
Stabilizing Off-Policy Q-Learning via Bootstrapping
Error Reduction

Aviral Kumar∗
UC Berkeley

aviralk@berkeley.edu

Justin Fu∗
UC Berkeley

justinjfu@eecs.berkeley.edu

George Tucker
Google Brain

gjt@google.com

Sergey Levine
UC Berkeley, Google Brain

svlevine@eecs.berkeley.edu

Abstract

Off-policy reinforcement learning aims to leverage experience collected from
prior policies for sample-efficient learning. However, in practice, commonly used
off-policy approximate dynamic programming methods based on Q-learning and
actor-critic methods are highly sensitive to the data distribution, and can make only
limited progress without collecting additional on-policy data. As a step towards
more robust off-policy algorithms, we study the setting where the off-policy experi-
ence is fixed and there is no further interaction with the environment. We identify
bootstrapping error as a key source of instability in current methods. Bootstrap-
ping error is due to bootstrapping from actions that lie outside of the training data
distribution, and it accumulates via the Bellman backup operator. We theoretically
analyze bootstrapping error, and demonstrate how carefully constraining action se-
lection in the backup can mitigate it. Based on our analysis, we propose a practical
algorithm, bootstrapping error accumulation reduction (BEAR). We demonstrate
that BEAR is able to learn robustly from different off-policy distributions, including
random and suboptimal demonstrations, on a range of continuous control tasks.

1 Introduction

One of the primary drivers of the success of machine learning methods in open-world perception
settings, such as computer vision [19] and NLP [8], has been the ability of high-capacity function
approximators, such as deep neural networks, to learn generalizable models from large amounts of
data. Reinforcement learning (RL) has proven comparatively difficult to scale to unstructured real-
world settings because most RL algorithms require active data collection. As a result, RL algorithms
can learn complex behaviors in simulation, where data collection is straightforward, but real-world
performance is limited by the expense of active data collection. In some domains, such as autonomous
driving [38] and recommender systems [3], previously collected datasets are plentiful. Algorithms
that can utilize such datasets effectively would not only make real-world RL more practical, but also
would enable substantially better generalization by incorporating diverse prior experience.

In principle, off-policy RL algorithms can leverage this data; however, in practice, off-policy al-
gorithms are limited in their ability to learn entirely from off-policy data. Recent off-policy RL
methods (e.g., [18, 29, 23, 9]) have demonstrated sample-efficient performance on complex tasks
in robotics [23] and simulated environments [36]. However, these methods can still fail to learn
when presented with arbitrary off-policy data without the opportunity to collect more experience

∗Equal Contribution

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

from the environment. This issue persists even when the off-policy data comes from effective expert
policies, which in principle should address any exploration challenge [6, 12, 11]. This sensitivity to
the training data distribution is a limitation of practical off-policy RL algorithms, and one would hope
that an off-policy algorithm should be able to learn reasonable policies through training on static
datasets before being deployed in the real world.

In this paper, we aim to develop off-policy, value-based RL methods that can learn from large,
static datasets. As we show, a crucial challenge in applying value-based methods to off-policy
scenarios arises in the bootstrapping process employed when Q-functions are evaluated on out of
out-of-distribution action inputs for computing the backup when training from off-policy data. This
may introduce errors in the Q-function and the algorithm is unable to collect new data in order to
remedy those errors, making training unstable and potentially diverging. Our primary contribution is
an analysis of error accumulation in the bootstrapping process due to out-of-distribution inputs and a
practical way of addressing this error. First, we formalize and analyze the reasons for instability and
poor performance when learning from off-policy data. We show that, through careful action selection,
error propagation through the Q-function can be mitigated. We then propose a principled algorithm
called bootstrapping error accumulation reduction (BEAR) to control bootstrapping error in practice,
which uses the notion of support-set matching to prevent error accumulation. Through systematic
experiments, we show the effectiveness of our method on continuous-control MuJoCo tasks, with
a variety of off-policy datasets: generated by a random, suboptimal, or optimal policies. BEAR is
consistently robust to the training dataset, matching or exceeding the state-of-the-art in all cases,
whereas existing algorithms only perform well for specific datasets.

2 Related Work
In this work, we study off-policy reinforcement learning with static datasets. Errors arising from
inadequate sampling, distributional shift, and function approximation have been rigorously studied as
“error propagation” in approximate dynamic programming (ADP) [4, 27, 10, 33]. These works often
study how Bellman errors accumulate and propagate to nearby states via bootstrapping. In this work,
we build upon tools from this analysis to show that performing Bellman backups on static datasets
leads to error accumulation due to out-of-distribution values. Our approach is motivated as reducing
the rate of propagation of error propagation between states.

Our approach constrains actor updates so that the actions remain in the support of the training dataset
distribution. Several works have explored similar ideas in the context of off-policy learning learning
in online settings. Kakade and Langford [22] shows that large policy updates can be destructive, and
propose a conservative policy iteration scheme which constrains actor updates to be small for provably
convergent learning. Grau-Moya et al. [16] use a learned prior over actions in the maximum entropy
RL framework [25] and justify it as a regularizer based on mutual information. However, none of these
methods use static datasets. Importance Sampling based distribution re-weighting [29, 15, 30, 26]
has also been explored primarily in the context of off-policy policy evaluation.

Most closely related to our work is batch-constrained Q-learning (BCQ) [12] and SPIBB [24], which
also discuss instability arising from previously unseen actions. Fujimoto et al. [12] show convergence
properties of an action-constrained Bellman backup operator in tabular, error-free settings. We prove
stronger results under approximation errors and provide a bound on the suboptimality of the solution.
This is crucial as it drives the design choices for a practical algorithm. As a consequence, although we
experimentally find that [12] outperforms standard Q-learning methods when the off-policy data is
collected by an expert, BEAR outperforms [12] when the off-policy data is collected by a suboptimal
policy, as is common in real-life applications. Empirically, we find BEAR achieves stronger and
more consistent results than BCQ across a wide variety of datasets and environments. As we explain
below, the BCQ constraint is too aggressive; BCQ generally fails to substantially improve over the
behavior policy, while our method actually improves when the data collection policy is suboptimal
or random. SPIBB [24], like BEAR, is an algorithm based on constraining the learned policy to
the support of a behavior policy. However, the authors do not extend safe performance guarantees
from the batch-constrained case to the relaxed support-constrained case, and do not evaluate on
high-dimensional control tasks.

3 Background
We represent the environment as a Markov decision process (MDP) defined by a tuple
(S,A, P,R, ρ0, γ), where S is the state space, A is the action space, P (s′|s, a) is the transition

2

distribution, ρ0(s) is the initial state distribution, R(s, a) is the reward function, and γ ∈ (0, 1) is the
discount factor. The goal in RL is to find a policy π(a|s) that maximizes the expected cumulative
discounted rewards which is also known as the return. The notation µπ(s) denotes the discounted
state marginal of a policy π, defined as the average state visited by the policy,

∑∞
t=0 γ

tptπ(s). Pπ is
shorthand for the transition matrix from s to s′ following a certain policy π, p(s′|s) = Eπ[p(s′|s, a)].

Q-learning learns the optimal state-action value function Q∗(s, a), which represents the expected
cumulative discounted reward starting in s taking action a and then acting optimally thereafter. The
optimal policy can be recovered from Q∗ by choosing the maximizing action. Q-learning algorithms
are based on iterating the Bellman optimality operator T , defined as

(T Q̂)(s, a) := R(s, a) + γET (s′|s,a)[max
a′

Q̂(s′, a′)].

When the state space is large, we represent Q̂ as a hypothesis from the set of function approximators
Q (e.g., neural networks). In theory, the estimate of the Q-function is updated by projecting T Q̂ into
Q (i.e., minimizing the mean squared Bellman error Eν [(Q− T Q̂)2], where ν is the state occupancy
measure under the behaviour policy). This is also referred to a Q-iteration. In practice, an empirical
estimate of T Q̂ is formed with samples, and treated as a supervised `2 regression target to form the
next approximate Q-function iterate. In large action spaces (e.g., continuous), the maximization
maxa′ Q(s′, a′) is generally intractable. Actor-critic methods [35, 13, 18] address this by additionally
learning a policy πθ that maximizes the Q-function. In this work, we study off-policy learning from a
static dataset of transitions D = {(s, a, s′, R(s, a))}, collected under an unknown behavior policy
β(·|s). We denote the distribution over states and actions induced by β as µ(s, a).

4 Out-of-Distribution Actions in Q-Learning

0.0K 0.2K 0.4K 0.6K 0.8K 1.0K
TrainSteps

−1000

−750

−500

−250

0

250

500

750

1000
HalfCheetah-v2: AverageReturn

n=1000

n=10000

n=100000

n=1000000

0.0K 0.2K 0.4K 0.6K 0.8K 1.0K
TrainSteps

0

5

10

15

20

25

30
HalfCheetah-v2: log(Q)

n=1000

n=10000

n=100000

n=1000000

Figure 1: Performance of SAC on HalfCheetah-v2
(return (left) and log Q-values (right)) with off-policy
expert data w.r.t. number of training samples (n). Note
the large discrepancy between returns (which are nega-
tive) and log Q-values (which have large positive values),
which is not solved with additional samples.

Q-learning methods often fail to learn on static,
off-policy data, as shown in Figure 1. At first
glance, this resembles overfitting, but increasing
the size of the static dataset does not rectify the
problem, suggesting the issue is more complex.
We can understand the source of this instability
by examining the form of the Bellman backup.
Although minimizing the mean squared Bell-
man error corresponds to a supervised regression
problem, the targets for this regression are them-
selves derived from the current Q-function esti-
mate. The targets are calculated by maximizing
the learned Q-values with respect to the action
at the next state. However, the Q-function esti-
mator is only reliable on inputs from the same
distribution as its training set. As a result, naïvely maximizing the value may evaluate the Q̂ estimator
on actions that lie far outside of the training distribution, resulting in pathological values that incur
large error. We refer to these actions as out-of-distribution (OOD) actions.

Formally, let ζk(s, a) = |Qk(s, a) − Q∗(s, a)| denote the total error at iteration k of Q-learning,
and let δk(s, a) = |Qk(s, a) − T Qk−1(s, a)| denote the current Bellman error. Then, we have
ζk(s, a) ≤ δk(s, a) + γmaxa′ Es′ [ζk−1(s′, a′)]. In other words, errors from (s′, a′) are discounted,
then accumulated with new errors δk(s, a) from the current iteration. We expect δk(s, a) to be high
on OOD states and actions, as errors at these state-actions are never directly minimized while training.

To mitigate bootstrapping error, we can restrict the policy to ensure that it output actions that lie in
the support of the training distribution. This is distinct from previous work (e.g., BCQ [12]) which
implicitly constrains the distribution of the learned policy to be close to the behavior policy, similarly
to behavioral cloning [31]. While this is sufficient to ensure that actions lie in the training set with
high probability, it is overly restrictive. For example, if the behavior policy is close to uniform, the
learned policy will behave randomly, resulting in poor performance, even when the data is sufficient
to learn a strong policy (see Figure 2 for an illustration). Formally, this means that a learned policy
π(a|s) has positive density only where the density of the behaviour policy β(a|s) is more than a
threshold (i.e., ∀a, β(a|s) ≤ ε =⇒ π(a|s) = 0), instead of a closeness constraint on the value of

3

the density π(a|s) and β(a|s). Our analysis instead reveals a tradeoff between staying within the
data distribution and finding a suboptimal solution when the constraint is too restrictive. Our analysis
motivates us to restrict the support of the learned policy, but not the probabilities of the actions lying
within the support. This avoids evaluating the Q-function estimator on OOD actions, but remains
flexible in order to find a performant policy. Our proposed algorithm leverages this insight.

4.1 Distribution-Constrained Backups

In this section, we define and analyze a backup operator that restricts the set of policies used in the
maximization of the Q-function, and we derive performance bounds which depend on the restricted
set. This provides motivation for constraining policy support to the data distribution. We begin with
the definition of a distribution-constrained operator:
Definition 4.1 (Distribution-constrained operators). Given a set of policies Π, the distribution-
constrained backup operator is defined as:

T ΠQ(s, a)
def
= E

[
R(s, a) + γmax

π∈Π
EP (s′|s,a) [V (s′)]

]
V (s)

def
= max

π∈Π
Eπ[Q(s, a)] .

This backup operator satisfies properties of the standard Bellman backup, such as convergence to a
fixed point, as discussed in Appendix A. To analyze the (sub)optimality of performing this backup
under approximation error, we first quantify two sources of error. The first is a suboptimality bias.
The optimal policy may lie outside the policy constraint set, and thus a suboptimal solution will be
found. The second arises from distribution shift between the training distribution and the policies
used for backups. This formalizes the notion of OOD actions. To capture suboptimality in the final
solution, we define a suboptimality constant, which measures how far π∗ is from Π.
Definition 4.2 (Suboptimality constant). The suboptimality constant is defined as:

α(Π) = max
s,a
|T ΠQ∗(s, a)− T Q∗(s, a)|.

Next, we define a concentrability coefficient [28], which quantifies how far the visitation distribution
generated by policies from Π is from the training data distribution. This constant captures the degree
to which states and actions are out of distribution.
Assumption 4.1 (Concentrability). Let ρ0 denote the initial state distribution, and µ(s, a) denote
the distribution of the training data over S × A, with marginal µ(s) over S. Suppose there exist
coefficients c(k) such that for any π1, ...πk ∈ Π and s ∈ S:

ρ0P
π1Pπ2 ...Pπk(s) ≤ c(k)µ(s),

where Pπi is the transition operator on states induced by πi. Then, define the concentrability
coefficient C(Π) as

C(Π)
def
= (1− γ)2

∞∑
k=1

kγk−1c(k).

To provide some intuition for C(Π), if µ was generated by a single policy π, and Π = {π} was a
singleton set, then we would have C(Π) = 1, which is the smallest possible value. However, if Π
contained policies far from π, the value could be large, potentially infinite if the support of Π is not
contained in π. Now, we bound the performance of approximate distribution-constrained Q-iteration:
Theorem 4.1. Suppose we run approximate distribution-constrained value iteration with a set
constrained backup T Π. Assume that δ(s, a) ≥ maxk |Qk(s, a) − T ΠQk−1(s, a)| bounds the
Bellman error. Then,

lim
k→∞

Eρ0 [|V πk(s)− V ∗(s)|] ≤ γ

(1− γ)2

[
C(Π)Eµ[max

π∈Π
Eπ[δ(s, a)]] +

1− γ
γ

α(Π)

]
Proof. See Appendix B, Theorem B.1

This bound formalizes the tradeoff between keeping policies chosen during backups close to the data
(captured by C(Π)) and keeping the set Π large enough to capture well-performing policies (captured
by α(Π)). When we expand the set of policies Π, we are increasing C(Π) but decreasing α(Π). An
example of this tradeoff, and how a careful choice of Π can yield superior results, is given in a tabular

4

Figure 2: Visualized error propagation in Q-learning for various choices of the constraint set Π: unconstrained
(top row) distribution-constrained (middle), and constrained to the behaviour policy (policy-evaluation, bottom).
Triangles represent Q-values for actions that move in different directions. The task (left) is to reach the bottom-
left corner (G) from the top-left (S), but the behaviour policy (visualized as arrows in the task image, support
state-action pairs are shown in black on the support set image) travels to the bottom-right with a small amount of
ε-greedy exploration. Dark values indicate high error, and light values indicate low error. Standard backups
propagate large errors from the low-support regions into the high-support regions, leading to high error. Policy
evaluation reduces error propagation from low-support regions, but introduces significant suboptimality bias, as
the data policy is not optimal. A carefully chosen distribution-constrained backup strikes a balance between these
two extremes, by confining error propagation in the low-support region while introducing minimal suboptimality
bias.

gridworld example in Fig. 2, where we visualize errors accumulated during distribution-constrained
Q-iteration for different choices of Π.

Finally, we motivate the use of support sets to construct Π. We are interested in the case where
Πε = {π | π(a|s) = 0 whenever β(a|s) < ε}, where β is the behavior policy (i.e., Π is the set of
policies that have support in the probable regions of the behavior policy). Defining Πε in this way
allows us to bound the concentrability coefficient:

Theorem 4.2. Assume the data distribution µ is generated by a behavior policy β. Let µ(s)
be the marginal state distribution under the data distribution. Define Πε = {π | π(a|s) =
0 whenever β(a|s) < ε} and let µΠε be the highest discounted marginal state distribution start-
ing from the initial state distribution ρ and following policies π ∈ Πε at each time step thereafter.
Then, there exists a concentrability coefficient C(Πε) which is bounded:

C(Πε) ≤ C(β) ·
(

1 +
γ

(1− γ)f(ε)
(1− ε)

)
where f(ε)

def
= mins∈S,µΠε (s)>0[µ(s)] > 0.

Proof. See Appendix B, Theorem B.2
Qualitatively, f(ε) is the minimum discounted visitation marginal of a state under the behaviour policy
if only actions which are more than ε likely are executed in the environment. Thus, using support sets
gives us a single lever, ε, which simultaneously trades off the value of C(Π) and α(Π). Not only can
we provide theoretical guarantees, we will see in our experiments (Sec. 6) that constructing Π in this
way provides a simple and effective method for implementing distribution-constrained algorithms.

Intuitively, this means we can prevent an increase in overall error in the Q-estimate by selecting
policies supported on the support of the training action distribution, which would ensure roughly
bounded projection error δk(s, a) while reducing the suboptimality bias, potentially by a large amount.
Bounded error δk(s, a) on the support set of the training distribution is a reasonable assumption when
using highly expressive function approximators, such as deep networks, especially if we are willing
to reweight the transition set [32, 11]. We further elaborate on this point in Appendix C.

5 Bootstrapping Error Accumulation Reduction (BEAR)
We now propose a practical actor-critic algorithm (built on the framework of TD3 [13] or SAC [18])
that uses distribution-constrained backups to reduce accumulation of bootstrapping error. The key
insight is that we can search for a policy with the same support as the training distribution, while

5

preventing accidental error accumulation. Our algorithm has two main components. Analogous
to BCQ [13], we use K Q-functions and use the minimum Q-value for policy improvement, and
design a constraint which will be used for searching over the set of policies Πε, which share the
same support as the behaviour policy. Both of these components will appear as modifications of the
policy improvement step in actor-critic style algorithms. We also note that policy improvement can
be performed with the mean of the K Q-functions, and we found that this scheme works as good in
our experiments.

We denote the set of Q-functions as: Q̂1, · · · , Q̂K . Then, the policy is updated to maximize the
conservative estimate of the Q-values within Πε:

πφ(s) := max
π∈Πε

Ea∼π(·|s)

[
min

j=1,..,K
Q̂j(s, a)

]
In practice, the behaviour policy β is unknown, so we need an approximate way to constrain π to Π.
We define a differentiable constraint that approximately constrains π to Π, and then approximately
solve the constrained optimization problem via dual gradient descent. We use the sampled version
of maximum mean discrepancy (MMD) [17] between the unknown behaviour policy β and the
actor π because it can be estimated based solely on samples from the distributions. Given samples
x1, · · · , xn ∼ P and y1, · · · , ym ∼ Q, the sampled MMD between P and Q is given by:

MMD2({x1, · · · , xn}, {y1, · · · , ym}) =
1

n2

∑
i,i′

k(xi, xi′)−
2

nm

∑
i,j

k(xi, yj)+
1

m2

∑
j,j′

k(yj , yj′).

Here, k(·, ·) is any universal kernel. In our experiments, we find both Laplacian and Gaussian kernels
work well. The expression for MMD does not involve the density of either distribution and it can be
optimized directly through samples. Empirically we find that, in the low-intermediate sample regime,
the sampled MMD between P and Q is similar to the MMD between a uniform distribution over P ’s
support and Q, which makes MMD roughly suited for constraining distributions to a given support
set. (See Appendix C.3 for numerical simulations justifying this approach).

Putting everything together, the optimization problem in the policy improvement step is

πφ := max
π∈∆|S|

Es∼DEa∼π(·|s)

[
min

j=1,..,K
Q̂j(s, a)

]
s.t. Es∼D[MMD(D(s), π(·|s))] ≤ ε (1)

where ε is an approximately chosen threshold. We choose a threshold of ε = 0.05 in our experiments.
The algorithm is summarized in Algorithm 1.

How does BEAR connect with distribution-constrained backups described in Section 4.1? Step 5 of
the algorithm restricts πφ to lie in the support of β. This insight is formally justified in Theorems 4.1
& 4.2 (C(Πε) is bounded). Computing distribution-constrained backup exactly by maximizing over
π ∈ Πε is intractable in practice. As an approximation, we sample Dirac policies in the support of β
(Alg 1, Line 5) and perform empirical maximization to compute the backup. As the maximization
is performed over a narrower set of Dirac policies ({δai} ⊆ Πε), the bound in Theorem 4.1 still
holds. Empirically, we show in Section 6 that this approximation is sufficient to outperform previous
methods. This connection is briefly discussed in Appendix C.2.

Algorithm 1 BEAR Q-Learning (BEAR-QL)
input : Dataset D, target network update rate τ , mini-batch size N , sampled actions for MMD n, minimum λ
1: Initialize Q-ensemble {Qθi}

K
i=1, actor πφ, Lagrange multiplier α, target networks {Qθ′i}

K
i=1, and a target

actor πφ′ , with φ′ ← φ, θ′i ← θi
2: for t in {1, . . . , N} do
3: Sample mini-batch of transitions (s, a, r, s′) ∼ D

Q-update:
4: Sample p action samples, {ai ∼ πφ′(·|s′)}pi=1

5: Define y(s, a) := maxai [λminj=1,..,K Qθ′j (s
′, ai) + (1− λ) maxj=1,..,K Qθ′j (s

′, ai)]

6: ∀i, θi ← arg minθi(Qθi(s, a)− (r + γy(s, a)))2

Policy-update:
7: Sample actions {âi ∼ πφ(·|s)}mi=1 and {aj ∼ D(s)}nj=1, n preferably an intermediate integer(1-10)
8: Update φ, α by minimizing Equation 1 by using dual gradient descent with Lagrange multiplier α
9: Update Target Networks: θ′i ← τθi + (1− τ)θ′i; φ

′ ← τφ+ (1− τ)φ′

10: end for

6

0.0K 0.2K 0.4K 0.6K 0.8K 1.0K
TrainSteps

0

1000

2000

3000

4000

5000

6000
HalfCheetah-v2

BCQ

BEAR-QL

Naive-RL

BC

DQfD

KL-c

0.0K 0.2K 0.4K 0.6K 0.8K 1.0K
TrainSteps

0

500

1000

1500

2000

2500

3000

3500
Walker2d-v2

BCQ

BEAR-QL

Naive-RL

BC

DQfD

KL-c

0.0K 0.1K 0.2K 0.3K 0.4K
TrainSteps

0

500

1000

1500

2000

2500

3000
Hopper-v2

BCQ

BEAR-QL

Naive-RL

BC

DQfD

KL-c

0.0K 0.2K 0.4K 0.6K 0.8K 1.0K
TrainSteps

−500

−250

0

250

500

750

1000

Ant-v2

BCQ

BEAR-QL

Naive-RL

BC

DQfD

KL-c

Figure 3: Average performance of BEAR-QL, BCQ, Naïve RL and BC on medium-quality data averaged over
5 seeds. BEAR-QL outperforms both BCQ and Naïve RL. Average return over the training data is indicated by
the magenta line. One step on the x-axis corresponds to 1000 gradient steps.

In summary, the actor is updated towards maximizing the Q-function while still being constrained
to remain in the valid search space defined by Πε. The Q-function uses actions sampled from the
actor to then perform distribution-constrained Q-learning, over a reduced set of policies. At test time,
we sample p actions from πφ(s) and the Q-value maximizing action out of these is executed in the
environment. Implementation and other details are present in Appendix D.

6 Experiments
In our experiments, we study how BEAR performs when learning from static off-policy data on a
variety of continuous control benchmark tasks. We evaluate our algorithm in three settings: when the
dataset D is generated by (1) a completely random behaviour policy, (2) a partially trained, medium
scoring policy, and (3) an optimal policy. Condition (2) is of particular interest, as it captures many
common use-cases in practice, such as learning from imperfect demonstration data (e.g., of the sort
that are commonly available for autonomous driving [14]), or reusing previously collected experience
during off-policy RL. We compare our method to several prior methods: a baseline actor-critic
algorithm (TD3), the BCQ algorithm [12], which aims to address a similar problem, as discussed in
Section 4, KL-control [21] (which solves a KL-penalized RL problem similarly to maximum entropy
RL), a static version of DQfD [20] (where a constraint to upweight Q-values of state-action pairs
observed in the dataset is added as an auxiliary loss on top a regular actor-critic algorithm), and a
behaviour cloning (BC) baseline, which simply imitates the data distribution. This serves to measure
whether each method actually performs effective RL, or simply copies the data. We report the average
evaluation return over 5 seeds of the policy given by the learned algorithm, in the form of a learning
curve as a function of number of gradient steps taken by the algorithm. These samples are only
collected for evaluation, and are not used for training.

6.1 Performance on Medium-Quality Data

We first discuss the evaluation of condition with “mediocre” data (2), as this condition resembles
the settings where we expect training on offline data to be most useful. We collected one million
transitions from a partially trained policy, so as to simulate imperfect demonstration data or data from
a mediocre prior policy. In this scenario, we found that BEAR-QL consistently outperforms both
BCQ [12] and a naïve off-policy RL baseline (TD3) by large margins, as shown in Figure 3. This
scenario is the most relevant from an application point of view, as access to optimal data may not
be feasible, and random data might have inadequate exploration to efficient learn a good policy. We
also evaluate the accuracy with which the learned Q-functions predict actual policy returns. These
trends are provided in Appendix E. Note that the performance of BCQ often tracks the performance
of the BC baseline, suggesting that BCQ primarily imitates the data. Our KL-control baseline uses
automatic temperature tuning [18]. We find that KL-control usually performs similar or worse to BC,
whereas DQfD tends to diverge often due to cumulative error due to OOD actions and often exhibits
a huge variance across different runs (for example, HalfCheetah-v2 environment).

6.2 Performance on Random and Optimal Datasets

In Figure 5, we show the performance of each method when trained on data from a random policy
(top) and a near-optimal policy (bottom). In both cases, our method BEAR achieves good results,
consistently exceeding the average dataset return on random data, and matching the optimal policy
return on optimal data. Naïve RL also often does well on random data. For a random data policy, all
actions are in-distribution, since they all have equal probability. This is consistent with our hypothesis

7

0.0K 0.2K 0.4K 0.6K 0.8K 1.0K
TrainSteps

−1000

0

1000

2000

3000

4000

5000

HalfCheetah-v2

BCQ

BEAR

Naive-RL

BC

DQfD

KL-c

0.0K 0.2K 0.4K 0.6K 0.8K 1.0K
TrainSteps

0

2000

4000

6000

8000

10000

12000

14000
HalfCheetah-v2

BCQ

BEAR-QL

Naive-RL

BC

DQfD

KL-c

0.0K 0.2K 0.4K 0.6K 0.8K 1.0K
TrainSteps

0

200

400

600

800

1000
Walker2d-v2

BCQ

BEAR-QL

Naive-RL

BC

DQfD

KL-c

0.0K 0.2K 0.4K 0.6K 0.8K 1.0K
TrainSteps

0

1000

2000

3000

4000

5000
Walker2d-v2

BCQ

BEAR-QL

Naive-RL

BC

DQfD

KL-c

0.0K 0.1K 0.2K 0.3K 0.4K
TrainSteps

0

100

200

300

400

500

600

700

800
Hopper-v2

BCQ

BEAR-QL

Naive-RL

BC

DQfD

KL-c

0.0K 0.1K 0.2K 0.3K 0.4K
TrainSteps

0

500

1000

1500

2000

2500

3000

3500

4000
Hopper-v2

BCQ

BEAR-QL

Naive-RL

BC

DQfD

KL-c

0.0K 0.2K 0.4K 0.6K
TrainSteps

−1000

−500

0

500

1000

1500

2000
Ant-v2

BCQ

BEAR-QL

Naive-RL

BC

DQfD

KL-c

0.0K 0.2K 0.4K 0.6K 0.8K 1.0K
TrainSteps

−2000

−1000

0

1000

2000

3000

4000

5000

6000
Ant-v2

BCQ

BEAR-QL

Naive-RL

BC

DQfD

KL-c

Figure 5: Average performance of BEAR-QL, BCQ, Naïve RL and BC on random data (top row) and optimal
data (bottom row) over 5 seeds. BEAR-QL is the only algorithm capable of learning in both scenarios. Naïve RL
cannot handle optimal data, since it does not illustrate mistakes, and BCQ favors a behavioral cloning strategy
(performs quite close to behaviour cloning in most cases), causing it to fail on random data. Average return over
the training dataset is indicated by the dashed magenta line.

that OOD actions are one of the main sources of error in off-policy learning on static datasets. The
prior BCQ method [12] performs well on optimal data but performs poorly on random data, where
the constraint is too strict. These results show that BEAR-QL is robust to the dataset composition,
and can learn consistently in a variety of settings. We find that KL-control and DQfD can be unstable
in these settings.

Finally, in Figure 4, we show that BEAR outperforms other considered prior methods in the challeng-
ing Humanoid-v2 environment as well, in two cases – Medium-quality data and random data.

6.3 Analysis of BEAR-QL

0.0K 0.2K 0.4K 0.6K 0.8K 1.0K
TrainSteps

0

1000

2000

3000

4000

5000

6000

7000
Humanoid-v2

BCQ

BEAR-QL

Naive-RL

BC

DQfD

KL-c

0.0K 0.2K 0.4K 0.6K 0.8K 1.0K
TrainSteps

0

100

200

300

400

500

600

700
Humanoid-v2

BCQ

BEAR-QL

Naive-RL

BC

DQfD

KL-c

Figure 4: Performance of BEAR-QL, BCQ, Naïve RL
and BC on medium-quality (left) and random (right) data
in the Humanoid-v2 environment. Note that BEAR-QL
outperforms prior methods.

In this section, we aim to analyze different com-
ponents of our method via an ablation study.
Our first ablation studies the support constraint
discussed in Section 5, which uses MMD to mea-
sure support. We replace it with a more standard
KL-divergence distribution constraint, which
measures similarity in density. Our hypothesis
is that this should provide a more conservative
constraint, since matching distributions is not
necessary for matching support. KL-divergence
performs well in some cases, such as with opti-
mal data, but as shown in Figure 6, it performs
worse than MMD on medium-quality data. Even
when KL-divergence is hand tuned fully, so as to prevent instability issues it still performs worse
than a not-well tuned MMD constraint. We provide the results for this setting in the Appendix. We
also vary the number of samples n that are used to compute the MMD constraint. We find that
smaller n (≈ 4 or 5) gives better performance. Although the difference is not large, consistently better
performance with 4 samples leans in favour of our hypothesis that an intermediate number of samples
works well for support matching, and hence is less restrictive.

7 Discussion and Future Work
The goal in our work was to study off-policy reinforcement learning with static datasets. We
theoretically and empirically analyze how error propagates in off-policy RL due to the use of out-of-
distribution actions for computing the target values in the Bellman backup. Our experiments suggest
that this source of error is one of the primary issues afflicting off-policy RL: increasing the number

8

of samples does not appear to mitigate the degradation issue (Figure 1), and training with naïve
RL on data from a random policy, where there are no out-of-distribution actions, shows much less
degradation than training on data from more focused policies (Figure 5). Armed with this insight, we
develop a method for mitigating the effect of out-of-distribution actions, which we call BEAR-QL.
BEAR-QL constrains the backup to use actions that have non-negligible support under the data
distribution, but without being overly conservative in constraining the learned policy. We observe
experimentally that BEAR-QL achieves good performance across a range of tasks, and across a range
of dataset compositions, learning well on random, medium-quality, and expert data.

0.0K 0.1K 0.2K 0.3K 0.4K 0.5K
TrainSteps

0

500

1000

1500

2000

2500
MMD vs KL constraint on mediocre data

KL

MMD

0.0K 0.1K 0.2K 0.3K 0.4K
TrainSteps

0

500

1000

1500

2000

2500

3000
Number of samples for MMD

Hopper,4

Hopper,10

Walker2d,4

Walker2d,10

Figure 6: Average return (averaged Hopper-v2 and
Walker2d-v2) as a function of train steps for ablation
studies from Section 6.3. (a) MMD constrained optimiza-
tion is more stable and leads to better returns, (b) 4 sample
MMD is more performant than 10.

While BEAR-QL substantially stabilizes off-
policy RL, we believe that this problem merits
further study. One limitation of our current
method is that, although the learned policies
are more performant than those acquired with
naïve RL, performance sometimes still tends
to degrade for long learning runs. An exciting
direction for future work would be to develop
an early stopping condition for RL, perhaps
by generalizing the notion of validation error
to reinforcement learning. A limitation of ap-
proaches that perform constrained-action se-
lection is that they can be overly conservative
when compared to methods that constrain state-
distributions directly, especially with datasets
collected from mixtures of policies. We leave
it to future work to design algorithms that can directly constrain state distributions. A theoretically
robust method for support matching efficiently in high-dimensional continuous action spaces is a
question for future research. Perhaps methods from outside RL, predominantly used in domain
adaptation, such as using asymmetric f-divergences [37] can be used for support restriction. Another
promising future direction is to examine how well BEAR-QL can work on large-scale off-policy
learning problems, of the sort that are likely to arise in domains such as robotics, autonomous driving,
operations research, and commerce. If RL algorithms can learn effectively from large-scale off-policy
datasets, reinforcement learning can become a truly data-driven discipline, benefiting from the same
advantage in generalization that has been seen in recent years in supervised learning fields, where
large datasets have enabled rapid progress in terms of accuracy and generalization [7].

Acknowledgements

We thank Kristian Hartikainen for sharing implementations of RL algorithms and for help in debug-
ging certain issues. We thank Matthew Soh for help in setting up environments. We thank Aurick
Zhou, Chelsea Finn, Abhishek Gupta and Kelvin Xu for informative discussions. We thank Ofir
Nachum for comments on an earlier draft of this paper. We thank Google, NVIDIA, and Amazon for
providing computational resources. This research was supported by Berkeley DeepDrive, JPMorgan
Chase & Co., NSF IIS-1651843 and IIS-1614653, the DARPA Assured Autonomy program, and
ARL DCIST CRA W911NF-17-2-0181.

References
[1] Andräs Antos, Csaa Szepesvari, and Remi Munos. Value-iteration based fitted policy iteration:

Learning with a single trajectory. In 2007 IEEE International Symposium on Approximate
Dynamic Programming and Reinforcement Learning, pages 330–337, April 2007. doi: 10.1109/
ADPRL.2007.368207.

[2] András Antos, Csaba Szepesvári, and Rémi Munos. Fitted q-iteration in continuous action-
space mdps. In Advances in Neural Information Processing Systems 20, pages 9–16. Curran
Associates, Inc., 2008.

[3] James Bennett, Stan Lanning, et al. The netflix prize. 2007.
[4] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena Scientific,

1996.

9

[5] Jonathon Byrd and Zachary Lipton. What is the effect of importance weighting in deep learning?
In ICML 2019.

[6] Tim de Bruin, Jens Kober, Karl Tuyls, and Robert Babuska. The importance of experience
replay database composition in deep reinforcement learning. 01 2015.

[7] Jia Deng, Wei Dong, Richard S. Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[9] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward,
Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl
with importance weighted actor-learner architectures. In Proceedings of the International
Conference on Machine Learning (ICML), 2018.

[10] Amir-massoud Farahmand, Csaba Szepesvári, and Rémi Munos. Error propagation for approxi-
mate policy and value iteration. In Advances in Neural Information Processing Systems, pages
568–576, 2010.

[11] Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. Diagnosing bottlenecks in deep
q-learning algorithms. arXiv preprint arXiv:1902.10250, 2019.

[12] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. arXiv preprint arXiv:1812.02900, 2018.

[13] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 1587–1596. PMLR, 2018.

[14] Yang Gao, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine, and Trevor Darrell. Reinforcement
learning from imperfect demonstrations. In ICLR (Workshop). OpenReview.net, 2018.

[15] Carles Gelada and Marc G. Bellemare. Off-policy deep reinforcement learning by bootstrapping
the covariate shift. CoRR, abs/1901.09455, 2019.

[16] Jordi Grau-Moya, Felix Leibfried, and Peter Vrancx. Soft q-learning with mutual-information
regularization. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HyEtjoCqFX.

[17] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander
Smola. A kernel two-sample test. J. Mach. Learn. Res., 13:723–773, March 2012. ISSN
1532-4435. URL http://dl.acm.org/citation.cfm?id=2188385.2188410.

[18] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

[20] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Ian Osband, et al. Deep q-learning from demonstrations. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[21] Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Àgata Lapedriza,
Noah Jones, Shixiang Gu, and Rosalind W. Picard. Way off-policy batch deep reinforcement
learning of implicit human preferences in dialog. CoRR, abs/1907.00456, 2019. URL http:
//arxiv.org/abs/1907.00456.

[22] Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning.
In Proceedings of the Nineteenth International Conference on Machine Learning, pages 267–
274. Morgan Kaufmann Publishers Inc., 2002.

[23] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang,
Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine.
Scalable deep reinforcement learning for vision-based robotic manipulation. In Proceedings

10

https://openreview.net/forum?id=HyEtjoCqFX
https://openreview.net/forum?id=HyEtjoCqFX
http://dl.acm.org/citation.cfm?id=2188385.2188410
http://arxiv.org/abs/1907.00456
http://arxiv.org/abs/1907.00456

of The 2nd Conference on Robot Learning, volume 87 of Proceedings of Machine Learning
Research, pages 651–673. PMLR, 2018.

[24] Romain Laroche, Paul Trichelair, and Remi Tachet Des Combes. Safe policy improvement with
baseline bootstrapping. In International Conference on Machine Learning (ICML), 2019.

[25] Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and
review. CoRR, abs/1805.00909, 2018. URL http://arxiv.org/abs/1805.00909.

[26] A Rupam Mahmood, Huizhen Yu, Martha White, and Richard S Sutton. Emphatic temporal-
difference learning. arXiv preprint arXiv:1507.01569, 2015.

[27] Rémi Munos. Error bounds for approximate policy iteration. In Proceedings of the Twentieth
International Conference on International Conference on Machine Learning, pages 560–567.
AAAI Press, 2003.

[28] Rémi Munos. Error bounds for approximate value iteration. In Proceedings of the National
Conference on Artificial Intelligence, 2005.

[29] Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient
off-policy reinforcement learning. In Advances in Neural Information Processing Systems,
pages 1054–1062, 2016.

[30] Doina Precup, Richard S. Sutton, and Sanjoy Dasgupta. Off-policy temporal-difference learning
with function approximation. In International Conference on Machine Learning (ICML), 2001.

[31] Stefan Schaal. Is imitation learning the route to humanoid robots?, 1999.
[32] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.

CoRR, abs/1511.05952, 2016.
[33] Bruno Scherrer, Mohammad Ghavamzadeh, Victor Gabillon, Boris Lesner, and Matthieu Geist.

Approximate modified policy iteration and its application to the game of tetris. Journal of
Machine Learning Research, 16:1629–1676, 2015. URL http://jmlr.org/papers/v16/
scherrer15a.html.

[34] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In Francis Bach and David Blei, editors, Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pages 1889–1897, Lille, France, 07–09 Jul 2015. PMLR.

[35] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. Second
edition, 2018.

[36] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based
control. In IROS, pages 5026–5033, 2012.

[37] Yifan Wu, Ezra Winston, Divyansh Kaushik, and Zachary Lipton. Domain adaptation with
asymmetrically-relaxed distribution alignment. In ICML 2019.

[38] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao, Vashisht Madhavan, and
Trevor Darrell. BDD100K: A diverse driving video database with scalable annotation tooling.
CoRR, abs/1805.04687, 2018. URL http://arxiv.org/abs/1805.04687.

11

http://arxiv.org/abs/1805.00909
http://jmlr.org/papers/v16/scherrer15a.html
http://jmlr.org/papers/v16/scherrer15a.html
http://arxiv.org/abs/1805.04687

	Introduction
	Related Work
	Background
	Out-of-Distribution Actions in Q-Learning
	Distribution-Constrained Backups

	Bootstrapping Error Accumulation Reduction (BEAR)
	Experiments
	Performance on Medium-Quality Data
	Performance on Random and Optimal Datasets
	Analysis of BEAR-QL

	Discussion and Future Work

