇ log p ∈ Γ(Rd):

Proposition 1 (DKSD as a Statistical Divergence). Suppose K is IPD and in the Stein class of Q,
and m(x) is invertible. If sp − sq ∈ L1(Q), then DKSDK,m(Q‖P)2 = 0 iff Q = P.
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See Appendix B.5 for the proof. Note that this proposition generalises Proposition 3.3 from [46] to
a significantly larger class of SD. For the matrix kernels introduced above, the proposition below
shows that K is IPD when its associated scalar kernels are; a well-studied problem [64].
Proposition 2 (IPD Matrix Kernels). (i) Let K = diag(k1, . . . , kd). Then K is IPD iff each kernel
ki is IPD. (ii) Let K = Bk for B be symmetric positive definite. Then K is IPD iff k is IPD.

2.2 Example 2: Diffusion Score Matching Estimators

A well-known family of estimators are the score matching (SM) estimators (based on the Fisher
or Hyvarinen divergence) [34, 35]. As will be shown below, these can be seen as special cases of
minimum SD estimators. The SM discrepancy is computable for sufficiently smooth densities:

SM(Q‖P) ≡
∫
X ‖∇ log p−∇ log q‖22 dQ =

∫
X
(
‖∇ log q‖22 + ‖∇ log p‖22 + 2∆ log p

)
dQ

where ∆ denotes the Laplacian and we have used the divergence theorem. If P = Pθ, the first
integral above does not depend on θ, and the second one does not depend on the density of Q, so
we consider the approximation ŜM({Xi}ni=1‖Pθ) ≡ 1

n

∑n
i=1 ∆ log pθ(Xi) + 1

2‖∇ log pθ(Xi)‖22
based on an unbiased estimation for the minimiser of the SM divergence, and its estimators θ̂SM

n ≡
argminθ∈ΘŜM({Xi}ni=1‖Pθ), for independent random vectors Xi ∼ Q.

The SM discrepancy can also be generalised to include higher-order derivatives of the log-likelihood
[48] and does not require a normalised model. We will now introduce a further generalisation that we
call diffusion score matching (DSM) which is a SD constructed from the diffusion Stein operator (see
Appendix B.6):
Theorem 2 (Diffusion Score Matching). Let X = Rd and consider some diffusion Stein operator
Smp for some function m ∈ Γ(Rd×d) and the Stein class G ≡ {g = (g1, . . . , gd) ∈ C1(X ,Rd) ∩
L2(X ;Q) : ‖g‖L2(X ;Q) ≤ 1}. If p, q > 0 are differentiable and sp − sq ∈ L2(Q), then we define the
diffusion score matching divergence as the Stein discrepancy,

DSMm(Q‖P) ≡ supf∈Sp[G]

∣∣∫
X fdQ−

∫
X fdP

∣∣2 =
∫
X

∥∥m>(∇ log q −∇ log p)
∥∥2

2
dQ.

This satisfies DSMm(Q‖P) = 0 iff Q = P when m(x) is invertible. Moreover, if p is twice-
differentiable, and qmm>∇ log p,∇ · (qmm>∇ log p) ∈ L1(Rd), then Stoke’s theorem gives

DSMm(Q‖P) =
∫
X
(
‖m>∇x log p‖22 + ‖m>∇ log q‖22 + 2∇ ·

(
mm>∇ log p

))
dQ.

Notably, DSMm recovers SM when m(x)m(x)> = I and the (generalised) non-negative score
matching estimator of [48] with the choice m(x) ≡ diag(h1(x1)1/2, . . . , hd(xd)

1/2). Like standard
SM, DSM is only defined for distributions with sufficiently smooth densities. Since the θ-dependent
part of DSMm(Q‖Pθ) does not depend on the density of Q, and can be estimated using an empirical
mean, leading to the estimators θ̂DSM

n ≡ argminθ∈ΘD̂SMm({Xi}ni=1‖Pθ) for

D̂SMm({Xi}ni=1‖Pθ) ≡ 1
n

∑n
i=1

(
‖m>∇x log pθ‖22 + 2∇ ·

(
mm>∇ log pθ

))
(Xi)

where {Xi}ni=1 is a sample from Q. Note that this is only possible if m is independent of θ, in
contrast to DKSD where m can depend on X ×Θ, thus leading to a more flexible class of estimators.

An interesting remark is that the DSMm discrepancy may in fact be obtained as a limit of DKSD
over a sequence of target-dependent kernels: see Appendix B.6 for the complete result which corrects
and significantly generalises previously established connections between the SM divergence and
KSD (such as in Sec. 5 of [46]).

We conclude by commenting on the computational complexity. Evaluating the DKSD loss function
requires O(n2d2) computation, due to the U-statistic and a matrix-matrix product. However, if
K = diag(λ1k

1, . . . , λdk
d) or K = Bk, and if m is a diagonal matrix, then we can by-pass

expensive matrix products and the cost is O(n2d), making it comparable to that of KSD. Although
we do not consider these in this paper, recent approximations to KSD could also be adapted to DKSD
to reduce the computational cost to O(nd) [32, 36]. The DSM loss function has computational cost
O(nd2), which is comparable to the SM loss. From a computational viewpoint, DSM will hence be
preferable to DKSD for large n, whilst DKSD will be preferable to DSM for large d.
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2.3 Further Examples: Contrastive Divergence and Minimum Probability Flow

Before analysing DKSD and DSM estimators further, we show that the class of minimum SD
estimators also includes other well-known estimators for unnormalised models. Let Xn

θ , n ∈ N be a
Markov process with unique invariant probality measure Pθ, for example a Metropolis-Hastings chain.
Let Pnθ be the associated transition semigroup, i.e. (Pnθ f)(x) = E[f(Xn

θ )|X0
θ = x]. Choosing the

Stein operator Sp = I − Pnθ and Stein class G = {log pθ + c : c ∈ R}, leads to the following SD:

CD(Q‖Pθ) =
∫
X (log pθ − Pnθ log pθ)dQ = KL(Q‖Pθ)− KL(Qnθ ‖Pθ),

where Qnθ is the law of Xn
θ |X0

θ ∼ Q and assuming that Q � Pθ and Qnθ � Pθ, which is the loss
function associated with contrastive divergence (CD) [28, 45]. Suppose now that X is a finite set.
Given θ ∈ Θ let Pθ be the transition matrix for a Markov process with unique invariant distribution
Pθ. Suppose we observe data {xi}ni=1 and let q be the corresponding empirical distribution. Choosing
the Stein operator Sp = I − Pθ and the Stein set G = {f ∈ Γ(R) : ‖f‖∞ ≤ 1}. Note that,
g ∈ arg supg∈G |Q(Sp[g])| will satisfy g(i) = sgn(q>(I−Pθ)i), and the resulting Stein discrepancy
is the minimum probability flow loss objective function [62]:

MPFL(Q‖P) =
∑
y

∣∣((I − Pθ)>q)y∣∣ =
∑
y 6∈{xi}ni=1

∣∣∣ 1
n

∑
x∈{xi}ni=1

(I − Pθ)xy
∣∣∣.

2.4 Implementing Minimum SD Estimators: Stochastic Riemannian Gradient Descent

In order to implement the minimum SD estimators, we propose to use a stochastic gradient descent
(SGD) algorithm associated to the information geometry induced by the SD on the parameter space.
More precisely, consider a parametric family PΘ of probability measures on X with Θ ⊂ Rm.
Given a discrepancy D : PΘ × PΘ → R satisfying D(Pα‖Pθ) = 0 iff Pα = Pθ (called a statistical
divergence), its associated information matrix field on Θ is defined as the map θ 7→ g(θ), where g(θ)
is the symmetric bilinear form g(θ)ij = − 1

2 (∂2/∂αi∂θj)D(Pα‖Pθ)|α=θ [2]. When g is positive
definite, we can use it to perform (Riemannian) gradient descent on the parameter space Θ. We
provide below the information matrices of DKSD and DSM (and hence extends results of [37]):
Proposition 3 (Information Tensor DKSD). Assume the conditions of Proposition 1 hold. The
information tensor associated to DKSD is positive semi-definite and has components

gDKSD(θ)ij =
∫
X
∫
X (∇x∂θj log pθ(x))

>
mθ(x)K(x, y)m>θ (y)∇y∂θi log pθ(y)dPθ(x)dPθ(y).

Proposition 4 (Information Tensor DSM). Assume the conditions of Theorem 2 hold. The infor-
mation tensor defined by DSM is positive semi-definite and has components

gDSM(θ)ij =
∫
X
〈
m>∇∂θi log pθ,m

>∇∂θj log pθ
〉
dPθ.

See Appendix C for the proofs. Given an (information) Riemannian metric, recall the gradient flow
of a curve θ on the Riemannian manifold Θ is the solution to θ̇(t) = −∇θ(t) SD(Q‖Pθ), where∇θ
denotes the Riemannian gradient at θ. It is the curve that follows the direction of steepest decrease
(measured with respect to the Riemannian metric) of the function SD(Q‖Pθ) (see Appendix A.5).
The well-studied natural gradient descent [1, 2] corresponds to the case in which the Riemannian
manifold is Θ = Rm equipped with the Fisher metric and SD is replaced by KL. When Θ is
a linear manifold with coordinates (θi) we have ∇θ SD(Q‖Pθ) = g(θ)−1dθ SD(Q‖Pθ), where
dθf denotes the tuple (∂θif). We will approximate this at step t of the descent using the biased
estimator ĝθt({Xt

i}i)−1dθt ŜD({Xt
i}ni=1‖Pθ), where ĝθt({Xt

i}ni=1) is an unbiased estimator for the
information matrix g(θt) and {Xt

i ∼ Q}i is a sample at step t. In general, we have no guarantee
that ĝθt is invertible, and so we may need a further approximation step to obtain an invertible matrix.
Given a sequence (γt) of step sizes we will approximate the gradient flow with

θ̂t+1 = θ̂t − γtĝθt({Xt
i}ni=1)−1dθt ŜD({Xt

i}ni=1‖Pθ).

Minimum SD estimators hold additional appeal for exponential family models, since their densities
have the form pθ(x) ∝ exp(〈θ, T (x)〉Rm) exp(b(x)) for natural parameters θ ∈ Rm, sufficient
statistics T ∈ Γ(Rm), and base measure exp(b(x)). For these models, the U-statistic approximations
of DKSD and DSM are convex quadratics with closed form solutions whenever K and m are
independent of θ. Moreover, since the absolute value of an affine function is convex, and the
supremum of convex functions is convex, any SD with a diffusion Stein operator is convex in θ,
provided m and the Stein class G are independent of θ.
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3 Theoretical Properties for Minimum Stein Discrepancy Estimators

We now show that the DKSD and DSM estimators have many desirable properties such as consistency,
asymptotic normality and bias-robustness. These results do not only provide us with reassuring
theoretical guarantees on the performance of our algorithms, but can also be a practical tool for
choosing a Stein operator and Stein class given an inference problem of interest.

We begin by establishing strong consistency and for DKSD; i.e. almost sure convergence:
θ̂DKSD
n

a.s.−−→ θDKSD
∗ ≡ argminθ∈Θ DKSDK,m(Q‖Pθ)2. This will be followed by a proof of asymp-

totic normality. We will assume we are in the specified setting, so that Q = PθDKSD
∗

∈ PΘ. In the
misspecified setting, we will need to also assume the existence of a unique minimiser.
Theorem 3 (Strong Consistency of DKSD). Let X = Rd, Θ ⊂ Rm. Suppose that K is bounded
with bounded derivatives up to order 2, that k0(x, y) is continuously-differentiable on an Rm-open
neighbourhood of Θ, and that for any compact subset C ⊂ Θ there exist functions f1, f2, g1, g2 such
that for Q-a.e. x ∈ X ,

1.
∥∥m>(x)∇ log pθ(x)

∥∥ ≤ f1(x), where f1 ∈ L1(Q) and continuous,

2.
∥∥∇θ(m(x)>∇ log pθ(x)

)∥∥ ≤ g1(x), where g1 ∈ L1(Q) is continuous,

3. ‖m(x)‖+ ‖∇xm(x)‖ ≤ f2(x) where f2 ∈ L1(Q) and continuous,

4. ‖∇θm(x)‖+ ‖∇θ∇xm(x)‖ ≤ g2(x) where g2 ∈ L1(Q) is continuous.

Assume further that θ 7→ Pθ is injective. Then we have a unique minimiser θDKSD
∗ , and if either Θ is

compact, or θDKSD
∗ ∈ int(Θ) and Θ and θ 7→ D̂KSDK,m({Xi}ni=1‖Pθ)2 are convex, then θ̂DKSD

n is
strongly consistent.
Theorem 4 (Central Limit Theorem for DKSD). Let X and Θ be open subsets of Rd and Rm
respectively. Let K be a bounded kernel with bounded derivatives up to order 2 and suppose that
θ̂DKSD
n

p−→ θDKSD
∗ and that there exists a compact neighbourhood N ⊂ Θ of θDKSD

∗ such that
θ → D̂KSDK,m({Xi}ni=1,Pθ)2 is twice continuously differentiable for θ ∈ N and, for Q-a.e.
x ∈ X ,

1. ‖m>(x)∇ log pθ(x)‖+ ‖∇θ
(
m(x)>∇ log pθ(x)

)
‖ ≤ f1(x),

2. ‖m(x)‖+ ‖∇xm(x)‖+ ‖∇θm(x)‖+ ‖∇θ∇xm(x)‖ ≤ f2(x),

3. ‖∇θ∇θ
(
m(x)>∇ log pθ(x)

)
‖+ ‖∇θ∇θ∇θ

(
m(x)>∇ log pθ(x)

)
‖ ≤ g1(x),

4. ‖∇θ∇θm(x)‖+ ‖∇θ∇θ∇xm(x)‖+ ‖∇θ∇θ∇θm(x)‖+ ‖∇θ∇θ∇θ∇xm(x)‖ ≤ g2(x),

where f1, f2 ∈ L2(Q),g1, g2 ∈ L1(Q) are continuous. Suppose also that the information tensor g is
invertible at θDKSD

∗ . Then
√
n
(
θ̂DKSD
n − θDKSD

∗

)
d−→ N

(
0, g−1

DKSD(θDKSD
∗ )ΣDKSDg

−1
DKSD(θDKSD

∗ )
)
,

where ΣDKSD =
∫
X

(∫
X ∇θk

0
θDKSD
∗

(x, y)dQ(y)
)
⊗
(∫
X ∇θk

0
θDKSD
∗

(x, z)dQ(z)
)

dQ(x).

See Appendix D for proofs. For both results, the assumptions on the kernel are satisfied by most
kernels common in the literature, such as Gaussian, inverse-multiquadric (IMQ) and any Matérn
kernels with smoothness greater than 2. Similarly, the assumptions on the model are very weak given
that the diffusion tensor m can be adapted to guarantee consistency and asymptotic normality.

We now prove analogous results for DSM. This time we show weak consistency, i.e. convergence in
probability: θ̂DSM

n
p−→ θDSM
∗ ≡ argminθ∈Θ DSMm(Q‖Pθ) = argminθ∈Θ

∫
X Fθ(x)dQ(x). This will

be a sufficient form of convergence for asymptotic normality.
Theorem 5 (Weak Consistency of DSM). Let X be an open subset of Rd, and Θ ⊂ Rm. Suppose
log pθ(·) ∈ C2(X ) and m ∈ C1(X ), and ‖∇x log pθ(x)‖ ≤ f1(x) for Q-a.e. x. Suppose also that
‖∇x∇x log pθ(x)| ≤ f2(x) on any compact set C ⊂ Θ for Q-a.e. x, where ‖m>‖f1 ∈ L2(Q),
‖∇ · (mm>)‖f1 ∈ L1(Q), ‖mm>‖∞f2 ∈ L1(Q). If either Θ is compact, or Θ and θ 7→ Fθ are
convex and θDSM

∗ ∈ int(Θ), then θ̂DSM
n is weakly consistent for θDSM

∗ .
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Theorem 6 (Central Limit Theorem for DSM). Let X ,Θ be open subsets of Rd and Rm respec-
tively. Suppose θ̂DSM

n
p−→ θDSM
∗ , θ 7→ log pθ(x) is twice continuously differentiable on a closed ball

B̄(ε, θDSM
∗ ) ⊂ Θ, and that for Q-a.e. x ∈ X ,

(i) ‖m(x)m>(x)‖ + ‖∇x · (m(x)m>(x))‖ ≤ f1(x), and ‖∇x log pθ(x)‖ +
‖∇θ∇x log pθ(x)‖+ ‖∇θ∇x∇x log pθ(x)‖ ≤ f2(x), with f1f2, f1f

2
2 ∈ L2(Q)

(ii) for θ ∈ B̄(ε, θ∗), ‖∇θ∇x log pθ‖2 +‖∇x log pθ‖‖∇θ∇θ∇x log pθ‖+‖∇θ∇θ∇x log pθ‖+
‖∇θ∇θ∇x∇x log pθ‖ ≤ g1(x), and f1g1 ∈ L1(Q).

Then, if the information tensor is invertible at θDSM
∗ , we have

√
n
(
θ̂DSM
n − θDSM

∗

)
d−→ N

(
0, g−1

DSM

(
θDSM
∗

)
ΣDSMg

−1
DSM

(
θDSM
∗

))
.

where ΣDSM =
∫
X ∇θFθDSM

∗
(x)⊗∇θFθDSM

∗
(x)dQ(x).

All of the proofs can be found in Appendix D.2. An important special case covered by our theory is that
of natural exponential families, which admit densities of the form log pθ(x) ∝ 〈θ, T (x)〉Rm + b(x).
If K is IPD with bounded derivative up to order 2,∇T has linearly independent rows, m is invertible,
and ‖∇Tm‖, ‖∇xb‖‖m‖, ‖∇xm‖ + ‖m‖ ∈ L2(Q), then the sequence of minimum DKSD and
DSM estimators are strongly consistent and asymptotically normal (see Appendix D.3).

Before concluding this section, we turn to a concept of importance to practical inference: robustness
when subjected to corrupted data [31]. We quantify the robustness of DKSD and DSM estimators in
terms of their influence function, which can be interpreted as measuring the impact of an infinitesimal
perturbation of a distribution P by a Dirac located at a point z ∈ X on the estimator. If θQ denotes the
unique minimum SD estimator for Q, then the influence functions is given by IF(z,Q) ≡ ∂tθQt |t=0

if it exists, where Qt = (1− t)Q+ tδz , for t ∈ [0, 1]. An estimator is said to be bias robust if IF(z,Q)
is bounded in z.
Proposition 7 (Robustness of DKSD estimators). Suppose that the map θ → Pθ over Θ
is injective, then IF(z,Pθ) = gDKSD(θ)−1

∫
X
∇θk0(z, y)dPθ(y). Moreover, suppose that

y 7→ F (x, y) is Q-integrable for any x, where F (x, y) = ‖K(x, y)sp(y)‖, ‖K(x, y)∇θsp(y)‖,
‖∇xK(x, y)sp(y)‖, ‖∇xK(x, y)∇θsp(y)‖, ‖∇y∇x(K(x, y)m(y))‖,‖∇y∇x(K(x, y)∇θm(y))‖.
Then if x 7→ (‖sp(x)‖ + ‖∇θsp(x)‖)

∫
F (x, y)Q(dy)|θDKSD

∗
is bounded, the DKSD estimators

are bias robust: supz∈X ‖ IF(z,Q)‖ <∞.

The analogous results for DSM estimators can be found in Appendix E. Consider a Gaussian
location model, i.e. pθ ∝ exp(−‖x − θ‖22), for θ ∈ Rd. The Gaussian kernel satisfies the
assumptions of Proposition 7 so that supz ‖ IF(z,Q)‖ < ∞, even when m = I . Indeed
‖ IF(z,Pθ)‖ ≤ C(θ)e−‖z−θ‖

2/4‖z − θ‖, where z 7→ e−‖z−θ‖
2/4‖z − θ‖ is uniformly bounded over

θ. In contrast, the SM estimator has an influence function of the form IF(z,Q) = z −
∫
X xdQ(x),

which is unbounded with respect to z, and is thus not robust. This clearly demonstrates the
importance of carefully selecting a Stein class for use in minimum SD estimators. An alterna-
tive way of inducing robustness is to introduce a spatially decaying diffusion matrix in DSM.
To this end, consider the minimum DSM estimator with scalar diffusion coefficient m. Then
θDSM = (

∫
X m

2(x)dQ(x))−1
(∫
X m

2(x)xdQ(x) +
∫
X ∇m

2(x)dQ(x)
)
. A straightforward calcula-

tion yields that the associated influence function will be bounded if both m(x) and ‖∇m(x)‖ decay
as ‖x‖ → ∞. This clearly demonstrates another significant advantage provided by the flexibility of
our family of diffusion SD, where the Stein operator also plays an important role.

4 Numerical Experiments

In this section, we explore several examples which demonstrate worrying breakpoints for SM, and
highlight how these can be straightforwardly handled using KSD, DKSD and DSM.

4.1 Rough densities: the symmetric Bessel distributions

A major drawback of SM is the smoothness requirement on the target density. However, this can be
remedied by choosing alternative Stein classes, as will be demonstrated in the case of the symmetric
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Figure 1: Minimum SD Estimators for the Symmetric Bessel Distribution. We consider the case where
θ∗1 = 0 and θ∗2 = 1 and n = 500 for a range of smoothness parameter values s in d = 1.

Figure 2: Minimum SD Estimators for Non-standardised Student-t Distributions. We consider a
student-t problem with ν = 5, θ∗1 = 25, θ∗2 = 10 and n = 300.

Bessel distributions. Let Ks−d/2 denote the modified Bessel function of the second kind with
parameter s− d/2. This distribution generalises the Laplace distribution [40] and has log-density:
log pθ(x) ∝ (‖x− θ1‖2/θ2)(s−d/2)Ks−d/2(‖x− θ1‖2/θ2) where θ1 ∈ Rd is a location parameter
and θ2 > 0 a scale parameter. The parameter s ≥ d/2 encodes smoothness.

We compared SM with KSD based on a Gaussian kernel and a range of lengthscale values in Fig. 1.
These results are based on n = 500 IID realisations in d = 1. The case s = 1 corresponds to a
Laplace distribution, and we notice that both SM and KSD are able to obtain a reasonable estimate
of the location. For rougher values, for example s = 0.6, we notice that KSD outperforms SM
for certain choices of lengthscales, whereas for s = 2, SM and KSD are both able to recover the
parameter. Analogous results for scale can be found in Appendix F.1, and Appendix F.2 illustrates
the trade-off between efficiency and robustness on this problem.

4.2 Heavy-tailed distributions: the non-standardised student-t distributions

A second drawback of standard SM is that it is inefficient for heavy-tailed distributions. To demon-
strate this, we focus on non-standardised student-t distributions: pθ(x) ∝ (1/θ2)(1 + (1/ν)‖x −
θ1‖22/θ2

2)−(ν+1)/2 where θ1 ∈ R is a location parameter and θ2 > 0 a scale parameter. The parameter
ν determines the degrees of freedom: when ν = 1, we have a Cauchy distribution, whereas ν =∞
gives the Gaussian distribution. For small values of ν, the student-t distribution is heavy-tailed.

We illustrate SM and KSD for ν = 5 in Fig. 2, where we take an IMQ kernel k(x, y; c, β) =
(c2 + ‖x− y‖22)β with c = 1. and β = −0.5. This choice of ν guarantees the first two moments exist,
but the distribution is still heavy-tailed. In the left plot, both SM and KSD struggle to recover θ∗1 when
n = 300, and the loss functions are far from convex. However, DKSD withmθ(x) = 1+‖x−θ1‖2/θ2

2
can estimate θ1 very accurately. In the middle left plot, we instead estimate θ2 with SM, KSD and
their correponding non-negative version (NNSM & NNKSD, m(x) = x), which are particularly
well suited for scale parameters. NNSM and NNKSD provide improvements on SM and KSD, but
DKSD with mθ(x) = ((x − θ1)/θ2)(1 + (1/ν)‖x − θ1‖22/θ2

2) provides significant further gains.
On the right-hand side, we also consider the advantage of the Riemannian SGD algorithm over
SGD by illustrating them on the KSD loss function with n = 1000. Both algorithms use constant
stepsizes and minibatches of size 50. As demonstrated, Riemmannian SGD converges within a few
dozen iterations, whereas SGD hasn’t converged after 1000 iterations. Additional experiments on the
robustness of these estimators is also available in Appendix F.2.

4.3 Robust estimators for light-tailed distributions: the generalised Gamma distributions

Our final example demonstrates a third failure mode for SM: its lack of robustness for light-tailed
distributions. We consider generalised gamma location models with likelihoods pθ(x) ∝ exp(−(x−
θ1)θ2) where θ1 is a location parameter and θ2 determines how fast the tails decay. The larger θ2,

8



Figure 3: Minimum SD Estimators for Generalised Gamma Distributions under Corruption. We
consider the case where θ∗1 = 0 and θ∗2 = 2 (left and middle) or θ∗2 = 5 (right). Here n = 300.

the lighter the tails will be and vice-versa. We set n = 300 and corrupt 80 points by setting them
to the value x = 8. A robust estimator should obtain a good approximation of θ∗ even under this
corruption. The left plot in Fig. 3 considers a Gaussian model (i.e. θ∗2 = 2); we see that SM is not
robust for this very simple model whereas DSM with m(x) = 1/(1 + ‖x‖α), α = 2 is robust. The
middle plot shows that DKSD with this same m is also robust, and confirms the analytical results
of the previous section. Finally, the right plot considers the case θ∗2 = 5 and we see that α can be
chosen as a function of θ2 to guarantee robustness. In general, taking α ≥ θ∗2 − 1 will guarantee a
bounded influence function. Such a choice allows us to obtain robust estimators even for models with
very light tails.

4.4 Efficient estimators for a simple unnormalised model

Figure 4: Estimators for a Sim-
ple Intractable Model

Finally we consider a simple intractable model from [47]: pθ(x) ∝
exp(η(θ)>ψ(x)) where ψ(x) = (

∑d
i=1 x

2
i ,
∑d
i=3 x1xi, tanh(x))>

and tanh is applied elementwise to x and η(θ) =
(−0.5, 0.2, 0.6, 0, 0, 0, θ, 0). This model is intractable since
we cannot easily compute its normalisation constant due to the
difficulty of integrating the unnormalised part of the model.
Our results based on n = 200 samples show that DKSD with
m(x) = diag(1/(1 + x)) is able to recover θ∗ = −1, whereas both
SM and KSD provide less accurate estimates of the parameter. This
illustrates yet again that a judicious choice of diffusion matrix can
significantly improve the efficiency of our estimators.

5 Conclusion

This paper introduced a general approach for constructing minimum distance estimators based on
Stein’s method, and demonstrated that many popular inference schemes can be recovered as special
cases. This class of algorithms gives us additional flexibility through the choice of an operator and
function space (the Stein operator and Stein class), which can be used to tailor the inference scheme to
trade-off efficiency and robustness. However, this paper only scratches the surface of what is possible
with minimum SD estimators. Looking ahead, it will be interesting to identify diffusion matrices
which increase efficiency for important classes of problems in machine learning. One example on
which we foresee progress are the product of student-t experts models [38, 66, 68], whose heavy tails
render estimation challenging for SM. Advantages could also be found for other energy models, such
as large graphical models where the kernel could be adapted to the graph [67].
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