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Abstract

The data deluge comes with high demands for data labeling. Crowdsourcing (or,
more generally, ensemble learning) techniques aim to produce accurate labels via
integrating noisy, non-expert labeling from annotators. The classic Dawid-Skene
estimator and its accompanying expectation maximization (EM) algorithm have
been widely used, but the theoretical properties are not fully understood. Tensor
methods were proposed to guarantee identification of the Dawid-Skene model, but
the sample complexity is a hurdle for applying such approaches—since the tensor
methods hinge on the availability of third-order statistics that are hard to reliably
estimate given limited data. In this paper, we propose a framework using pairwise
co-occurrences of the annotator responses, which naturally admits lower sample
complexity. We show that the approach can identify the Dawid-Skene model under
realistic conditions. We propose an algebraic algorithm reminiscent of convex
geometry-based structured matrix factorization to solve the model identification
problem efficiently, and an identifiability-enhanced algorithm for handling more
challenging and critical scenarios. Experiments show that the proposed algorithms
outperform the state-of-art algorithms under a variety of scenarios.

1 Introduction

Background. The drastically increasing availability of data has successfully enabled many timely
applications in machine learning and artificial intelligence. At the same time, most supervised
learning tasks, e.g., the core tasks in computer vision, natural language processing, and speech
processing, heavily rely on labeled data. However, labeling data is not a trivial task—it requires
educated and knowledgeable annotators (which could be human workers or machine classifiers),
to work under a reliable way. More importantly, it needs an effective mechanism to integrate the
possibly different labeling from multiple annotators. Techniques addressing this problem in machine
learning are called crowdsourcing [24] or more generally, ensemble learning [8].
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Crowdsourcing has a long history in machine learning, which can be traced back to the 1970s [6].
Many models and methods have appeared since then [22, 23, 21, 34, 38, 28, 37]. Intuitively, if a
number of reliable annotators label the same data samples, then majority voting among the annotators
is expected to work well. However, in practice, not all the annotators are equally reliable—e.g.,
different annotators could be specialized for recognizing different classes. In addition, not all the
annotators are labeling all the data samples, since data samples are often dispatched to different groups
of annotators in a certain way. Under such circumstances, majority voting is not very promising.

A more sophisticate way is to treat the crowdsourcing problem as a model identification problem.
The arguably most popular generative model in crowdsourcing is the Dawid-Skene model [6], where
every annotator is assigned with a ‘confusion matrix’ that decides the probability of an annotator
giving class label ` when the ground-truth label is g. If such confusion matrices and the probability
mass function (PMF) of the ground-truth label can be identified, then a maximum likelihood (ML) or
a maximum a posteriori (MAP) estimator for the true label of any given sample can be constructed.
The Dawid-Skene model is quite simple and succinct, and some of the model assumptions (e.g., the
conditional independence of the annotator responses) are actually debatable. Nonetheless, this model
has been proven very useful in practice [31, 37, 14, 23, 28, 39].

Theoretical aspects for the Dawid-Skene model, however, are less well understood. In particular, it
had been unclear if the model could be identified via the accompanying expectation maximization
(EM) algorithm proposed in the same paper [6], until some recent works addressing certain special
cases [23]. The works in [37, 39] put forth tensor methods for learning the Dawid-Skene model.
These methods admit model identifiability, and also can be used to effectively initialize the classic
EM algorithm provably [39]. The challenge is that tensor methods utilize third-order statistics of the
data samples, which are rather hard to estimate reliably in practice given limited data [19].

Contributions. In this work, we propose an alternative for identifying the Dawid-Skene model,
without using third-order statistics. Our approach is based on utilizing the pairwise co-occurrences
of annotators’ responses to data samples—which are second-order statistics and thus are naturally
much easier to estimate compared to the third-order ones. We show that, by judiciously combining
the co-occurrences between different annotator pairs, the confusion matrices and the ground-truth
label’s prior PMF can be provably identified, under realistic conditions (e.g., when there exists a
relatively well-trained annotator among all annotators). This is reminiscent of nonnegative matrix
theory and convex geometry [13, 15]. Our approach is also naturally robust to spammers as well as
scenarios where every annotator only labels partial data. We offer two algorithms under the same
framework. The first algorithm is algebraic, and thus is efficient and suitable for handling very
large-scale crowdsourcing problems. The second algorithm offers enhanced identifiability guarantees,
and is able to deal with more critical cases (e.g., when no highly reliable annotators exist), with the
price of using a computationally more involved iterative optimization algorithm. Experiments show
that both approaches outperform a number of competitive baselines.

2 Background
The Dawid-Skene Model. Let us consider a dataset {fn}Nn=1, where fn ∈ Rd is a data sample (or,
feature vector) and N is the number of samples. Each fn belongs to one of K classes. Let yn be
the ground-truth label of the data sample fn. Suppose that there are M annotators who work on
the dataset {fn}Nn=1 and provide labels. Let Xm(fn) represent the response of the annotator m to
fn. Hence, Xm can be understood as a discrete random variable whose alphabet is {1, . . . ,K}. In
crowdsourcing or ensemble learning, our goal is to estimate the true label corresponding to each item
fn from the M annotator responses. Note that in a realistic scenario, an annotator will likely to only
work on part of the dataset, since having all annotators work on all the samples is much more costly.

In 1979, Dawid and Skene proposed an intuitively pleasing model for estimating the ‘true response’
of the patients from recorded answers [6], which is essentially a crowdsourcing/ensemble learning
problem. This model has sparked a lot of interest in the machine learning community [31, 37, 14,
23, 28, 39]. The Dawid-Skene model in essence is a naive Bayesian model [29]. In this model, the
ground-truth label of a data sample is a latent discrete random variable, Y , whose values are different
class indices. The ambient variables are the responses given by different annotators, denoted as
X1, . . . , XM , where M is the number of annotators. The key assumption in the Dawid-Skene model
is that given the ground-truth label, the responses of the annotators are conditionally independent.
Of course, the Dawid-Skene model is a simplified version of reality, but has been proven very
useful—and it has been a workhorse for crowdsourcing since its proposal.
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Under the Dawid-Skene model, one can see that

Pr(X1 = k1, . . . , XM = kM ) =

K∑
k=1

M∏
m=1

Pr(Xm = km|Y = k)Pr(Y = k), (1)

where k ∈ {1, . . . ,K} denotes the index of a given class, and km denotes the response of the m-th
annotator. If one defines a series of matricesAm ∈ RK×K and let

A(km, k) := Pr(Xm = km|Y = k), (2)

thenAm ∈ RK×K can be understood as the ‘confusion matrix’ of annotator m: It contains all the
conditional probabilities of annotator m labeling a given data sample as from class km while the
ground-truth label is k. Also define a vector d ∈ RK such that d(k) := Pr(Y = k); i.e., the prior
PMF of the ground-truth label Y . Then the crowdsourcing problem boils down to estimatingAm for
m = 1, . . . ,M and d.

Prior Art. In the seminal paper [6], Dawid and Skene proposed an EM-based algorithm to estimate
Pr(Xm = km|Y = k) and Pr(Y = k). Their formulation is well-motivated from an ML viewpoint,
but also has some challenges. First, it is unknown if the model is identifiable, especially when there
is a large number of unrecorded responses (i.e., missing values)—but model identification plays an
essential role in such estimation problems [13]. Second, since the ML estimator is a nonconvex
optimization criterion, the solution quality of the EM algorithm is not easy to characterize in general.
More recently, tensor methods were proposed to identify the Dawid-Skene model [39, 37]. Take the
most recent work in [37] as an example. The approach considers estimating the joint probability
Pr(Xi = ki, Xj = kj , X` = k`) for different triples i, j, `. Such joint PMFs can be regarded as third-
order tensors, and the confusion matrices and the prior d are latent factors of these tensors. The upshot
is that identifiability ofAm and d can be elegantly established leveraging tensor algebra [33, 25]. The
challenge, however, is that reliably estimating Pr(Xi = ki, Xj = kj , X` = k`) is quite hard, since it
normally needs a large number of annotator responses. Another tensor method in [39] judiciously
partitions the data and works with group statistics between three groups, which is reminiscent of the
graph statistics proposed in [1]. The method is computationally more tractable, leveraging orthogonal
tensor decomposition. Nevertheless, the challenge again lies in sample complexity: the group/graph
statistics are still third-order statistics.

3 Proposed Approach
In this section, we propose a model identification approach that only uses second-order statistics, in
particular, pairwise co-occurrences Pr(Xi = ki, Xj = kj).

Problem Formulation. Let us consider the following pairwise joint PMF: Pr(Xm = km, X` =

k`) =
∑K
k=1 Pr(Y = k)Pr(Xm = km|Y = k)Pr(X` = k`|Y = k). Letting Rm,`(km, k`) =

Pr(Xm = km, X` = k`), and using the matrix notations that we defined, we haveRm,`(km, k`) =∑K
k=1 Pr(Y = k)Pr(Xm = km|Y = k)Pr(X` = k`|Y = k)—or, in a more compact form:

Rm,`(km, k`) =

K∑
k=1

d(k)Am(km, k)A`(k`, k) ⇐⇒ Rm,` := AmDA
>
` ,

where we haveD = Diag(d), which is a diagonal matrix. Note thatAm is a confusion matrix, i.e.,
its columns are respectable probability measures. In addition, d is a prior PMF. Hence, we have

1>Am = 1>, Am ≥ 0, ∀m, 1>d = 1, d ≥ 0. (3)

In practice, Rm,`’s are not available but can be estimated via sample averaging.
Specifically, if we are given the annotator responses Xm(fn), then R̂m,`(km, k`) =

1
|Sm,`|

∑
n∈Sm,` I [Xm(fn) = km, X`(fn) = k`] , where Sm,` is the index set of samples which

both annotators m and ` have worked on. Here, I[·] is an indicator function: If the event E happens,
then I[E] = 1, and I[Ec] = 0 otherwise. It is readily seen that

E [I(Xm(fn) = km, X`(fn) = k`)] = Rm,`(km, k`), (4)

where the expectation is taken over data samples. Note that the sample complexity for reliably
estimatingRm,` is much lower relative to that of estimatingRm,n,` [39, 1], and the latter is needed
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in tensor based methods, e.g., [37]. To be specific, to achieve |Rm,`(km, k`)− R̂m,`(km, k`)| ≤ ε
with a probability greater than 1 − δ, O(ε−2(log 1

δ )) joint responses from annotators m and ` are
needed. However, in order to attain the same accuracy for R̂m,n,`(km, kn, k`), the number of joint
responses from annotators m,n and ` is required to be atleast O(Kε−2(logKδ )), where K is the
number of classes (also see supplementary materials Sec. J for a short discussion).

An Algebraic Algorithm. Assume that we have obtainedRm,`’s for different pairs of m, `. We now
show how to identify Am’s and d from such second-order statistics. Let us take the estimation of
Am as an illustrative example. First, we construct a matrix Zm as follows:

Zm =
[
Rm,m1

,Rm,m2
, . . . ,Rm,mT (m)

]
, (5)

where mt 6= m for t = 1, . . . , T (m) denote the indices of annotators who have co-labeled data
samples with annotator m, and the integer T (m) denotes the number of such annotators. Due
to the underlying model of Rm,` in (3), we have Zm =

[
AmDA

>
m1
, . . . ,AmDA

>
T (m)

]
=

Am

[
DA>m1

, . . . ,DA>T (m)

]
∈ RK×KT (m). Let us define H>m =

[
DA>m1

, . . . ,DA>T (m)

]
∈

RK×KT (m). This leads to the model Zm = AmH
>
m. We propose to identify Am from Zm. The

key enabling postulate is that, among all annotators, someA`’s should be diagonally dominant—if
there exist annotators who are reasonably trained. In other words, for a reasonable annotator `,
Pr(X` = j|Y = j) should be greater than Pr(X` = j|Y = k) and Pr(X` = j|Y = i) for k, i 6= j.
To see the intuition of the algorithm, consider an ideal case where for each class k, there exists an
annotator mt(k) ∈ {m1, . . . ,mT (m)} such that

Pr(Xmt(k) = k|Y = k) = 1, Pr(Xmt(k) = k|Y = j) = 0, j 6= k. (6)

This physically means that annotator mt(k) is very good at recognizing class k and never confuses
other classes with class k. Under such circumstances, one can use the following procedure to
identify Am. First, let us normalize the columns of Zm via Zm(:, q) = Zm(:, q)/‖Zm(:, q)‖1 for
q = {1, . . . ,KT (m)}. This way, we have a normalized model Zm = AmH

>
m, where

Am(:, k) =
Am(:, k)

‖Am(:, k)‖1
= Am(:, k), Hm(q, :) =

Hm(q, :)‖Am(:, k)‖1
‖Zm(:, q)‖1

. (7)

where the second equality above is because ‖Am(:, k)‖1 = 1 [cf. Eq. (3)]. After normalization, it
can be verified that

Hm1 = 1, Hm ≥ 0, (8)

i.e., all the rows ofHm reside in the (K − 1)-probability simplex. In addition, by the assumption
in (6), it is readily seen that there exists Λq = {q1, . . . , qK} ⊂ {1, . . . , Lm} where Lm = KT (m)
such that

Hm(Λq, :) = IK , (9)

i.e., an identity matrix is a submatrix ofHm (after proper row permutations). Consequently, we have
Am = Zm(:, Λq)—i.e.,Am can be identified from Zm up to column permutations. The task also
boils down to identifying Λq. This turns out to be a well-studied task in the context of separable
nonnegative matrix factorization [16, 15, 13], and an algebraic algorithm exists:

q̂k = arg max
q∈{1,...,Lm}

∥∥∥P⊥Âm(:,1:k−1)
Zm(:, q)

∥∥∥2
2
, ∀k. (10)

where Âm(:, 1 : k − 1) = [Zm(:, q̂1), . . . ,Zm(:, q̂k−1)] and P⊥
Âm(:,1:k−1)

is a projector onto the orthogonal

complement of range(Âm(:, 1 : k − 1)) and we let P⊥
Âm(:,1:0)

:= I .

It has been shown in [16, 2] that the so-called successive projection algorithm (SPA) in Eq. (10)
identifies Λq in K steps. This is a very plausible result, since the procedure admits Gram-Schmitt-like
lightweight steps and thus is quite scalable. See more details in Sec. F.1.

Each of theAm’s can be estimated from the corresponding Zm by repeatedly applying SPA, and we
call this simple procedure multiple SPA (MultiSPA) as we elaborate in Algorithm 1.
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Algorithm 1 MultiSPA
Input: Annotator Responses {Xm(fn)}.
Output: Âm for m = 1, . . . ,M , d̂.
estimate second order statistics R̂m,`;
for m = 1 to M do

construct Ẑm and normalize columns to unit
`1 norm;
estimate Âm using Eq. (10);

end for
fix permutation mismatch between Âm and Â`

for all m 6= `;
estimate D̂ = Â−1

m Rm,`(Â
>
` )−1 (and take av-

erage over all pairs (m, `) if needed).;
extract the prior d̂ = diag(D̂).

Of course, assuming that (6) or (9) holds per-
fectly may be too ideal. It is more likely that
there exist some annotators who are good at
recognizing certain classes, but still have some
possibilities of being confused. It is of interest
to analyze how SPA can do under such condi-
tions. Another challenge is that one may not
have Rm,` perfectly estimated, since only lim-
ited number of samples are available. It is desir-
able to understand the sample complexity of ap-
plying SPA to Dawid-Skene identification. We
answer these two key technical questions in the
following theorem:
Theorem 1. Assume that annotators m
and t co-label at least S samples ∀t ∈
{m1, . . . ,mT (m)}, and that Ẑm is constructed
using R̂m,mT (m)

’s according to Eq. (5). Also assume that the constructed Ẑm satisfies ‖Ẑm(:

, l)‖1 ≥ η,∀l ∈ {1, . . .KT (m)}, where η ∈ (0, 1]. Suppose that rank(Am) = rank(D) = K
for m = 1, . . . ,M , and that for every class index k ∈ {1, . . . ,K}, there exists an annotator
mt(k) ∈ {m1, . . . ,mT (m)} such that

Pr(Xmt(k) = k|Y = k) ≥ (1− ε)
K∑
j=1

Pr(Xmt(k) = k|Y = j), (11)

where ε ∈ [0, 1]. Then, if ε ≤ O
(

max
(
K−1κ−3(Am),

√
ln(1/δ)(σmax(Am)

√
Sη)−1

))
, with

probability greater than 1− δ, the SPA algorithm in (10) can estimate an Âm such that(
min
Π
‖ÂmΠ−Am‖2,∞

)
≤ O

(√
Kκ2(Am) max

(
σmax(Am)ε,

√
ln(1/δ)(

√
Sη)−1

))
(12)

where Π ∈ RK×K is a permutation matrix, ‖Y ‖2,∞ = max` ‖Y (:, `)‖2, σmax(Am) is the largest
singular value ofAm, and κ(Am) is the condition number ofAm.

In the above Theorem, the assumption ‖Ẑm(:, l)‖1 ≥ η means that the proposed algorithm favors
cases where more co-occurrences are observed, since Ẑm’s elements are averaged number of co-
occurrences—which makes a lot of sense. In addition, Eq. (11) relaxes the ideal assumption in (6),
allowing the ‘good annotator’ mt(k) to confuse class j 6= k with class k up to a certain probability,
thereby being more realistic. The proof of Theorem 1 is reminiscent of the noise robustness of the
SPA algorithm [16, 2]; see the supplementary materials (Sec. F.1). A direct corollary is as follows:

Corollary 1. Assume that the conditions in Theorem 1 hold for Ẑm and Am, ∀m ∈ {1, . . . ,M}.
Then, the estimation error bound in (12) holds for every MultiSPA-output Âm, ∀m ∈ {1, . . . ,M}.

Theorem 1 and Corollary 1 are not entirely surprising due to the extensive research on SPA-like
algorithms [2, 16, 10, 30, 4]. The implication for crowdsourcing, however, is quite intriguing. First,
one can see that if an annotator m does not label all the data samples, it does not necessarily hurt
the model identifiability—as long as annotator m has co-labeled some samples with a number of
other annotators, identification of Am is possible. Second, assume that there exists a well-trained
annotator m? whose confusion matrix is diagonally dominant, then for every annotator m who has
co-labeled samples with annotator m?, the matrixHm can easily satisfy (11) by letting mt(k) = m?

for all k. In practice, one would not know who is m?—otherwise the crowdsourcing problem would
be trivial. However, one can design a dispatch strategy such that every pair of annotators m and `
co-label a certain amount of data. This way, it guarantees thatAm? appears in everyone else’sHm

and thus ensures identifiability of allAm’s for m 6= m?. This insight may shed some light on how to
effectively dispatch data to annotators.

Another interesting question to ask is does having more annotators help? Intuitively, having more
annotators should help: If one has more rows inHm, then it is more likely that some rows approach
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the vertices of the probability simplex—which can then enable SPA. We use the following simplified
generative model and theorem to formalize the intuition:

Theorem 2. Let ρ > 0, ε > 0, and assume that the rows of Hm are generated within the
(K − 1)-probability simplex uniformly at random. If the number of annotators satisfies M ≥
Ω
(
ε−2(K−1)

K log
(
K
ρ

))
, then, with probability greater than or equal to 1 − ρ, there exist rows of

Hm indexed by q1, . . . qK such that ‖Hm(qk, :)− e>k‖2 ≤ ε, k = 1, . . . ,K.

Note that Theorem 2 implies (11) under proper ε and ε—and thus having more annotators indeed
helps identify the model. The above can be shown by utilizing the Chernoff-Hoeffding inequality,
and the detailed proof can be found in the supplementary materials (Sec. G).

After obtaining Âm’s, d can be estimated via various ways—see the supplementary materials in Sec.
D. Using d̂ and Âm’s together, ML and MAP estimators for the true labels can be built up [37].

4 Identifiability-enhanced Algorithm

The MultiSPA algorithm is intuitive and lightweight, and is effective as we will show in the experi-
ments. One concern is that perhaps the assumption in (11) may be violated in some cases. In this
section, we propose another model identification algorithm that is potentially more robust to critical
scenarios. Specifically, we consider the following feasibility problem:

find {Am}Mm=1, D (13a)

subject to Rm,` = AmDA
>
` , ∀m, ` ∈ {1, . . . ,M} (13b)

1>Am = 1>, Am ≥ 0, ∀m, 1>d = 1, d ≥ 0. (13c)

The criterion in (13) seeks confusion matrices and a prior PMF that fit the available second-order
statistics. The constraints in (13c) reflect the fact that the columns ofAm’s are conditional PMFs and
the prior d is also a PMF.

To proceed, let us first introduce the following notion from convex geometry [13, 27]:
Definition 1. (Sufficiently Scattered) A nonnegative matrixH ∈ RL×K is sufficiently scattered if 1)
cone{H>} ⊇ C, and 2) cone{H>}∗ ∩ bdC∗ = {λek | λ ≥ 0, k = 1, ...,K}. Here, C = {x|x>1 ≥√
K − 1‖x‖2}, C∗ = {x|x>1 ≥ ‖x‖2}. In addition, cone{H>} = {x|x = H>θ, ∀θ ≥ 0}

and cone{H>}∗ = {y|x>y ≥ 0, ∀x ∈ cone{H>}} are the conic hull of H> and its dual cone,
respectively, and bd is the boundary of a closed set.

The sufficiently scattered condition has recently emerged in convex geometry-based matrix factoriza-
tion [27, 12]. This condition models how the rows of H are spread in the nonnegative orthant. In
principle, the sufficiently scattered condition is much easier to be satisfied relative to the condition as
in (9), or, the so-called separability condition under the context of nonnegative matrix factorization
[9, 16]. H satisfying the separability condition is the extreme case, meaning that cone{H>} = RK+ .
However, the sufficiently scattered condition only requires C ⊆ cone{H>}—which is naturally much
more relaxed; also see [13] and the supplementary materials for detailed illustrations (Sec. E).

Regarding identifiability ofA1, . . . ,AM and d, we have the following result:
Theorem 3. Assume that rank(D) = rank(Am) = K for all m = 1, . . . ,M , and that there
exist two subsets of the annotators, indexed by P1 and P2, where P1 ∩ P2 = ∅ and P1 ∪ P2 ⊆
{1, . . . ,M}. Suppose that from P1 and P2 the following two matrices can be constructed: H(1) =
[A>m1

, . . . ,A>m|P1|
]>, H(2) = [A>`1 , . . . ,A

>
`|P2|

]>, where mt ∈ P1 and `j ∈ P2. Furthermore,

assume that i) both H(1) and H(2) are sufficiently scattered; ii) all Rmt,`j ’s for mt ∈ P1 and
`j ∈ P2 are available; and iii) for every m /∈ P1 ∪ P2 there exists a Rm,r available, where
r ∈ P1 ∪ P2. Then, solving Problem (13) recoversAm for m = 1, . . . ,M andD = Diag(d) up to
identical column permutation.

The proof of Theorem 3 is relegated to the supplementary results (Sec. H). Note that the theorem
holds under the the existence of P1 and P2, but there is no need to know the sets a priori. Generally
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speaking, a ‘taller’ matrixH(i) would have a better chance to have its rows sufficiently spread in the
nonnegative orthant under the same intuition of Theorem 2. Thus, having more annotators also helps
to attain the sufficiently scattered condition. Nevertheless, formally showing the relationship between
the number of annotators andH(i) for i = 1, 2 being sufficiently scattered is more challenging than
the case in Theorem 2, since the sufficiently scattered condition is a bit more abstract relative to the
separability condition—the latter specifically assumes ek’s exist as rows ofH(i) while the former
depends on the ‘shape’ of the conic hull of (H(i))>, which contains an infinite number of cases.
Towards this end, let us first define the following notion:

Definition 2. Assume that there exist H̃ ∈ RL×K such that H̃ is sufficiently scattered. Also assume
V is the row index set of H̃ such that H̃(V, :) collects the extreme rays of cone{H̃ >}. If there exist
row indices `v ∈ {1, . . . , L} for all v ∈ V , such that ‖H̃(v, :)−H(`v, :)‖2 ≤ ε, thenH ∈ RL×K
is called ε-sufficiently scattered.

One can see that an ε-sufficiently scattered matrix is sufficiently scattered when ε → 0. With this
definition, we show the following theorem:
Theorem 4. Let ρ > 0, α2 > ε > 0,, and assume that the rows ofH(1) andH(2) are generated from

RK uniformly at random. If the number of annotators satisfiesM ≥ Ω
(

(K−1)2

Kα2(K−2)ε2
log
(
K(K−1)

ρ

))
,

where α = 1 for K = 2, α = 2/3 for K = 3 and α = 1/2 for K > 3, then with probability greater
than or equal to 1− ρ,H(1) andH(2) are ε-sufficiently scattered.

The proof of Theorem 4 is relegated to the supplementary materials (Sec. I). One can see that to
satisfy ε-sufficiently scattered condition, M is smaller than that in Theorem 2. Conditions i)-iii)
in Theorem 3 and Theorem 4 together imply that if we have enough annotators, and if many pairs
co-label a certain number of data, then it is quite possible that one can identify the Dawid-Skene
model via simply finding a feasible solution to (13). This feasibility problem is nonconvex, but can
be effectively approximated; see the supplementary materials (Sec. C). In a nutshell, we reformulate
the problem as a Kullback-Leibler (KL) divergence-based constrained fitting problem and handle it
using alternating optimization. Since nonconvex optimization relies on initialization heavily, we use
MultiSPA to initialize the fitting stage—which we will refer to as the MultiSPA-KL algorithm.

5 Experiments
Baselines. The performance of the proposed approach is compared with a number of competitive
baselines, namely, Spectral-D&S [39], TensorADMM [37], and KOS [22], EigRatio [5], GhoshSVD
[14] and MinmaxEntropy [40]. The performance of the Majority Voting scheme and the Majority
Voting initialized Dawid-Skene (MV-D&S) estimator [6] are also presented. We also use MultiSPA to
initialize EM algorithm (named as MultiSPA-D&S). Note that KOS, EigRatio and MinmaxEntropy
work with more complex models relative to the Dawid-Skene model, but are considered as good
baselines for the crowdsourcing/ensemble learning tasks. After identifying the model parameters, we
construct a MAP predictor following [37] and observe the result. The algorithms are coded in Matlab.

Synthetic-data Simulations. Due to page limitations, synthetic data experiments demonstrating
model identifiability of the proposed algorithms are presented in the supplementary materials (Sec. A).

Integrating Machine Classifiers. We employ different UCI datasets (https://archive.ics.
uci.edu/ml/datasets.html; details in Sec. B). For each of the datasets under test, we use a
collection of different classification algorithms to annotate the data samples. Different classifica-
tion algorithms from the MATLAB machine learning toolbox (https://www.mathworks.com/
products/statistics.html) such as various k-nearest neighbour classifiers, support vector ma-
chine classifiers, and decision tree classifiers are employed to serve as our machine annotators. In
order to train the annotators, we use 20% of the samples to act as training data. After the data samples
are trained, we use the annotators to label the unseen data samples. In practice, not all samples
are labeled by an annotator due to several factors such as annotator capacity, difficulty of the task,
economical issues and so on. To simulate such a scenario, each of the trained algorithms is allowed
to label a data sample with probability p ∈ (0, 1]. We test the performance of all the algorithms under
different p’s—and a smaller p means a more challenging scenario. All the results are averaged from
10 random trials.

Table 1 shows the classification error of the algorithms under test. Since GhoshSVD and EigenRatio
works only on binary tasks, they are not evaluated for the Nursery dataset where K = 4. The ‘single
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Table 1: Classification Error (%) on UCI Datasets; see runtime tabulated in Sec. B.

Nursery Mushroom Adult
Algorithms p = 1 p = 0.5 p = 0.2 p = 1 p = 0.5 p = 0.2 p = 1 p = 0.5 p = 0.2

MultiSPA 2.83 4.54 17.96 0.02 0.293 6.35 15.71 16.05 17.66

MultiSPA-KL 2.72 4.26 13.06 0.00 0.152 5.89 15.66 15.98 17.63
MultiSPA-D&S 2.82 4.44 13.39 0.00 0.194 6.17 15.74 16.29 23.88

Spectral-D&S 3.14 37.2 44.29 0.00 0.198 6.17 15.72 16.31 23.97

TensorADMM 17.97 7.26 19.78 0.06 0.237 6.18 15.72 16.05 25.08

MV-D&S 2.92 66.48 66.61 0.00 47.99 48.63 15.76 75.21 75.13

Minmax-entropy 3.63 26.31 11.09 0.00 0.163 8.14 16.11 16.92 15.64
EigenRatio N/A N/A N/A 0.06 0.329 5.97 15.84 16.28 17.69

KOS 4.21 6.07 13.48 0.06 0.576 6.42 17.19 24.97 38.29

Ghosh-SVD N/A N/A N/A 0.06 0.329 5.97 15.84 16.28 17.71

Majority Voting 2.94 4.83 19.75 0.14 0.566 6.57 15.75 16.21 20.57

Single Best 3.94 N/A N/A 0.00 N/A N/A 16.23 N/A N/A

Single Worst 15.65 N/A N/A 7.22 N/A N/A 19.27 N/A N/A

Table 2: Classification Error (%) and Run-time (sec) : AMT Datasets
Algorithms TREC Bluebird RTE Web Dog

(%) Error (sec) Time (%) Error (sec) Time (%) Error (sec) Time (%) Error (sec) Time (%) Error (sec) Time
MultiSPA 31.47 50.68 13.88 0.07 8.75 0.28 15.22 0.54 17.09 0.07
MultiSPA-KL 29.23 536.89 11.11 1.94 7.12 17.06 14.58 12.34 15.48 15.88
MultiSPA-D&S 29.84 53.14 12.03 0.09 7.12 0.32 15.11 0.84 16.11 0.12
Spectral-D&S 29.58 919.98 12.03 1.97 7.12 6.40 16.88 179.92 17.84 51.16
TensorADMM N/A N/A 12.03 2.74 N/A N/A N/A N/A 17.96 603.93
MV-D&S 30.02 3.20 12.03 0.02 7.25 0.07 16.02 0.28 15.86 0.04
Minmax-entropy 91.61 352.36 8.33 3.43 7.50 9.10 11.51 26.61 16.23 7.22
EigenRatio 43.95 1.48 27.77 0.02 9.01 0.03 N/A N/A N/A N/A
KOS 51.95 9.98 11.11 0.01 39.75 0.03 42.93 0.31 31.84 0.13
GhoshSVD 43.03 11.62 27.77 0.01 49.12 0.03 N/A N/A N/A N/A
Majority Voting 34.85 N/A 21.29 N/A 10.31 N/A 26.93 N/A 17.91 N/A

best’ and ‘single worst’ rows correspond to the results of using the classifiers individually when
p = 1, as references. The best and second-best performing algorithms are highlighted in the table.
One can see that the proposed methods are quite promising for this experiment. Both algorithms
largely outperform the tensor based methods TensorADMM and Spectral-D&S in this case, perhaps
because the limited number of available samples makes the third-order statistics hard to estimate. It
is also observed that the proposed algorithms enjoy favorable runtime;s ee supplementary materials
(cf. Table 8 in Sec. B). Using the MultiSPA to initialize EM (i.e. MultiSPA-D&S) also works well,
which offers another viable option that strikes a good balance between runtime and accuracy.

Amazon Mechanical Turk Crowdsourcing Data. In this section, the performance of the proposed
algorithms are evaluated using the Amazon Mechanical Turk (AMT) data (https://www.mturk.
com) in which human annotators label various classification tasks. Data description is given in the
supplementary materials Sec. B. Table 2 shows the classification error and the runtime performance
of the algorithms under test. One can see that MultiSPA has a very favorable execution time,
because it is a Gram-Schmitt-like algorithm. MultiSPA-KL uses more time, because it is an iterative
optimization method—with better accuracy paid off. Since TensorADMM algorithm does not scale
well, the results are not reported for very large datasets (i.e., TREC and RTE). Similar as before,
since Web and Dog are multi-class datasets, EigenRatio and GhoshSVD are not applicable. From
the results, it can be seen that the proposed algorithms outperform many existing crowdsourcing
algorithms in both classification accuracy and runtime. In particular, one can see that the algebraic
algorithm MultiSPA gives very similar results compared to the computationally much more involved
algorithms. This shows the potential for its application in big data crowdsourcing.

6 Conclusion
In this work, we have revisited the classic Dawid-Skene model for multi-class crowdsourcing. We
have proposed a second-order statistics-based approach that guarantees identifiability of the model
parameters, i.e., the confusion matrices of the annotators and the label prior. The proposed method
naturally admits lower sample complexity relative to existing methods that utilize tensor algebra
to ensure model identifiability. The proposed approach also has an array of favorable features. In
particular, our framework enables a lightweight algebraic algorithm, which is reminiscent of the
Gram-Schmitt-like SPA algorithm for nonnegative matrix factorization. We have also proposed a
coupled and constrained matrix factorization criterion that enjoys enhanced-identifiability, as well as
an alternating optimization algorithm for handling the identification problem. Real-data experiments
show that our proposed algorithms are quite promising for integrating crowdsourced labeling.

8

https://www.mturk.com
https://www.mturk.com


References
[1] Anandkumar, A., Ge, R., Hsu, D., and Kakade, S. M. A tensor approach to learning mixed

membership community models. The Journal of Machine Learning Research, 15(1):2239–2312,
2014.

[2] Arora, S., Ge, R., Halpern, Y., Mimno, D., Moitra, A., Sontag, D., Wu, Y., and Zhu, M. A
practical algorithm for topic modeling with provable guarantees. In Proceedings of ICML, 2013.

[3] Bertsekas, D. P. Nonlinear programming. Athena Scientific, 1999.

[4] Chan, T.-H., Ma, W.-K., Ambikapathi, A., and Chi, C.-Y. A simplex volume maximization
framework for hyperspectral endmember extraction. IEEE Trans. Geosci. Remote Sens., 49(11):
4177 –4193, Nov. 2011.

[5] Dalvi, N., Dasgupta, A., Kumar, R., and Rastogi, V. Aggregating crowdsourced binary ratings.
In Proceedings of the 22nd International Conference on World Wide Web, pp. 285–294, New
York, NY, USA, 2013. ACM.

[6] Dawid, A. P. and Skene, A. M. Maximum likelihood estimation of observer error-rates using
the em algorithm. Applied statistics, pp. 20–28, 1979.

[7] Deng, J., Dong, W., Socher, R., Li, L., and and. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255,
June 2009.

[8] Dietterich, T. G. Ensemble methods in machine learning. In International Workshop on Multiple
Classifier Systems, pp. 1–15. Springer, 2000.

[9] Donoho, D. and Stodden, V. When does non-negative matrix factorization give a correct
decomposition into parts? In Advances in Neural Information Processing Systems, volume 16,
2003.

[10] Fu, X., Ma, W.-K., Chan, T.-H., and Bioucas-Dias, J. M. Self-dictionary sparse regression for
hyperspectral unmixing: Greedy pursuit and pure pixel search are related. IEEE J. Sel. Topics
Signal Process., 9(6):1128–1141, 2015.

[11] Fu, X., Huang, K., Yang, B., Ma, W.-K., and Sidiropoulos, N. D. Robust volume minimization-
based matrix factorization for remote sensing and document clustering. IEEE Trans. Signal
Process., 64(23):6254–6268, 2016.

[12] Fu, X., Huang, K., and Sidiropoulos, N. D. On identifiability of nonnegative matrix factorization.
IEEE Signal Process. Lett., 25(3):328–332, 2018.

[13] Fu, X., Huang, K., Sidiropoulos, N. D., and Ma, W.-K. Nonnegative matrix factorization for
signal and data analytics: Identifiability, algorithms, and applications. IEEE Signal Process.
Mag., 36(2):59–80, March 2019.

[14] Ghosh, A., Kale, S., and McAfee, P. Who moderates the moderators?: crowdsourcing abuse
detection in user-generated content. In Proceedings of the 12th ACM conference on Electronic
commerce, pp. 167–176. ACM, 2011.

[15] Gillis, N. The why and how of nonnegative matrix factorization. Regularization, Optimization,
Kernels, and Support Vector Machines, 12:257, 2014.

[16] Gillis, N. and Vavasis, S. Fast and robust recursive algorithms for separable nonnegative matrix
factorization. IEEE Trans. Pattern Anal. Mach. Intell., 36(4):698–714, April 2014.

[17] Huang, K., Sidiropoulos, N., and Swami, A. Non-negative matrix factorization revisited:
Uniqueness and algorithm for symmetric decomposition. IEEE Trans. Signal Process., 62(1):
211–224, 2014.

[18] Huang, K., Sidiropoulos, N. D., and Liavas, A. P. A flexible and efficient algorithmic framework
for constrained matrix and tensor factorization. IEEE Trans. Signal Process., 64(19):5052–5065,
2016.

9



[19] Huang, K., Fu, X., and Sidiropoulos, N. D. Learning hidden markov models from pairwise
co-occurrences with applications to topic modeling. In Proceedings of ICML 2018, 2018.

[20] Jonker, R. and Volgenant, T. Improving the hungarian assignment algorithm. Operations
Research Letters, 5(4):171–175, 1986.

[21] Karger, D. R., Oh, S., and Shah, D. Budget-optimal crowdsourcing using low-rank matrix
approximations. In 2011 49th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pp. 284–291, Sep. 2011.

[22] Karger, D. R., Oh, S., and Shah, D. Efficient crowdsourcing for multi-class labeling. ACM
SIGMETRICS Performance Evaluation Review, 41(1):81–92, 2013.

[23] Karger, D. R., Oh, S., and Shah, D. Budget-optimal task allocation for reliable crowdsourcing
systems. Operations Research, 62(1):1–24, 2014.

[24] Kittur, A., Chi, E. H., and Suh, B. Crowdsourcing user studies with mechanical turk. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 453–456.
ACM, 2008.

[25] Kolda, T. G. and Bader, B. W. Tensor decompositions and applications. SIAM review, 51(3):
455–500, 2009.

[26] Lease, M. and Kazai., G. Overview of the trec 2011 crowdsourcing track. 2011.

[27] Lin, C.-H., Ma, W.-K., Li, W.-C., Chi, C.-Y., and Ambikapathi, A. Identifiability of the simplex
volume minimization criterion for blind hyperspectral unmixing: The no-pure-pixel case. IEEE
Trans. Geosci. Remote Sens., 53(10):5530–5546, Oct 2015.

[28] Liu, Q., Peng, J., and Ihler, A. T. Variational inference for crowdsourcing. In Advances in
Neural Information Processing Systems, pp. 692–700, 2012.

[29] Murphy, K. P. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

[30] Nascimento, J. and Bioucas-Dias, J. Vertex component analysis: A fast algorithm to unmix
hyperspectral data. IEEE Trans. Geosci. Remote Sens., 43(4):898–910, 2005.

[31] Raykar, V. C., Yu, S., Zhao, L. H., Valadez, G. H., Florin, C., Bogoni, L., and Moy, L. Learning
from crowds. Journal of Machine Learning Research, 11(Apr):1297–1322, 2010.

[32] Razaviyayn, M., Hong, M., and Luo, Z.-Q. A unified convergence analysis of block successive
minimization methods for nonsmooth optimization. SIAM Journal on Optimization, 23(2):
1126–1153, 2013.

[33] Sidiropoulos, N. D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E. E., and Faloutsos, C.
Tensor decomposition for signal processing and machine learning. IEEE Trans. Signal Process.,
65(13):3551–3582, 2017.

[34] Snow, R., O’Connor, B., Jurafsky, D., and Ng, A. Y. Cheap and fast—but is it good?: evaluating
non-expert annotations for natural language tasks. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing, pp. 254–263. Association for Computational
Linguistics, 2008.

[35] Stein, P. A Note on the Volume of a Simplex. The American Mathematical Monthly, 73(3),
1966. doi: 10.2307/2315353.

[36] Stephane Boucheron, Gabor Lugosi, O. B. Concentration Inequalities, 2004. URL: http:
//www.econ.upf.edu/~lugosi/mlss_conc.pdf.

[37] Traganitis, P. A., Pages-Zamora, A., and Giannakis, G. B. Blind multiclass ensemble classifica-
tion. IEEE Trans. Signal Process., 66(18):4737–4752, 2018.

[38] Welinder, P., Branson, S., Perona, P., and Belongie, S. J. The multidimensional wisdom of
crowds. In Advances in Neural Information Processing Systems, pp. 2424–2432, 2010.

10

http://www.econ.upf.edu/~lugosi/mlss_conc.pdf
http://www.econ.upf.edu/~lugosi/mlss_conc.pdf


[39] Zhang, Y., Chen, X., Zhou, D., and Jordan, M. I. Spectral methods meet em: A provably
optimal algorithm for crowdsourcing. In Advances in Neural Information Processing Systems,
pp. 1260–1268, 2014.

[40] Zhou, D., Liu, Q., Platt, J., and Meek, C. Aggregating ordinal labels from crowds by minimax
conditional entropy. In Proceedings of ICML, volume 32, pp. 262–270, 2014.

11


