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Abstract

Graph neural network (GNN) has powerful representation ability, but optimal
configurations of GNN are non-trivial to obtain due to diversity of graph structure
and cascaded nonlinearities. This paper aims to understand some properties of
GNN from a computer vision (CV) perspective. In mathematical analysis, we
propose an adaptive GNN model by recursive definition, and derive its relation with
two basic operations in CV: filtering and propagation operations. The proposed
GNN model is formulated as a label propagation system with guided map, graph
Laplacian and node weight. It reveals that 1) the guided map and node weight
determine whether a GNN leads to filtering or propagation diffusion, and 2) the
kernel of graph Laplacian controls diffusion pattern. In practical verification, we
design a new regularization structure with guided feature to produce GNN-based
filtering and propagation diffusion to tackle the ill-posed inverse problems of
quotient image analysis (QIA), which recovers the reflectance ratio as a signature
for image analysis or adjustment. A flexible QIA-GNN framework is constructed to
achieve various image-based editing tasks, like face illumination synthesis and low-
light image enhancement. Experiments show the effectiveness of the QIA-GNN,
and provide new insights of GNN for image analysis and editing.

1 Introduction

Recently, many research efforts have been devoted to graph neural network (GNN) [1–3], which
is a significant deep learning technique for graph data under semi-supervised learning. Despite
its powerful representation ability, optimal configurations of GNN are not trivial to obtain due to
diversity of graph structure and cascaded nonlinearities. The layer structure or parameters are mostly
determined by experimentations with expertise. In this paper, we intend to understand some properties
of GNN mathematically from a computer vision (CV) perspective, and develop some GNN-based
operations for CV problems.

In image analysis and synthesis, there are two basic operations. One is filtering to suppress or
extract feature/content in images [4–7]; the other is propagation that diffuses the visual feature from
the representative region throughout the entire image, so that similar pixels/regions have similar
visual appearance [8–12]. The reviving of neural networks with deep learning has introduced many
CNN-based networks to achieve filtering or propagation [6, 5, 13–16]. However, the properties
of these models have not been clearly understood, since they found their inspirations in diverse
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contexts and were formulated in diverse forms, like partial differential equation (PDE) [8], variational
functional [10, 11] or deep neural networks (DNN) [6, 16].

Recent research indicates that standard signal processing models with elaborate prior knowledge
can achieve competitive performance with the state-of-the-art DNN-based methods [4, 9, 17, 8, 10].
It inspires us to analyze DNN based on existing visual operations. Specifically, we focus on GNN,
which is one of the semi-supervised methods in the deep learning on graphs [1]. We try to explore
different diffusion properties of GNN with its relation to filtering or propagation models.

In mathematical analysis, we propose a GNN model by recursive definition, which is formulated as a
graph-based label propagation system with guided map, graph Laplacian and node weight. We derive
its relation with the basic CV operations of filtering (e.g. edge-aware filter) and propagation (e.g.
learning to diffuse (LTD) model). It reveals that: 1) Guided map and node weight determine whether
a GNN leads to filtering or propagation diffusion; 2) Kernel of graph Laplacian controls diffusion
pattern of a GNN.

In practical analysis, we applied the GNN models to design operations and systems for quotient
image analysis (QIA), which recovers the reflectance ratio as a signature for illumination analysis or
adjustment [18]. QIA is an essential component for image analysis and synthesis [19–30], especially
for face synthesis and low-light image enhancement.

The challenges of QIA is twofold. Firstly, QIA extracts intrinsic representations from ambiguous
and noisy data, which is an ill-posed inverse problem [31]. Secondly, slight errors in QIA may
lead to obvious visual artifacts, since human visual cognitive systems are highly sensitive to image
appearance changes.

To tackle these problems, we impose new adaptive kernel structures with different guided feature
and priors to the GNN model, and propose GNN-based operations that achieve specific diffusion
of filtering and propagation for QIA. Then, we develop a GNN-based QIA system (QIA-GNN) for
image-based illumination synthesis. The system consists of three GNN subnetwork (denoted as
QIA-GNN-L1/L2/L3). QIA-GNN-L1 acts as a filtering operation, which extracts the initial reflection
and illumination feature from input images; QIA-GNN-L2 acts as a propagation operation, which
adaptively propagates the initial illumination feature from the representative region to the whole
images with good visual consistency; QIA-GNN-L3 is the output layer that combines different
image layers and features to obtain the synthesized results. In this paper, we simply construct
QIA-GNN-L1/L2 under semi-supervised learning scheme, but the GNN-based system is flexible to
achieve various illumination synthesis tasks, including face relighting, face swapping, transfiguring
and low-light enhancement.

The main contributions are summarized as follows:

• We propose an adaptive GNN model for image analysis, and mathematically derive its
relation to filtering and propagation models, like edge-aware filters [32] and the LTD
model [8]. It reveals that when a GNN is formulated as a graph-based label propagation
system with guided map, graph Laplacian and node weight, then guided map and node
weight determine whether it produces filtering or propagation diffusion; kernel of graph
Laplacian controls its diffusion pattern.

• To tackle the inverse problems of QIA, we design a new adaptive kernel with different
guided feature and priors, and propose GNN-based operations that achieve specific diffusion
of filtering and propagation for QIA. Then, a flexible QIA-GNN system is constructed to
produce various illumination synthesis, such as face relighting, face swapping, transfiguring
and low-light enhancement.

2 Proposed GNN with Adaptive Kernel

The original GNN was proposed in "pre-deep-learning" era [33]. For a graph G = (V,E) with N
nodes (V = {v1, ...vN}), a GNN can be formulated as a recursive equation:

ui =
∑

j∈N (i)

F
(
ui,uj ,pi,pj ,hi,j

)
, (1)

where ui is the state of node vi; j ∈ N (i) is the neighborhood set of node vi; p and h denote features
of nodes and edges respectively; and F is a parametric function.
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The GNN model of [33] was originally designed for classification or regression problems under a
supervised learning scheme. This paper further extends and explores GNN in two aspects. Firstly,
we mathematically distinguish and analyze two intrinsic diffusion properties of GNN, i.e. filtering
and propagation; then we use the GNN to unify many significant CV operations, as discussed in
Sec. 2.1 and Sec. 2.2. Secondly, we generalize the formulation of Scarselli’s GNN [33] from data
classification/regression to visual data manipulation, where we propose a new kernel structure for
QIA in Sec. 2.3 and a 3-layer QIA-GNN system to achieve multi-task illumination editing in Sec. 3.

Here, we propose an adaptive GNN based on the graph-based label propagation (LP) system [34].
Different from the original LP system for labelling nodes of a graph [35], we formulate the diffusion
process from a visual diffusion perspective, and it can achieve both filtering and propagation diffusion.

Let V be the visual element domain of an image. The image is mapped into a graph G = (V,E),
where each node vi ∈ V, i = 1, ..., N corresponds to the visual element of the image, and pi is the
feature of node vi. Let u be the state of visual element defined over V , i.e. u ∈ RN . The graph-based
LP system of the GNN can be reformulated as:

ut+1 − ut = Lut + Λ(g− ut) (2)

• g(p) is the guided map defined over V , i.e. g ∈ RN , which is used to guide the diffusion of
GNN. The representative visual elements of the guided map is defined within S , where S is
a close subset of V with boundary ∂S for diffusion of propagation;

• Λ(p) = diag(λ(pi))i=1,...,N ∈ RN×N with λ ≥ 0 is the node weight, which determines
the restricted region and the level of the guidance map g for u;

• L(p) ∈ RN×N is the graph Laplacian controlling the local diffusion pattern of GNN, where
the kernel function k(pi,pj) measures the similarity of a node with its neighborhood set as
follows:

Lij =


k(pi,pj), j ∈ N (i)

−
∑

pj∈Npi
k(pi,pj) i = j

0 otherwise.
(3)

Eq. 2 can be solved iteratively using Jacobi method. It can be also proved that this LP system with
graph Laplacian of Eq. 3 converges to a unique solution based on the Banach fixed-point theorem [36].

Studies indicate that GNNs can achieve state-of-the-art performance in various tasks [37–40], but
the design of new GNNs is mostly based on empirical heuristics and trial-and-error. Recently, [3]
proposes a theoretical framework for analyzing the expressive power of GNNs based on Weisfeiler-
Lehman (WL) graph isomorphism test [41], and validates the theory by experiments for graph-focused
tasks. In the following sections, we analyse the diffusion properties of GNN from a CV perspective.
The propagation and filtering properties of GNN guide us to construct new GNN-based operations
and system for image analysis and synthesis.

2.1 Propagation Properties of Proposed GNN

With proper setting of {g,Λ,L}, the proposed GNN model (2) can produce propagation diffusion,
such as Zhu’s LP model [35] or Liu’s learning to diffuse (LTD) models [8].

In propagation diffusion, the representative elements of g are within S , where S ⊂ V with boundary
∂S. The value of the reaction weight Λii = λ(pi) is determined depending on vi ∈ S or not. The
GNN model identifies the representative visual element of g and propagate the value from S to V .
When Eq. (2) is stable, the GNN model becomes:

Lu + Λ(g− u) = 0 (4)

with {
λ(pi) is large, gi = spi , vi ∈ S
λ(pi) is small, gi = ε, vi ∈ V \ S,

(5)

where spi is the value corresponding to a node vi with feature pi in representative domain S; ε is a
small constant to avoid degeneration or ε = 0. The specific value of λ(pi) is task-dependent. One
typical setting is λ(pi) = 1 for pi ∈ S, while λ(pi) = 0 otherwise.
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To clearly demonstrate the propagation properties of the GNN model, we reformulate the whole LP
system (4) with setting (5) for each node vi with its neighborhood j ∈ N (i): ∑

j∈N (i)

k(pi,pj) + λ(pi)

ui −
∑

j∈N (i)

k(pi,qj)uj = λ(pi)gi

⇒ ui =
1

dpi + λ(pi)

 ∑
j∈N (i)

k(pi,pj)uj + λ(pi)gi

 (6)

where dpi =
∑
j∈N (i) k(pi,pj). The value of ui in (6) is mainly controlled by λ(pi):

• For vi ∈ S , λ(pi) is large, then ui is dominated by the term of the guided map λ(pi)
dpi+λ(pi)

gi;

• For vi ∈ V \ S , λ(pi) is small, then ui is determined by the diffusion of Eq. (6).

2.1.1 Relation to Zhu’s Label Propagation (LP)

Let u = uLP = (uLPl ,uLPu ) specifies how each data is to be labeled, where uLPl denotes labeled
data for vi ∈ S and uLPu denotes unlabeled data for vi ∈ V\S . With the setting of {gLP ,ΛLP ,LLP }
below, the GNN leads to Zhu’s label propagation [35, 42]:

• gLP = (gLPl , gLPu ), where gLPl denotes the initial label for vi ∈ S, and gLPu = 0 for
unlabeled data vi ∈ V\S;

• ΛLP = diag(λLP (pi))i=1,...,N , where{
λLP (pi)� dLPpi , vi ∈ S
λLP (pi) = 0, vi ∈ V\S;

• LLP uses the Gaussian kernel of width σ as the similarity measurement, where

kLP (pi,pj) = e−
‖pi−pj‖

2

2σ2 . For LLP , we make a decomposition as LLP = DLP + WLP ,
where DLPii = dLPpi is the diagonal component of LLP , and WLP is the off-diagonal
component. Then, we obtain DLPii =

∑
j WLP

ij .

With these settings, we can reformulate Eq. (4) as:

uLPi =

{
gLPl , vi ∈ S

1
dLPpi

∑
j∈N (i) k

LP (pi,pj)uj , vi ∈ V\S (7)

which is precisely one iteration of the label propagation [35].

2.1.2 Relation to Liu’s Learning to Diffusion (LTD) Model

Similarly, we could also derive the relation to Liu’s LTD model [8]. For vi ∈ S, let λ(pi) � dpi ,
then ui ≈ λ(pi)

dpi+λ(pi)
gi ≈ gi = spi . The GNN model (4) with setting (5) becomes:

ui '


spi , vi ∈ S

1
dpi+λ(pi)

( ∑
j∈N (i)

k(pi,pj)uj + λ(pi)gi

)
, vi ∈ V\S

(8)

If k(pi,pj) = exp(−β‖pi − pj‖2), the GNN system of Eq. (8) leads to the LTD model [8].

2.2 Filtering Properties of Proposed GNN

With certain setting, the GNN model (2) leads to diffusion that is similar to edge-aware filter, like
anisotropic diffusion [43] or optimization-based filter [44].
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Figure 1: The QIA-GNN consists of three subnetworks: QIA-GNN-L1 acts as filtering operation
for facial quotient image extraction; QIA-GNN-L2 acts as propagation operation for facial quotient
image propagation; QIA-GNN-L3 produces the result that combines the image layers and feature.

In filtering diffusion, the representative elements of the guided map g cover the whole domain S = V
and reaction weight is a identity matrix Λ = E. The GNN becomes:

ut+1 − ut = Lut + (g− ut). (9)
It can be regarded as the discrete form of bias anisotropic diffusion [45], if the kernel of L is controlled
by the gradient of u, i.e. k = k(‖∇u‖). Furthermore, if Λ = 0, we obtain the famous anisotropic
diffusion [43].

2.2.1 Relation to Farbman’s Optimization-Based Filter (OF)

Many important edge-aware filters [32] are defined implicitly by a variational formulation, and we
called it optimization-based filters (OF) here. One of the representative OF model was proposed
by [44], which is defined by the minimization of a quadratic functional:

u = argmin.
u

{
(u− g)>(u− g) + u>Lu

}
, (10)

where u is the filtered output, g is the original image, and L encodes the filter kernel.

When Eq. (9) is stable, the GNN model becomes: (E− L)u = g, which has the same solution of the
quadratic functional of (10).

Let u = uOF be the filtered output, and g = gOF be the original image. With the setting below, the
GNN (9) obtains edge-aware smoothing as OF of [44]:

• LOF measures node similarity with vi and its 4-neighbor set j ∈ N4(i) using the kernel:

kOF (pi,pj) = β(‖pOFi − pOFj ‖α + ε)−1, (11)

where pOF is the log-luminance channel of gOF to guide the edge-aware diffusion, α
controls the local diffusion pattern, β controls the global smoothness, and ε is a small
constant to avoid division by zero.

2.3 Adaptive Kernel for Quotient Image Analysis (QIA)

Based on the mathematical analysis, the diffusion pattern is controlled by the kernel of L. To verify
our analysis, we propose a new kernel with setting {d(M),G} to design filtering and propagation
operation for QIA, as shown bellow:

kQIA(pi,pj) =
d(M)p

‖G(pi)−G(pj) + ε‖αp
, (12)

where d is a spatially inhomogeneous smoothness parameter to control the smoothness of propagation
in different regions, which is determined by the confidence map M; M can be obtained based on the
structure information of an image, such as facial components or semantic segmentation of a scene;
α controls the sensitivity of the term to the derivatives of the guided feature; G is the feature to
guide the propagation, ‖ · ‖p represents the p-norm of guided feature space and ε is a small constant
(typically ε = 0.001) to avoid division by zero.
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3 GNN for Quotient Image Analysis (QIA-GNN)

We apply the GNN with adaptive kernel to design adaptive filtering and propagation operations for
QIA, and construct a GNN-based system (QIA-GNN) to achieve illumination-aware facial synthesis
and low-light image enhancement, as shown in Fig. 1. QIA-GNN contains three subnetwork, denoted
as QIA-GNN-L1/L2/L3:

1. QIA-GNN-L1: Quotient image extraction, where a GNN-based filtering operation F (g,L)
is proposed to achieve two goals: 1) separating images into multiple facial layers; 2)
extracting quotient image Q in the representative region.

2. QIA-GNN-L2: Quotient image propagation, where a GNN-based propagation operation
P (g,Λ,L) is constructed that adaptively propagate Q to obtain illumination map T. Note
that different combination of F (g,L) and P (g,Λ,L) operations can produce different T.

3. QIA-GNN-L3: Image layer combination, which combines T and the image layers to
produce illumination editing.

We take face relighting as the main presentation in this paper, whose goal is to transfer the illumination
from the reference image R to the input image I in a consistent manner. We construct the filtering
F relit(g,L) and propagation P relit(g,Λ,L) operations of face relighting to show how to construct a
GNN-based system with domain knowledge to solve the visual analysis problem.

3.1 Quotient Image Extraction (FQIA-GNN-L1)

QIA-GNN-L1 is constructed by the GNN-based filtering operation F (g,L) with facial prior, which
separates the target I or reference R into facial layers and obtains the initial quotient image Q. Note
that some pre-processing, like landmark detection or face alignment, have been done for the input
images. It is implemented as follow: Firstly, both the input I and R are converted into CIELAB
color space, where the two chromaticity channels are regarded a color layers Ic (Rc). Secondly, the
luminance channel is decomposed into lighting layer IL (RL) and detail layer Id (Rd) by F (g,L),
where lighting layers captures the main illumination variance and detail layer contains facial details.
Finally, the initial quotient image Qrelit is obtained by Qrelit = F relit(RL|g,L)

F relit(IL|g,L) .

F relit acts as inhomogeneous filtering operation. To extract Qrelit, F relit should smooth out details
in background, eyes and eyebrows, while preserves the information in facial region. The setting of
F relit(g,L) is as follows:

• The guided map g is regarded as the input image to be filtered. For example, g = IL and
g = RL lead to inhomogeneous smoothing of lighting layer IL and RL, respectively.

• We integrate facial prior to the kernel kQIA of L to preserve the illumination within facial
region, whiles smooth out the detail in eyes, eyebrows and background. Here we simply
set j ∈ N4(i) to obtain local filtering. p = log(IL) is the feature to guide the diffusion.
Typically, the parameters are set as α = 1.2 and ε = 0.0001. d(M) is spatially determined
by different region, so that background, eyes and eyebrows are smoothed out, while the
informative illumination in the facial region is preserved.

3.2 Quotient Image Propagation (QIA-GNN-L2)

QIA-GNN-L2 is used to generate facial template T defined on V by propagating the values of Q from
the facial region S to V , i.e. Trelit = P relit(Qrelit|g,Λ,L). Since human visual system correlates
with the gradient in an image, T should fit the facial boundary closely and has the smooth transition
between different regions.

To generate Trelit defined on V , we construct P relit to propagate the information of Qrelit from
the facial region S to the regions with missing and uncertain illumination, like eyes, eyebrows and
background V\S . The setting of P relit(g,Λ,L) is as follows:

• For guided map, g = Qrelit, where g contains illumination of the quotient image in the
representative region S.
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• The reaction weight Λ determines which information is propagated to where. There-
fore, the values of Λ is consistent to the spatial location of S and V\S as Λ =
diag(λrelit(pi))i=1,...,N , where

λrelit(pi) =

{
1, vi ∈ S
0, vi ∈ V\S;

• For kQIA, we produce the confidence map M that is consistent to V with smooth transition
of region boundary. The visual information of Qrelit are propagated from the representative
facial region S to the regions of eyes, eyebrows and background V\S . Smoothness parameter
d are controlled by M, so that d is large (typically d = 10) in V\S to produce illumination
propagation, and d is small (typically d = 0.4) in S to preserve the significant illumination
detail.

3.3 Image Layer Combination (QIA-GNN-L3)

QIA-GNN-L3 is output GNN layer, which combines T with the facial layer of original/reference
to produce the final face synthesis. For face relighting, we transfer illumination of the reference to
the original face by multiplying the Trelit and the lighting layer IL as OL = IL ◦ Trelit, where ◦ is
an element wise product. Finally, we recombine the other facial layers to obtain the face relighting
output O.

4 Experiment

4.1 Basic Evaluation

(a) Face Relighting (FR) (b) Low-Light Image Enhancement (LIE)

Figure 2: Basic evaluation of QIA-GNN, where (a) shows face relighting with single target and
multiple references; (b) shows low-light image enhancement with illumination maps.

We use the QIA-GNN to achieve face relighting (FR) and low-light image enhancement (LIE), as
shown in Fig. 2. Fig. 2a shows FR of the same target with different references, and we can observe
there is good consistency between illumination maps and the relighted results. Fig. 2b shows the
LIE of different images, which indicates the effectiveness of our QIA-GNN system to capture the
illumination feature in different scenes.

4.2 Qualitative Evaluation

We verify our QIA-GNN system for different editing tasks, including face relighting, face swapping,
transfiguring and LIE. Fig. 3 illustrates the comparisons with the-state-of-arts, and indicates that
the QIA-GNN system are competitive to related methods. Note that most of the previous systems
are designed for specific tasks, while our GNN-QIA system is flexible to perform multiple image
analysis or adjustment with the corresponding settings.

Face Relighting (FR). We compare our method with Li’s [46] and Chen’s [47] methods for face
relighting. The results show that our method allows to relight faces in two patterns. For the first
pattern, we perform QIA for all the RGB channels and obtain result similar to Li’s method that
transfers both the shading and tone to the target. For the other pattern, we perform QIA only for the
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Tar./Ref.

Face Relighting

Ours Ours Li et al. Chen et al.

Illumination-Aware Face Swapping

Ours 

Target

Ref. of CageNet Korshunova et al.

Transfiguring

Ref. of SwiftNet Ours Korshunova et al.

Tar./Ref. Ours Shlizerman et al. Nirkin et al.

Low-Light Image Enhancement

Input

CVC

LIME

Ours

Illum. Map

Img1 Img2 Img3 Img4 Img5 Img6

Figure 3: Qualitative comparisons with related methods, including face relighting (red box) with
Li’s [46] and Chen’s [47], face swapping (blue box) with Korshunova’s [20], transfiguring (green
box) with Kemelmacher’s [23] and Nirkin’s [24], and low-light image enhancement (black box)
with CVC [48] and LIME [28].

luminance channel of inputs, and obtain result that transfers only the shading of the reference but
preserves the original tone of the target.

Furthermore, our method is complementary to previous methods in two aspects. For visual effect-
s, [46] and [47] fail to relight the region outside the face, while ours adaptively generates the missing
illumination in the background. For computation, [46] and [47] requires multiple operations derived
from different contexts, while our operations are based on the same GNN model, which can be
efficient to implement and extend.

Illumination-Aware Face Swapping (FS). Fig. 3 also shows the comparison with the recent works
of [20] for face swapping. [20] proposed a new face synthesis system that trains a specific CNN
to transform an input (original) identity into a reference identity with preserved facial properties.
For example, the CageNet transforms the input identity into Nicolas Cage with the same expression.
Although [20] has considered the lighting adjustment problem and integrates the lighting loss for
the training of the CageNet, the shading and tone consistency could still be further improved by our
method. Note that the QIA-GNN-L2 is setup to propagate quotient feature within the facial region
for seamless blending, which is slightly different to the setting for relighting.

Transfiguring (TF). Recently, [23] introduced a new face synthesis task, called transfiguring, which
let users transfigure their appearance from images by changing hair style, hair color etc. Fig. 3
shows the comparison of [23] and [24] for transfiguring. In some cases, some part of the faces is
under occlusion of hair. To tackle this problem, we integrate the region-aware mask of [10] into our
system and obtain competitive results compared with the state-of-the-art methods [23, 24]. Since the
region-aware mask [10] is based on LP, it can be implemented by our GNN model, which indicates
the powerful representation of GNN and the flexibility of our QIA-GNN system.

Low-Light Image Enhancement (LIE). Contrast enhancement have been extensively studied in
recent decades [25, 49, 50, 27], but the enhancement for low-light images is still an unsolved
problem [26, 51, 28–30, 52]. The main challenges is twofold. Firstly, the intensity of the images
encodes many imaging factors, like illumination of the scene, reflection of the object, and the
viewpoint. Obtaining good low-light enhancement without over-sharpening should recover or estimate
some properties of the scene and object from image intensity [26, 51, 28–30, 52], but it is unfortunately
an inherent ill-posed problem [53, 31]. Secondly, quality assessment of sharpened images in objective
manners is still an open problem [54, 55], and it lacks a benchmark to evaluate the performance of
different low-light enhancement methods. We focus on the first aspect in this paper, and apply the
QIA-GNN with new regularization to adaptively enhance low-light image without over-sharping.
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Figure 4: Objective assessment of FS with [20] and TF with [23] and [24] by GMSD [56].

Img1 Img2 Img3 Img4 Img5 Img6
CVC [48] 6.54 6.28 6.38 6.75 4.27 5.16
LIME [28] 7.67 7.43 7.53 7.65 5.79 7.23

Ours 7.48 7.47 7.55 7.65 6.04 7.71
Table 1: Objective assessment of LIE with CVC [48], LIME [28] and Ours by DE [57].

Based on the Retinex theory [53, 29], we obtain adaptive low-light enhancement via estimation and
adjustment of the illumination maps of images using the QIA-GNN. It uses the QIA-GNN-L1 as
filtering operation to extracts the initial illumination map, and adjusts the map adaptively with smooth
transition by QIA-GNN-L2 which acts as propagation operation. Finally, the enhancement result is
produced by combining the illumination map with the image layer.

We made comparison with Contextual and Variational Contrast enhancement (CVC) [48] and the
recently proposed LIME [28] for low-lighting image enhancement, as shown in Fig. 3 (black box).
The results indicates that our method facilitates to adaptively brighten images without over-sharpening
the lighter regions of images in high dynamic range (HDR) manners. It also shows that our method
outperforms CVC [48] with better tonal consistent and achieve competitive performance with the
state-of-the-art LIME [28].

4.3 Quantitative Evaluation

For facial synthesis (FR, FS, TF), we made a small scale user study to determine which is more
consistent to the original target with 10 volunteers (5 males and 5 females) for the results in Fig. 3,
and our GNN-based results have a higher rank score than the other methods. A larger scale user
study for more results would be performed in our future research. In addition, we used some metric
of image quality assessment for objective evaluation. For FS and TF, we used gradient magnitude
similarity deviation (GMSD) [56] to measure the visual similarity between the target and output pairs
(shown in Fig. 4), where GMSD1<GMSD2 indicates that our method has better visual consistency
than Korshunova’s [20] for FS. Similarly, the results also indicate that our method (GMSD: 0.0909)
is competitive to the Kemelmacher’s [23] (GMSD: 0.2114) and Nirkin’s [24] (GMSD: 0.1472), and
obtains better visual consistency.

For low-light image enhancement, Table 1 shows the quantitative comparison between CVC [48],
LIME [28] and ours by discrete entropy (DE) [57], where a higher value of DE indicates that the
image has richer details. The objective measurements of Img 1 to Img 6 indicate that our method is
superior to CVC [48] and competitive to the state-of-the-art LIME [28].

5 Conclusion

This paper proposes an adaptive GNN model by a LP system with guided map, graph Laplacian and
node weight from CV perspective. We mathematically analyze its diffusion properties and derive
its relation to edge-aware filter [32] and LTD model [8]. We find that different combination of the
guided map and reaction weight determine whether a GNN leads to filtering or propagation diffusion,
and the kernel of graph Laplacian controls the diffusion patterns. Based on the diffusion properties of
GNN, we design a new adaptive kernel with different guided feature and image priors, and propose
GNN-based operations that achieve specific diffusion of filtering and propagation for QIA. We also
construct a QIA-GNN system, which is flexible to produce various image-based editing, such as face
relighting, face swapping, transfiguring and low-light image enhancement. Experiments show the
effectiveness of our methods and indicate that GNN can be a powerful tool for CV tasks.
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