
On Sample Complexity Upper and Lower Bounds for
Exact Ranking from Noisy Comparisons

Wenbo Ren
Department of Computer Science & Engineering

The Ohio State University
ren.453@osu.edu

Jia Liu
Department of Computer Science

Iowa State University
jialiu@iastate.edu

Ness B. Shroff
Department of Electrical & Computer Engineering and Computer Science & Engineering

The Ohio State University
shroff.11@osu.edu

Abstract

This paper studies the problem of finding the exact ranking from noisy comparisons.
A noisy comparison over a set of m items produces a noisy outcome about the most
preferred item, and reveals some information about the ranking. By repeatedly
and adaptively choosing items to compare, we want to fully rank the items with
a certain confidence, and use as few comparisons as possible. Different from
most previous works, in this paper, we have three main novelties: (i) compared
to prior works, our upper bounds (algorithms) and lower bounds on the sample
complexity (aka number of comparisons) require the minimal assumptions on the
instances, and are not restricted to specific models; (ii) we give lower bounds and
upper bounds on instances with unequal noise levels; and (iii) this paper aims at
the exact ranking without knowledge on the instances, while most of the previous
works either focus on approximate rankings or study exact ranking but require prior
knowledge. We first derive lower bounds for pairwise ranking (i.e., compare two
items each time), and then propose (nearly) optimal pairwise ranking algorithms.
We further make extensions to listwise ranking (i.e., comparing multiple items each
time). Numerical results also show our improvements against the state of the art.

1 Introduction

Background and motivation: Ranking from noisy comparisons has been a canonical problem in
the machine learning community, and has found applications in various areas such as social choices
[8], web search [9], crowd sourcing [4], and recommendation systems [3]. The main goal of ranking
problems is to recover the full or partial rankings of a set of items from noisy comparisons. The
items can refer to various things, such as products, movies, pages, and advertisements, and the
comparisons refer to tests or queries about the items’ strengths or the users’ preferences. In this paper,
we use words “item”, “comparison” and “preference” for simplicity. A comparison involves two
(i.e., pairwise) or multiple (i.e., listwise) items, and returns a noisy result about the most preferred
one, where “noisy” means that the comparison outcome is random and the returned item may not
be the most preferred one. A noisy comparison reveals some information about the ranking of
the items. This information can be used to describe users’ preferences, which helps applications
such as recommendations, decision making, and advertising, etc. One example is e-commerce: A
user’s click or purchase of a product (but not others) is based on a noisy (due to the lack of full
information) comparison between several similar products, and one can rank the products based

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

on the noisy outcomes of the clicks or the purchases to give better recommendations. Due to the
wide applications, in this paper, we do not focus on specific applications and regard comparisons as
black-box procedures.

This paper studies the active (or adaptive) ranking, where the learner adaptively chooses items to
compare based on previous comparison results, and returns a ranking when having enough confidence.
Previous works [4, 28] have shown that, compared to non-adaptive ranking, active ranking can
significantly reduce the number of comparisons needed and achieve a similar confidence or accuracy.
In some applications such as news apps, the servers are able to adaptively choose news to present
to the users and collect feedbacks, by which they can learn the users’ preferences in shorter time
compared to non-adaptive methods and may provide better user experience.

We focus on the active full ranking problem, that is, to find the exact full ranking with a certain
confidence level by adaptively choosing the items to compare, and try to use as few comparisons as
possible. The comparisons can be either pairwise (i.e., comparing two items each time) or listwise
(i.e., comparing more than two items each time). We are interested in the upper and lower bounds on
the sample complexity (aka number of comparisons needed). We are also interested in understanding
whether using listwise comparisons can reduce the sample complexity.

Models and problem statement: There are n items in total, indexed by 1, 2, 3, ..., n. Given a
comparison over a set S, each item i ∈ S has pi,S probability to be returned as the most preferred
one (also referred to as i “wins” this comparison), and when a tie happens, we randomly assign one
item as the winner, which makes

∑
i∈S pi,S = 1 for all set S ⊂ [n]. When |S| = 2, we say this

comparison is pairwise, and when |S| > 2, we say listwise. In this paper, a comparison is said to be
m-wise if it involves exactly m items (i.e., |S| = m). For m = 2 and a two-sized set S = {i, j}, to
simplify notation, we define pi,j := pi,S and pj,i := pj,S .

Assumptions. In this paper, we make the following assumptions: A1) Comparisons are independent
across items, sets, and time. We note that the assumption of independence is common in the this area
(e.g., [10, 11, 12, 15, 16, 22, 31, 32, 34, 35]). A2) There is a unique permutation (r1, r2, ..., rn) of [n]
1 such that r1 �r2 �· · · �rn, where i �j denotes that i ranks higher than j (i.e., i is more preferred
than j). We refer to this unique permutation as the true ranking or exact ranking, and our goal is to
recover the true ranking; A3) For any set S and item i ∈ S, if i ranks higher than all other items
k of S, then pi,S > pk,S . For pairwise comparisons, A3 states that i � j if and only if pi,j > 1/2.
We note that for pairwise comparisons, A3 can be viewed as the weak stochastic transitivity [33].
The three assumptions are necessary to make the exact ranking (i.e., finding the unique true ranking)
problem meaningful, and thus, we say our assumptions are minimal. Except for the above three
assumptions, we do not assume any prior knowledge of the pi,S values. We note that any comparison
model can be fully described by the comparison probabilities (pi,S : i ∈ S, S ⊂ [n]).

We further define some notations. Two items i and j are said to be adjacent if in the true ranking,
there does not exist an item k such that i �k � j or j �k � i. For all items i and j in [n], define
∆i,j := |pi,j − 1/2|, ∆i := minj 6=i ∆i,j , and ∆̃i := min{∆i,j : i and j are adjacent}. We adopt the
notion of strong stochastic transitivity (SST) [11]: for all items i, j, and k satisfying i � j �k, it
holds that pi,k ≥ max{pi,j , pj,k}. Under the SST condition, we have ∆i = ∆̃i for all items i. We
note that this paper is not restricted to the SST condition. Pairwise (listwise) ranking refers to ranking
from pairwise (listwise) comparisons. In this paper, f � g means f = O(g), f � g means f = Ω(g),
and f ' g means f = Θ(g). The meanings of O(·), o(·), Ω(·), ω(·), and Θ(·) are standard in the
sense of Bachmann-Landau notation with respect to (n, δ−1, ε−1,∆−1, η−1, (∆−1i,j , i 6= j)). For any
a, b ∈ R, define a ∧ b := min{a, b} and a ∨ b := max{a, b}.
Problem (Exact ranking). Given δ ∈ (0, 1/2) and n items, one wants to determine the true ranking
with probability at least 1− δ by adaptively choosing sets of items to compare.
Definition 1 (δ-correct algorithms). An algorithm is said to be δ-correct for a problem if for any
input instance of this problem, it, with probability at least 1− δ, returns a correct result in finite time.

Main results: First, for δ-correct pairwise ranking algorithms with no prior knowledge of the
instances, we derive a sample-complexity lower bound of the form Ω(

∑
i∈[n] ∆−2i (log log ∆−1i +

log(n/δ))) 2, which is shown to be tight (up to constant factors) under SST and some mild conditions.
1For any positive integer k, define [k] := {1, 2, ..., k} to simplify notation
2All log in this paper, unless explicitly noted, are natural log.

2

Second, for pairwise and listwise ranking under the multinomial logit (MNL) model, we derive a
model-specific lower bound, which is tight (up to constant factors) under some mild conditions, and
shows that in the worst case, the listwise lower bound is no lower than the pairwise one.

Third, we propose a pairwise ranking algorithm that requires no prior information and minimal
assumptions on the instances, and its sample-complexity upper bound matches the lower bounds
proved in this paper under the SST condition and some mild conditions, implying that both upper and
lower bounds are optimal.

2 Related works

Dating back to 1994, the authors of [14] studied the noisy ranking under the strict constraint that
pi,j ≥ 1/2 + ∆ for any i � j, where ∆ > 0 is priorly known. They showed that any δ-correct
algorithm needs Θ(n∆−2 log(n/δ)) comparisons for the worst instances. However, in some cases, it
is impossible to either assume the knowledge of ∆ or require pi,j ≥ 1/2 + ∆ for any i � j. Also,
their bounds only depend on the minimal gap ∆ but not ∆i,j’s or ∆i’s, and hence is not tight in most
cases. In contrast, our algorithms require no knowledge on the gaps (i.e., ∆i,j’s), and we establish
sample-complexity lower bounds and upper bounds that base on unequal gaps, which can be much
tighter when ∆i’s vary a lot.

Another line of research is to explore the probably approximately correct (PAC) ranking (which aims
at finding a permutation (r1, r2, ..., rn) of [n] such that pri,rj ≥ 1/2− ε for all i < j, where ε > 0 is
a given error tolerance) under various pairwise comparison models [10, 11, 12, 29, 31, 32, 35]. When
ε > 0, the PAC ranking may not be unique. The authors of [10, 11, 12] proposed algorithms with
O(nε−2 log(n/δ)) upper bound for PAC ranking with tolerance ε > 0 under SST and the stochastic
triangle inequality3 (STI). When ε goes to zero, the PAC ranking reduces to the true ranking. However,
when ε > 0, we still need some prior knowledge on (pi,j : i, j ∈ [n]) to get the true ranking, as
we need to know a lower bound of the values of ∆i,j to ensure that the PAC ranking equals to the
unique true ranking. When ε = 0, the algorithms in [10, 11, 12] do not work. Prior to these works,
the authors of [35] also studied the PAC ranking. In their work, with ε = 0, the unique true ranking
can be found by O(n log n ·maxi∈[n]{∆−2i log(nδ−1∆−1i)}) comparisons, which is higher than the
lower bound and upper bound proved in this paper by at least a log factor.

In contrast, this paper is focused on recovering the unique true (exact) ranking, and there are three
major motivations. First, in some applications, we prefer to find the exact order, especially in
“winner-takes-all” situations. For example, when predicting the winner of an election, we prefer to get
the exact result but not the PAC one, as only a few votes can completely change the result. Second,
analyzing the exact ranking can help us better understand the instance-wise upper and lower bounds
about the ranking problems, while the bounds of PAC ranking (e.g., in [10, 11, 12]) may only work
for the worst cases. Third, exact ranking algorithms may better exploit the large gaps (e.g., ∆i’s) to
achieve lower sample complexities. In fact, when finding the PAC ranking, we can perform the exact
ranking algorithm and the PAC ranking algorithm parallelly, and return a ranking whenever one of
them returns. By this, when ε is large, we can benefit from the PAC upper bounds that depend on ε−2,
and when ε is small, we can benefit from the exact ranking bounds that depend on ∆−2i .

There are also other interesting active ranking works. Authors of [15, 16, 22, 34] studied active
ranking under the Borda-Score model, where the Borda-Score of item i is defined as 1

n−1
∑
j 6=i pi,j .

We note that the Borda-Score model does not satisfy A2 and A3 and is not comparable with the model
in this paper. There are also many works on best item(s) selection, including [1, 5, 7, 19, 26, 27, 32],
which are less related to this paper.

3 Lower bound analysis

3.1 Generic lower bound for δ-correct algorithms

In this subsection, we establish a sample-complexity lower bound for pairwise ranking. The lower
bound is for δ-correct algorithms, which have performance guarantee for all input instances. There
are algorithms that work faster than our lower bound but only return correct results with 1 − δ

3Stochastic triangle inequality means that for all items i, j, k with i �j �k, ∆i,k ≤ ∆i,j + ∆j,k.

3

confidence for a restricted class of instances, which is discussed in Section A.1 of supplementary
material. Theorem 2 states the lower bound, and its full proof is provided in supplementary material.
Here we remind that ∆̃i := min{∆i,j : i and j are adjaent}.
Theorem 2 (Lower bound for pairwise ranking). Given δ ∈ (0, 1/12) and an instance I with n
items, then the number of comparisons used by a δ-correct algorithm A with no prior knowledge
about the gaps of I is lower bounded by

Ω
(∑
i∈[n]

[∆̃−2i (log log ∆̃−1i + log(1/δ))] + min{
∑
i∈[n]

∆̃−2i log(1/xi) :
∑
i∈[n]

xi ≤ 1}
)
. (1)

If δ � 1/poly(n)4, or maxi,j∈[n]{∆̃i/∆̃j} � n1/2−p for some constant p > 0, then the lower bound
becomes

Ω
(∑
i∈[n]

∆̃−2i (log log ∆̃−1i + log(n/δ))
)
. (2)

Remark: (i) When the instance satisfies the SST condition (the algorithm does not need to know
this information), the bound in Eq. (2) is tight (up to a constant factor) under the given condition,
which will be shown in Theorem 12 later. (ii) The lower bound in Eq. (1) implies an n log n term in
min{·}, which can be checked by the convexity of log(1/xi) and Jensen’s inequality, which yields∑
i∈[n] log(1/xi) ≥ n log(n/

∑
i∈[n] xi) ≥ n log n. (iii) The lower bound in (2) may not hold if the

required conditions do not hold, which will be discussed in Section A.2 of supplementary material.

Proof sketch of Theorem 2. Due to space limitation, we outline the basic idea of the proof here and
refer readers to supplementary material for details. Our first step is to use the results in [13, 18, 25]
to establish a lower bound for ranking two items. Then, it seems straightforward that the lower
bound for ranking n items can be obtained by summing up the lower bounds for ranking {q1, q2},
{q2, q3},...,{qn−1, qn}, where q1 � q2 � · · · � qn is the true ranking. However, Note that to rank
qi and qj , there may be an algorithm that compares qi and qj with other items like qk, and uses
the comparison outcomes over {qi, qk} and {qj , qk} to determine the order of qi and qj . Since it is
unclear to what degree comparing qi and qj with other items can help to rank qi and qj , the lower
bound for ranking n items cannot be simply obtained by summing up the lower bounds for ranking
2 items. To overcome this challenge, our strategy is to construct two problems: P1 and P2 with
decreasing influence of this type of comparisons. Then, we prove that P1 reduces to exact ranking
and P2 reduces to P1. Third, we prove a lower bound on δ-correct algorithms for solving P2, which
yields a lower bound for exact ranking. Finally, we use this lower bound to get the desired lower
bounds in Eq. (1) and Eq. (2).

3.2 Model-specific lower bound

In Section 3.1, we provide a lower bound for δ-correct algorithms that do not require any knowledge
of the instances except assumptions A1 to A3. However, in some applications, people may focus on a
specific model, and hence, the algorithm may have further knowledge about the instances, such as the
model’s restrictions. Hence, the lower bound in Theorem 2 may not be applicable any more5.

In this paper, we derive a model-specific lower bound for the MNL model. The MNL model can be
applied to both pairwise and listwise comparisons. For pairwise comparisons, the MNL model is
mathematically equivalent to the Bradley-Terry-Luce (BTL) model [24] and the Plackett-Luce (PL)
model [35]. There have been many prior works that focus on active ranking based on this model (e.g.,
[5, 6, 7, 15, 19, 27, 31, 35]).

Under the MNL model, each item holds a real number representing the users’ preference over this
item, where the larger the number, the more preferred the item. Specifically, each item i holds a
parameter γi ∈ R such that for any set S containing i, pi,S = exp(γi)/

∑
j∈S exp(γj). To simplify

notation, we let θi = exp(γi), hence, pi,S = θi/
∑
j∈S θj . We name θi as the preference score of

item i. We define ∆i,j := |pi,j − 1/2|, ∆i := minj 6=i ∆i,j , and we have ∆̃i = ∆i, i.e., the MNL
model satisfies the SST condition.

4poly(n) means a polynomial function of n, and δ � 1/poly(n) means δ � n−p for some constant p > 0.
5For example, under a model with ∆i,j = ∆ for any i 6= j where ∆ > 0 is unknown, one may first estimate

a lower bound of ∆, and then perform algorithms in [14], yielding a sample complexity lower than Theorem 2.

4

Theorem 3. [Lower bound for the MNL model] Let δ ∈ (0, 1/12) and given a δ-correct algorithm
A with the knowledge that the input instances satisfy the MNL model, let NA be the number of
comparisons conducted by A, then E[NA] is lower bounded by Eq. (1) with a different hidden
constant factor. When δ � 1/poly(n) or maxi,j∈[n]{∆i/∆j} � n1/2−p for some constant p > 0,
the sample complexity is lower bounded by Eq. (2) with a different hidden constant factor.

Proof sketch. We prove this theorem by Lemmas 4, 5 and 6, which could be of independent interest.

Suppose that there are two coins with unknown head probabilities (the probability that a toss produces
a head) λ and µ, respectively, and we want to find the more biased one (i.e., the one with the larger
head probability). Lemma 4 states a lower bound on the number of heads or tails generated for finding
the more biased coin, which works even if λ and µ go to 0. This is in contrast to the lower bounds on
the number of tosses given by previous works [18, 21, 25], which go to infinity as λ and µ go to 0.

Lemma 4 (Lower bound on number of heads). Let λ + µ ≤ 1, ∆ := |λ/(λ+ µ) − 1/2|, and
δ ∈ (0, 1/2) be given. To find the more biased coin with probability 1− δ, any δ-correct algorithm
for this problem produces Ω(∆−2(log log ∆−1 + log δ−1)) heads in expectation.

Now we consider n coinsC1, C2, ..., Cn with mean rewards µ1, µ2, ..., µn, respectively, where for any
i ∈ [n], θi/µi = c for some constant c > 0. Define the gaps of coins ∆c

i,j := |µi/(µi + µj)− 1/2|,
and ∆c

i := minj 6=i ∆c
i,j . We can check that for all i and j, ∆c

i,j = ∆i,j , and ∆i = ∆̃i = ∆c
i .

Lemma 5 (Lower bound for arranging coins). For δ < 1/12, to arrange these coins in ascending
order of head probabilities, the number of heads generated by any δ-correct algorithm is lower
bounded by Eq. (1) with a (possibly) different hidden constant factor.

The next lemma shows that any algorithm that solves a ranking problem under the MNL model can
be transformed to solve the pure exploration multi-armed bandit (PEMAB) problem with Bernoulli
rewards(e.g., [18, 20, 30]). Previous works [1, 15, 16] have shown that certain types of pairwise
ranking problems (e.g., Borda-Score ranking) can also be transformed to PEMAB problems. But in
this paper, we make a reverse connection that bridges these two classes of problems, which may be
of independent interest. We note that in our prior work [29], we proved a similar result.

Lemma 6 (Reducing PEMAB problems to ranking). If there is a δ-correct algorithm that correctly
ranks [n] with probability 1−δ byM expected number of comparisons, then we can construct another
δ-correct algorithm that correctly arranges the coins C1, C2, ..., Cn in the order of ascending head
probabilities with probability 1− δ and produces M heads in expectation.

The theorem follows by Lemmas 5 and 6. A full proof can be found in supplementary material.

3.3 Discussions on listwise ranking

A listwise comparison compares m (m > 2) items and returns a noisy result about the most preferred
item. It is an interesting question whether exact ranking from listwise comparisons requires less
comparisons. The answer is “It depends.” When every comparison returns the most preferred
item with high probability (w.h.p.)6, then, by conducting m-wise comparisons, the number of
comparisons needed for exact ranking is Θ(n logm n), i.e., there is a logm reduction, which is stated
in Proposition 7. The proof can be found in supplementary material.
Proposition 7 (Listwise ranking with negligible noises). If all comparisons are correct w.h.p., to
exactly rank n items w.h.p. by using m-wise comparisons, Θ(n logm n) comparisons are needed.

In general, when the “w.h.p. condition” is violated, listwise ranking does not necessarily require less
comparisons than pairwise ranking (in order sense). Here, we give an example. For more general
models, it remains an open problem to identify the theoretical limits, which is left for future studies.
Theorem 8. Under the MNL model, given n items with preference scores θ1, θ2, ..., θn and ∆i,j :=

|θi/(θi+θj)−1/2|, ∆̃i = ∆i := minj 6=i ∆i,j , to correctly rank these n items with probability 1− δ,
even with m-wise comparisons for all m ∈ {2, 3, ..., n}, the lower bound is the same as the pairwise
ranking (i.e., Theorem 3) with (possibly) different hidden constant factors.

6In this paper, “w.h.p.” means with probability at least 1− n−p, where p > 0 is a sufficiently large constant.

5

Theorem 8 gives a minimax lower bound for listwise ranking, which is the same as pairwise ranking.
The proof is given in supplementary material. In [5], the authors have shown that for top-k item
selection under the MNL model, listwise comparisons can reduce the number of comparisons needed
compared with pairwise comparisons. However, for exact ranking, listwise comparisons cannot.

4 Algorithm and the upper bound for pairwise ranking

In this section, we establish a (nearly) sample-complexity optimal δ-correct algorithm for exact
ranking, where whether the word “nearly” can be deleted depends on the structures of the instances.
The algorithm is based on Binary Search proposed in [14] with upper bound O(n∆−2min log(n/δ)),
where ∆min := mini 6=j ∆i,j . Binary Search has two limitations: (i) it requires the knowledge of
∆min a priori to run, and (ii) it does not utilize the unequal noise levels.

In this paper, we propose a technique named Attempting with error prevention and establish a
corresponding insertion subroutine that attempts to insert an item i into a sorted list with a guessing
∆i-value, while preventing errors from happening if the guess is not well chosen. If the guess is small
enough, this subroutine correctly inserts the item with a large probability, and if not, this subroutine
will, with a large probability, not insert the item into a wrong position. By attempting to insert item i
with diminishing guesses of ∆i, this subroutine finally correctly inserts item i with a large confidence.

To implement the technique “Attempting with error prevention”, we first need to construct a useful
subroutine called Attempting-Comparison (ATC), which attempts to rank two items with ε, a guess
of ∆i,j . Then, by ATC, we establish Attempting-Insertion (ATI), which also adopts this technique.

Subroutine 1 Attempting-Comparison(i, j, ε, δ) (ATC)

Initialize: ∀t, let bt =
√

1
2t log π2t2

3δ ; bmax ← d 1
2ε2 log 2

δ e; wi ← 0;

1: for t← 1 to bmax do
2: Compare i and j once; Update wi ← wi + 1 if i wins; Update p̂ti ← wi/t;
3: if p̂ti > 1/2 + bt then return i;
4: if p̂ti < 1/2− bt then return j;
5: end for
6: return i if p̂ti > 1/2; return j if p̂ti < 1/2; and return a random item if p̂ti = 1/2;

Lemma 9 (Theoretical Performance of ATC). ATC terminates after at most bmax = O(ε−2 log (1/δ))
comparisons and returns the more preferred item with probability at least 1/2. Further, if ε ≤ ∆i,j ,
then ATC returns the more preferred item with probability at least 1− δ.

Next, to establish insertion subroutine ATI, we introduce preference interval trees [14] (PIT). A PIT
is constructed from a sorted list of items. For a sorted list of items S with size l, without loss of
generality, we assume that r1 � r2 � · · · � rl. We introduce two artificial items −∞ and +∞,
where −∞ is such that pi,−∞ = 1 for any item i, and +∞ is such that pi,+∞ = 0 for any item i.

Figure 1: An example of PIT, con-
structed from a sorted list with three
items 3 � 2 � 1.

Preference Interval Tree [14]. A preference interval tree
constructed from the sorted list S satisfies the following con-
ditions: (i) It is a binary tree with depth d1 + log2(|S| +
1)e. (ii) Each node u holds an interval (u.left, u.right)
where u.left, u.right ∈ S ∪ {−∞,+∞}, and if u is non-
leaf, it holds an item u.mid satisfying u.right � u.mid �
u.left. (iii) A node i is in the interval (j, k) if and only
if k � i � j. (iv) The root node is with interval
(−∞,+∞). From left to right, the leaf nodes are with intervals
(−∞, rl), (rl, rl−1), (rl−1, rl−2), ..., (r2, r1), (r1,+∞). (v)
Each non-leaf node u has two children u.lchild and u.rchild
such that u.left = u.lchild.left, u.right = u.rchild.right and
u.mid = u.lchild.right = u.rchild.left.

Based on the notion of PIT, we present insertion subroutine ATI in Subroutine 2. ATI runs a random
walk on the PIT to insert i into S. Let X be the point that moves on the tree. We say a leaf u0 correct

6

if the item i belongs to (u0.left, u0.right). Define d(X) := the distance (i.e., the number of edges)
between X and u0. At each round of the subroutine, if all comparisons give correct results, we say
this round is correct, otherwise we say incorrect. For each correct round, either d(X) is decreased
by 1 or the counter of u0 is increased by 1. The subroutine inserts i into u0 if u0 is counted for
1 + 5

16 t
max times. Thus, after tmax rounds, the subroutine correctly inserts i into S if the number of

correct rounds is no less than 21
32 t

max + h
2 , where h = d1 + log2(|S|+ 1)e is the depth of the tree.

If guessing ε ≤ ∆i, then each round is correct with probability at least q, making the subroutine
correctly insert item i with probability at least 1− δ.

For all ε > 0, each round is incorrect with probability at most 1/2, and thus, by concentration
inequalities, we can also show that with probability at least 1− δ, i will not be placed into any leaf
node other than u0. That is, if ε > ∆i, the subroutine either correctly inserts i or returns unsure with
probability at least 1− δ. The choice of parameters guarantees the sample complexity. Lemma 10
states its theoretical performance, and the proof is relegated to the supplementary material.

Subroutine 2 Attempting-Insertion(i, S, ε, δ) (ATI).
Initialize: Let T be a PIT constructed from S;
h← d1 + log2(1 + |S|)e, the depth of T ;
For all leaf nodes u of T , initialize cu ← 0;
Set tmax ← dmax{4h, 51225 log 2

δ }e and q ← 15
16 ;

1: X ← the root node of T ;
2: for t← 1 to tmax do
3: if X is the root node then
4: if ATC(i,X .mid, ε, 1− q) = i then X ← X .right; #i.e., ATC returns i � X.mid
5: else X ← X .left;
6: else if X is a leaf node then
7: if ATC(i,X .left, ε, 1−√q) = i ∧ ATC(i,X .right, ε, 1−√q) = X .right then
8: cX ← cX + 1;

9: if cX > bt := 1
2 t+

√
t
2 log π2t2

3δ + 1 then
10: Insert i into the corresponding interval of X and return inserted;
11: else if cX > 0 then cX ← cX − 1
12: else X ← X.parent
13: else
14: if ATC(i,X .left, ε, 1− 3

√
q) = X .left ∨ ATC(i,X .right, ε, 1− 3

√
q) = i then

15: X ← X.parent;
16: else if ATC(i,X .mid, ε, 1− 3

√
q) = i then X ← X .rchild;

17: else X ← X .lchild;
18: end for
19: if there is a leaf node u with cu ≥ 1 + 5

16 t
max then

20: Insert i into the corresponding interval of u and return inserted;
21: else return unsure;

Lemma 10 (Theoretical performance of ATI). Let δ ∈ (0, 1). ATI returns after O(ε−2 log(|S|/δ))
comparisons and, with probability at least 1 − δ, correctly inserts i or returns unsure. Further, if
ε ≤ ∆i, it correctly inserts i with probability at least 1− δ.

By Lemma 10, we can see that the idea “Attempting with error prevention” is successfully imple-
mented. Thus, by repeatedly attempting to insert an item with diminishing guess ε with proper
confidences for the attempts, one can finally correctly insert i with probability 1− δ. We use this idea
to establish the insertion subroutine Iterative-Attempting-Insertion (IAI, Subroutine 3), and then use
it to establish the ranking algorithm Iterative-Insertion-Ranking (IIR, Algorithm 4). Their theoretical
performances are stated in Lemma 11 and Theorem 12, respectively, and their proofs are given in
supplementary material.
Lemma 11 (Theoretical Performance of IAI). With probability at least 1− δ, IAI correctly inserts i
into S, and conducts at most O(∆−2i (log log ∆−1i + log(|S|/δ))) comparisons.

Theorem 12 (Theoretical Performance of IIR). With probability at least 1− δ, IIR returns the exact
ranking of [n] and conducts at most O(

∑
i∈[n] ∆−2i (log log ∆−1i + log(n/δ))) comparisons.

7

Subroutine 3 Iterative-Attempting-Insertion (IAI).
Input parameters: (i, S, δ);
Initialize: For all τ ∈ Z+, set ετ = 2−(τ+1) and
δτ = 6δ

π2τ2 ; t← 0; Flag ← unsure;
1: repeat t← t+ 1;
2: Flag ←ATI(i, S, εt, δt);
3: until Flag = inserted

Algorithm 4 Iterative-Insertion-Ranking (IIR).
Input: S = [n], and confidence δ > 0;

1: Ans← the list containing only S[1];
2: for t← 2 to |S| do
3: IAI(S[t], Ans, δ/(n− 1));
4: end for
5: return Ans;

Remark: We can see that the upper bounds of IIR depend on the values of (∆i, i ∈ [n]) while the
lower bounds given in Theorem 2 depend on the values of (∆̃i, i ∈ [n]). Without SST, it is possible
∆̃i < ∆i, but if SST holds, then our algorithm is optimal up to a constant factor given δ � 1/poly(n),
or maxi,j∈[n] ∆̃i/∆̃j � O(n1/2−p) for some constant p > 0. According to [10, 11, 12], ranking
without the SST condition can be much harder than that with SST , and it remains an open problem
whether our upper bound is tight or not when the SST condition does not hold.

5 Numerical results

In this section, we provide numerical results to demonstrate the efficacy of our proposed IIR algorithm.
We compare IIR with: (i) Active-Ranking (AR) [15], which focuses on the Borda-Score model and
is not directly comparable to our algorithm. We use it as an example to show that although Borda-
Ranking may be the same as exact ranking, for finding the exact ranking, the performance of
Borda-Score algorithms is not always as good as that for finding the Borda-Ranking 7; (ii) PLPAC-
AMPR [35], an algorithm for PAC ranking under the MNL model. By setting the parameter ε = 0,
it can find the exact ranking with O((n log n) maxi∈[n] ∆−2i log(n∆−1i δ−1)) comparisons, higher
than our algorithm by at least a log factor; (iii) UCB + Binary Search of [14]. In the Binary Search
algorithm of [14], a subroutine that ranks two items with a constant confidence is required. In [14], it
assumes the value of ∆min = mini∈[n] ∆i is priorly known, and the subroutine is simply comparing
two items for Θ(∆−2min) times and returns the item that wins more. In this paper, the value of ∆min

is not priorly known, and here, we use UCB algorithms such as LUCB [23] to play the role of the
required subroutine. The UCB algorithms that we use include Hoeffding-LUCB [17, 23], KL-LUCB
[2, 23], and lil’UCB [18]. For Hoeffding-LUCB and KL-LUCB, we choose γ = 2. For lil’UCB, we
choose ε = 0.01, β = 1, and λ = (2+β

β)2 8.

Instances. The experiments are conducted on three different types of instances. To simplify notation,
we use r1 � r2 � · · · � rn to denote the true ranking, and let ∆ = 0.1. (i) Type-Homo: For any
ri � rj , pri,rj = 1/2 + ∆. (ii) Type-MNL: The preference score of ri (i.e., θri) is generated by
taking an independent instance of Uniform([0.9 ∗ 1.5n−i, 1.1 ∗ 1.5n−i]). By this, for any i, ∆i is
around 0.1. (iii) Type-Random: For any ri �rj , pri,rj is generated by taking an independent instance
of Uniform([0.5 + 0.8∆, 0.5 + 1.5∆]). By this, for any i, ∆i is around 0.1. We let ∆i’s be close
to 0.1 in order to decrease the influence of ∆i’s on sample complexities and show how the sample
complexities of the algorithms grow with n.

The numerical results for these three types are presented in Figure 2 (a)-(c), respectively. For all
simulations, we input δ = 0.01. Every point of every figure is averaged over 100 independent trials.
In every figure, for the same n-value, the algorithms are tested on an identical input instance.

From Figure 2, we can see that our algorithm significantly outperforms the existing algorithms. We
can also see that the sample complexity of IIR scales with n log n, which is consistent with our
theoretical results. There are some insights about the practical performance of IIR. First, in Lines 3
and 4 of ATC and Lines 9 and 10 of ATI, we use LUCB-like [23] designs to allow the algorithms
return before completing all required iterations, which does not improve the theoretical upper bound
but can improve the practical performance. Second, in the theoretical analysis, we only show that

7For instance, when pri,rj = 1/2 + ∆ for all i < j, the Borda-Score of item ri is 1
n−1

∑
j 6=i pri,rj =

1/2 + n+1−2i
n−1

∆, and ∆ri = Θ(1/n). Thus, by [15], the sample complexity of AR is at least O(n3 logn).
8We do not choose the combination (ε = 0, β = 1, and λ = 1+10/n) that has a better practical performance

because this combination does not have theoretical guarantee, making the comparison in some sense unfair.

8

20 40 60 80 100

n

104

106

108

nu
m

be
r

of
 c

om
pa

ris
on

s

IIR
HoeffdingLUCB + Binary Search
lil'UCB + Binary Search
KL-LUCB + Binary Search
Active Ranking

(a) Type-Homo.

20 40 60 80 100

n

104

106

108

nu
m

be
r

of
 c

om
pa

ris
on

s

IIR
HoeffdingLUCB + Binary Search
lil'UCB + Binary Search
KL-LUCB + Binary Search
Active Ranking
PLPAC-AMPR

(b) Type-MNL.

20 40 60 80 100

n

104

106

108

nu
m

be
r

of
 c

om
pa

ris
on

s

IIR
HoeffdingLUCB + Binary Search
lil'UCB + Binary Search
KL-LUCB + Binary Search

(c) Type-Random.

Figure 2: Comparisons between IIR and existing methods.

ATI correctly inserts an item i with high probability when inputting ε ≤ ∆i, but the algorithm may
return before ε being that small, making the practical performance better than what the theoretical
upper bound suggests.

6 Conclusion

In this paper, we investigated the theoretical limits of exact ranking with minimal assumptions. We
do not assume any prior knowledge of the comparison probabilities and gaps, and derived the lower
bounds and upper bound for instances with unequal noise levels. We also derived the model-specific
pairwise and listwise lower bound for the MNL model, which further shows that in the worst case,
listwise ranking is no more efficient than pairwise ranking in terms of sample complexity. The
iterative-insertion-ranking (IIR) algorithm proposed in this paper indicates that our lower bounds are
optimal under strong stochastic transitivity (SST) and some mild conditions. Numerical results also
suggest that our ranking algorithm outperforms existing works in the literature.

Acknowledgments

This work has been supported in part by NSF grants ECCS-1818791, CCF-1758736, CNS-1758757,
CNS-1446582, CNS-1901057; ONR grant N00014-17-1-2417; AFRL grant FA8750-18-1-0107, and
by Institute for Information & communications Technology Promotion (IITP) grant funded by the
Korea government (MSIT), (2017-0-00692, Transport-aware Streaming Technique Enabling Ultra
Low-Latency AR/VR Services).

9

References
[1] Agarwal, A., Agarwal, S., Assadi, S., and Khanna, S. (2017). Learning with limited rounds of

adaptivity: Coin tossing, multi-armed bandits, and ranking from pairwise comparisons. In In
Conference on Learning Theory.

[2] Arratia, R. and Gordon, L. (1989). Tutorial on large deviations for the Binomial distribution.
Bulletin of Mathematical Biology.

[3] Baltrunas, L., Makcinskas, T., and Ricci, F. (2010). Group recommendations with rank aggrega-
tion and collaborative filtering. In Proceedings of the fourth ACM conference on Recommender
systems. ACM.

[4] Chen, X., Bennett, P. N., Collins-Thompson, K., and Horvitz, E. (2013). Pairwise ranking
aggregation in a crowdsourced setting. In In ACM Conference on Web Search and Data Mining.
ACM.

[5] Chen, X., Li, Y., and Mao, J. (2018). A nearly instance optimal algorithm for top-k ranking under
the multinomial logit model. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Algorithms. SIAM.

[6] Chen, Y., Fan, J., Ma, C., and Wang, K. (2017). Spectral method and regularized MLE are both
optimal for top-k ranking. stat.

[7] Chen, Y. and Suh, C. (2015). Spectral MLE: Top-k rank aggregation from pairwise comparisons.
In International Conference on Machine Learning.

[8] Conitzer, V. and Sandholm, T. (2005). Communication complexity of common voting rules. In
Proceedings of the 6th ACM conference on Electronic commerce. ACM.

[9] Dwork, C., Kumar, R., Naor, M., and Sivakumar, D. (2001). Rank aggregation methods for the
web. In In Proceedings of the 10th international conference on World Wide Web. ACM.

[10] Falahatgar, M., Hao, Y., Orlitsky, A., Pichapati, V., and Ravindrakumar, V. (2017a). Maxing
and ranking with few assumptions. In In Advances in Neural Information Processing Systems.

[11] Falahatgar, M., Jain, A., Orlitsky, A., Pichapati, V., and Ravindrakumar, V. (2018). The limits
of maxing, ranking, and preference learning. In Proceedings of the 35th International Conference
on Machine Learning. PMLR.

[12] Falahatgar, M., Orlitsky, A., Pichapati, V., and Suresh, A. T. (2017b). Maximum selection and
ranking under noisy comparisons. In International Conference on Machine Learning.

[13] Farrell, R. H. (1964). Asymptotic behavior of expected sample size in certain one sided tests.
The Annals of Mathematical Statistics.

[14] Feige, U., Raghavan, P., Peleg, D., and Upfal, E. (1994). Computing with noisy information.
SIAM Journal on Computing.

[15] Heckel, R., Shah, N. B., Ramchandran, K., and Wainwright, M. J. (2016). Active rank-
ing from pairwise comparisons and when parametric assumptions don’t help. arXiv preprint
arXiv:1606.08842.

[16] Heckel, R., Simchowitz, M., Ramchandran, K., and Wainwright, M. J. (2018). Approximate
ranking from pairwise comparisons. In International Conference on Artificial Intelligence and
Statistics.

[17] Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal
of the American statistical association.

[18] Jamieson, K., Malloy, M., Nowak, R., and Bubeck, S. (2014). lil’UCB: An optimal exploration
algorithm for multi-armed bandits. In In Conference on Learning Theory.

[19] Jang, M., Kim, S., Suh, C., and Oh, S. (2017). Optimal sample complexity of m-wise data for
top-k ranking. In In Advances in Neural Information Processing Systems.

10

[20] Kalyanakrishnan, S. and Stone, P. (2010). Efficient selection of multiple bandit arms: Theory
and practice. In International Conference on Machine Learning.

[21] Kalyanakrishnan, S., Tewari, A., Auer, P., and Stone, P. (2012). PAC subset selection in
stochastic multi-armed bandits. In ICML.

[22] Katariya, S., Jain, L., Sengupta, N., Evans, J., and Nowak, R. (2018). Adaptive sampling for
coarse ranking. In International Conference on Artificial Intelligence and Statistics.

[23] Kaufmann, E. and Kalyanakrishnan, S. (2013). Information complexity in bandit subset
selection. In Conference on Learning Theory.

[24] Luce, R. D. (2012). Individual choice behavior: A theoretical analysis. Courier Corporation.

[25] Mannor, S. and Tsitsiklis, J. N. (2004). The sample complexity of exploration in the multi-armed
bandit problem. Journal of Machine Learning Research.

[26] Mohajer, S. and Suh, C. (2016). Active top-k ranking from noisy comparisons. In Communica-
tion, Control, and Computing (Allerton), 2016 54th Annual Allerton Conference on. IEEE.

[27] Negahban, S., Oh, S., and Shah, D. (2016). Rank centrality: Ranking from pairwise comparisons.
In Operations Research.

[28] Pfeiffer, T., Xi, A., Gao, A., Mao, Y., Chen, and Rand, D. G. (2012). Adaptive polling for
information aggregation. In Twenty-sixth AAAI Conference on Artificial Intelligence.

[29] Ren, W., Liu, J., and Shroff, N. B. (2018). PAC ranking from pairwise and listwise queries:
Lower bounds and upper bounds. arXiv preprint arXiv:1806.02970.

[30] Ren, W., Liu, J., and Shroff, N. B. (2019). Exploring k out of top ρ fraction of arms in stochastic
bandits. In The 22nd International Conference on Artificial Intelligence and Statistics.

[31] Saha, A. and Gopalan, A. (2019a). Active ranking with subset-wise preferences. In Proceedings
of Machine Learning Research, Proceedings of Machine Learning Research. PMLR.

[32] Saha, A. and Gopalan, A. (2019b). From PAC to instance-optimal sample complexity in the
Plackett-Luce model. arXiv preprint arXiv:1903.00558.

[33] Shah, N., Balakrishnan, S., Guntuboyina, A., and Wainwright, M. (2016). Stochastically
transitive models for pairwise comparisons: Statistical and computational issues. In International
Conference on Machine Learning.

[34] Shah, N. B. and Wainwright, M. J. (2017). Simple, robust and optimal ranking from pairwise
comparisons. Journal of machine learning research.

[35] Szörényi, B., Busa-Fekete, R., Paul, A., and Hüllermeier, E. (2015). Online rank elicitation for
Plackett-Luce: A dueling bandits approach. In In Advances in Neural Information Processing
Systems.

11

