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Abstract

Numerous neurophysiological studies have revealed that a large number of the
primary visual cortex neurons operate in a regime called surround modulation.
Surround modulation has a substantial effect on various perceptual tasks, and it
also plays a crucial role in the efficient neural coding of the visual cortex. Inspired
by the notion of surround modulation, we designed new excitatory-inhibitory
connections between a unit and its surrounding units in the convolutional neural
network (CNN) to achieve a more biologically plausible network. Our experiments
show that this simple mechanism can considerably improve both the performance
and training speed of traditional CNNs in visual tasks. We further explore additional
outcomes of the proposed structure. We first evaluate the model under several visual
challenges, such as the presence of clutter or change in lighting conditions and show
its superior generalization capability in handling these challenging situations. We
then study possible changes in the statistics of neural activities such as sparsity and
decorrelation and provide further insight into the underlying efficiencies of surround
modulation. Experimental results show that importing surround modulation into the
convolutional layers ensues various effects analogous to those derived by surround
modulation in the visual cortex.

1 Introduction

The classical receptive field of a neuron is determined by the region of sensory space where stimuli
elicit neural responses. In a sizable population of neurons in the visual cortex, the classical receptive
field is surrounded by the nonclassical receptive field, through which the same stimulus can influence
the neural response away from that of a mere classical receptive field response [20, 2]. This effect
is often referred to as surround or contextual modulation and has been frequently reported in the
mammalian visual cortex [20, 2, 29]. The strength of suppression depends on the disparity between
the visual features of the stimuli in the classical and nonclassical receptive fields. Various visual
features can induce surround suppression, such as spatial frequency, orientation, color, direction of
motion, and luminance [2, 29, 59, 53]. Surround modulation has a maximum effect when the center
and surround carry similar features. Thus, neurons become more sensitive to the contrast and less
sensitive to constant features, and this may enhance the visual perception of objects.

The neural mechanism behind surround modulation is a matter of debate in the literature. However,
in general, three types of connections have been identified to be involved in the modulation of

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



classical and nonclassical receptive fields [3]. Bottom-up feedforward connections from the lower
areas affect the center of the receptive field, while intra-areal lateral connections mainly contribute to
near surround inhibition, and inter-areal top-down feedback connections from higher cortical areas
modulate wider areas including far surround.

Surround modulation is believed to be involved in numerous functions of mammalian visual systems.
It plays a fundamental role in boundary detection, contour integration, perceptual grouping, figure-
ground segmentation, and border ownership [46, 12, 15, 31, 50]. It is also incorporated in visual
attention [25, 56], contrast gain control [18], and perception of depth and motion [2, 6, 5, 26]. In
addition to these functions, surround modulation also has notable effects on the neural coding of
the visual cortex. It increases sparsity, trial-to-trial reliability and temporal precision of spikes,
and decreases temporal and spatial redundancies present in natural scenes by removing predictable
components [48, 57, 58, 17].

Theoretical studies have shown that natural scenes can be represented by sparse codes [43, 44]. During
natural vision, surround modulation forms a sparse representation in the visual cortex [57, 58, 17].
When image patches encompass both classical and nonclassical receptive fields, modulation becomes
more suppressive and the mean spiking rate of individual neurons significantly decreases. During
normal vision, wide-field stimulation makes neurons operate at optimum efficiency. Sparse coding
increases neural selectivity, which means that each cortical neuron is generally silent but strongly
responds to a limited set of visual patterns [45, 62]. Surround modulation strongly decorrelates
responses across the population of neurons. This suggests that neurons carry more independent
information and are unlikely to fire simultaneously [57].

Further electrophysiological studies have revealed that surround modulation, and hence sparse coding,
dramatically increase the average information per spike, information transmission rate, and bandwidth
efficiency [58]. On the other hand, dense codes are statistically redundant and metabolically inefficient
because in this regime, each neuron responds to a broad set of stimuli, and thus the information is
distributed across the neural population, rendering each spike less informative. Sparse coding also
enhances the formation of synaptic connections, learning rate, and memory capacity [4, 62]. Together,
these properties indicate that surround modulation is an essential mechanism for visual processing by
offering informationally, computationally, and metabolically efficient neural codes.

There are historical links between the evolution of CNNs and neurophysiological findings. Hubel and
Wiesel first described the concept of receptive fields in visual neurons and proposed a hierarchical
structure for the visual cortex by introducing simple, complex, and hypercomplex cells [19, 21].
Motivated by these ideas, the first generations of CNNs were reported in the literature of artificial
neural networks [13, 32, 33, 49]. CNNs consist of stacked convolutional layers. In each layer, features
are extracted from the input to that layer through local convolution operations. Convolutional layers
are followed by pooling operations, which make the extracted features invariant to the geometric
transformations of the input [33, 49]. Across the layers, receptive fields become more extensive,
and features become more abstract. Thus, a deep structure composed of simple convolution layers
can achieve invariant object categorization [30]. Analogously, the visual cortex is composed of a
hierarchical organization of distinct cortical areas [11]. Neurons in the early visual cortex have small
receptive fields and capture low-level visual features. Along the ventral stream, receptive fields
become larger, and neurons respond to more complex features. Finally, in the inferior temporal
cortex, neurons respond to the semantic contents of the visual stimuli [22]. Recent studies have
shown that this resemblance is not limited to the structure of these networks, and there are also strong
correspondences between hierarchical features in the layers of CNNs and neuronal responses in the
ventral visual stream with respect to the same stimuli. These correspondences exist even though the
CNNs were not optimized to fit neural data and were merely optimized for object recognition tasks
[7, 27, 61, 16].

In this paper, motivated by the impressive properties of surround modulation in the biological visual
system, we introduce a structure of connections for the standard CNNs to achieve architectures even
more similar to the brain. We add local lateral connections to the activation maps of convolutional
layers which imitate the function of surround modulation. We found that the proposed structure
can outperform traditional CNNs in object recognition tasks while being also capable of speeding
up the training procedure. Further evaluations on challenging tasks show that the incorporation of
lateral connections can increase the generalization of networks on new domains with different visual
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situations which were never seen during training. We also analyze the statistics of the feature space
and compare the results with the effects of surround modulation in neural coding of the visual cortex.

Related Work Recently, seeking biologically inspired CNN architectures has drawn considerable
attention. Most of the reported studies have focused on augmenting the structure of CNNs by adding
recurrent and feedback connections to the convolution layers [41, 54, 36]. One possible explanation
for the success of these models is that recurrence enlarges the effective receptive field and also spreads
operations across time as well as the network structure. This allows these networks to process each
piece of data several times, rendering them capable of reaching the performance of feedforward
networks even with shallower models [37, 63, 38]. Linsley et al. [38] proposed a model based
on gated recurrent units (GRUs) [8] with additional horizontal connections to solve the contour
integration task. Spoerer et al. [54] added between-layer and within-layer recurrent connections to
the CNN and evaluated the performance of their model under the presence of noise and clutter on an
artificial digit dataset. Nayebi et al. [41] extended the idea by adding attributes such as gating and
bypassing, long-range feedback links, and more considerations about the timing of neural dynamics.
They also performed a thorough search among different architectures to select the most accurate one.

Our proposed method basically differs from the other biologically motivated models by not using
recurrent connections with temporal dynamics. Instead, it employs the existing knowledge about the
neural mechanism of surround modulation to incorporate a simple, hard-coded linear operation in the
CNNs with no additional training parameters or fundamental changes in the structure of feedforward
CNNs.

2 Surround Modulation in CNN

(a) (b)

Figure 1: A simple implementation of surround modulation through lateral connections. (a) During
modulation, each unit excites near neighbors and inhibits far neighbors within a range based on the
level of its own activity. (b) A 5× 5 SM kernel with associated weights for excitatory connections
(green) and inhibitory connections (red).

The Gaussian function has been used to derive a well-established model to describe the mechanism
of center-surround modulation [9, 51, 52]. In this model, interactions within the classical receptive
field are defined by an excitatory Gaussian, and interactions from the nonclassical receptive filed are
defined by a broader inhibitory Gaussian. We employ this model to simulate the center-surround
modulation in CNNs through lateral connections. We define a (2k + 1) × (2k + 1) kernel whose
positive and negative elements respectively determine the excitatory and inhibitory connections
between the unit in the location (k + 1, k + 1) and its neighbors (Figure 1a). The weight associated
with each neighbor is defined by the difference of Gaussian (DoG) function:
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where σe and σi are the standard deviations of the excitatory and inhibitory Gaussians, respectively.
The surround modulation (SM) kernel is obtained by normalizing the DoG to the amplitude of its
center:

SM [x, y] =
DoG[x, y]

DoG[k + 1, k + 1]
. (2)

The SM kernel has been designed to increase the feature saliency by suppressing redundant and
spatially constant responses within activation maps. Each unit in the activation map m of layer l
is modulated by its spatial neighborhood with the corresponding weights in the SM kernel. One
plausible approach is to linearly add the weighted responses of the surround units to the response of
the center unit. To do this, it is sufficient to convolve each activation map by the SM kernel to obtain
the surround modulated activation map:

actl,mSM [x, y] = (actl,m ∗ SM)[x, y]. (3)

It is not necessary to strictly follow the exact DoG profile to achieve excitatory connections in the
center and inhibitory connections in the surround. Especially for SM kernels with smaller sizes,
providing a proper balance between the amounts of excitation and inhibition may entail subtle
modifications of the kernel. For each specific task, finding the optimal design for the SM kernel and
its most effective placement in the CNN may need performing hyperparameter search. However,
the aim of this paper is not to explore all possible setups, but to present a simple, fixed setup which
resembles the surround modulation phenomenon in the cortical nervous system. Hence, for all of our
experiments we deploy a fixed SM kernel with a size of 5× 5 (k = 2) obtained by setting σe = 1.2
and σi = 1.4 (Figure 1b). In our experiments, the SM kernel was added to activation maps of the first
convolutional layer as such modulation is more common in the early visual cortex.

3 Experiments

To evaluate the performance of the proposed method, we set up three types of experiments. First, we
apply the proposed model to a standard image classification task. Then, we evaluate the robustness of
the model in different visual situations. Finally, we analyze the characteristics of neural activities
in the presence of surround modulation and compare the results with those reported for the visual
cortex.

In all experiments, baseline is a standard CNN which consists of multiple convolution layers with
3× 3 kernels and stride of 1, multiple max-pooling layers with 2× 2 kernels and stride of 2, and three
fully-connected layers at the end of the network. The last layer predicts the probability of categories
with a softmax activation function and the other fully-connected convolution layers have ReLU
non-linearities. All implementations are done in Tensorflow [1], and during the training procedure,
Adam optimizer [28] with a learning rate of 10−4 is used to minimize the cross entropy loss (see
Supplementary Materials for more details). We train all of the networks from scratch by initializing
trainable weights with Xavier initialization [14], and repeat each experiment 10 times.

3.1 Image Classification

We used the ImageNet dataset [10] for object recognition as it contains natural images with an
acceptable resolution to test surround modulation. For further analysis, we composed a baseline
dataset, hereby called baseline-ImageNet, by randomly choosing 100 categories. From each category,
500 instances were randomly chosen for training, 50 instances for validation, and 100 instances for
the test set. All images were cropped around their centers and resized to 160 × 160 pixels. The
baseline network contains 2.3M trainable parameters. It has seven convolutional layers, five pooling
layers, and three fully-connected layers with Dropout [55] in each of them. We did not perform any
data augmentation during training or any multi-cropping during the test. This was done to provide a
standard and balanced dataset along with a standard CNN architecture, i.e. an impartial setting, to
evaluate the exclusive effect of adding SM to the network.

We constructed the SM-CNN by adding the SM kernel to half of the activation maps in the first
convolution layer of the baseline network. The SM-CNN has the same number of training parameters
as the baseline network and requires less than 1% extra computations for performing surround
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modulations. Figure 2 shows the validation loss and accuracy as a function of the number of training
steps. Surround modulation increases both the training speed and accuracy of the baseline model
(p < 0.001).

Figure 2: Baseline-ImageNet validation loss (left) and top-1 accuracy (right) of the baseline network
and SM-CNN across training steps. The pale margins indicate confidence intervals in the trials.

To compare the performance of the models more precisely, we designed six additional networks as
follows. Two control models were designed by adding an extra layer after the first convolutional
layer of the baseline network with a kernel size of (5× 5). The number of convolution kernels is the
same as the number of activation maps in the first layer. The first control model (C1

baseline) has no
activation function after the new layer, while the second one (C2

baseline) has a ReLU nonlinearity.

Four variants of the SM-CNN were also designed. In the first variant (C1
randSM), we replaced the SM

kernel with a random kernel matching the first and second-order statistics of the SM kernel to analyze
the advantages offered by the SM configuration. In the second variant (C2

SM), the SM kernel was
applied to the input image as the preprocessing step. In the third variant (C3

SM), the SM kernel was
added to all activation maps of the first layer. In the fourth variant (C4

SM), the SM kernel was applied
after the first max-pooling layer, which is itself located after the first two layers of convolution. The
top-1 accuracy of all the network variants is shown in Table 1. The main SM-CNN, as well as its
third and fourth variants, outperform the traditional baseline variants (p < 0.001) even with fewer
parameters and computations.

Table 1: Top-1 accuracy of the baseline and SM-CNN and their related control models for the
baseline-ImageNet dataset.

baseline variants SM-CNN variants

main C1
baseline C2

baseline main C1
randSM C2

SM C3
SM C4

SM

ACC 41.0±0.6 41.3±0.6 40.7±0.5 43.8±0.7 41.0±0.9 40.8±0.4 42.3±0.6 43.2±0.4

The inferior performance of the baseline variants indicates that the surround modulation effect cannot
be trivially replaced by a learnable convolution layer. The average performance of C1

randSM is
not higher than the baseline, indicating the effectiveness of the excitatory-inhibitory pattern in the
proposed SM kernel. The performance levels of the third and fourth SM-CNN variants imply that
surround modulation could be effective in various setups even when applied to the intermediate layers
of the network, while the performance level of the second SM-CNN variant indicates that adding the
SM kernel to the input of the network may not provide a notable improvement.

3.2 Robustness and Generalization

As discussed in the introductory remarks, surround modulation serves as a proxy function for various
visual perception tasks. In this section, we examine the ability of the proposed method in handling
challenging visual tasks. We train each model on the standard datasets and test them on domains with
different situations as follows.

5



Illumination Here, we explored the generalization capability of the networks under drastic changes
in illumination. To this end, we used the small NORB dataset [35], which contains images of 3D
objects under six different lighting conditions (examples in Figure 3a). We trained the networks
on training images from one lighting situation and tested them on test sets composed of unfamiliar
lighting conditions. To assess whether the generalization capability offered by surround modulation
can be obtained by other standard regularization methods, we examined three additional control
models. In the first control model, we added L2 regularization to all of the trainable weights of the
baseline network. In the second control model, we added Dropout to the last three fully-connected
layers of the baseline network. In the third control model, we added Batch Normalization [24] to all
convolutional layers of the baseline network.

(a) (b)

Figure 3: Data samples for challenging image classification tasks. (a) An instance from the small
NORB dataset with its different illumination variant. (b) An instance from the MNIST dataset with
its artificially occluded variant.

The overall accuracies on familiar and unfamiliar test sets are reported in Table 2. Averaging across
six conditions and ten trials shows that the baseline CNN lost about 36% of its accuracy in new
lighting situations, whereas the SM-CNN lost just about 17%. The superior robustness of the SM-
CNN over the standard regularization methods suggests that surround modulation can be employed
as a regularization technique, although it was not directly designed for this purpose. Figure 4 shows
the accuracies of familiar and unfamiliar test cases in one of the lighting conditions as a function of
training steps.

Table 2: The overall test accuracy of the familiar and unfamiliar test sets for all six lighting conditions.
light0 light1 light2 light3 light4 light5

familiar

baseline 85.2±1.6 85.6±1.4 80.8±1.1 85.6±1.2 85.3±1.1 84.6±1.8

baselineL2 86.8±1.5 86.5±1.8 81.2±2.3 85.8±1.2 85.6±1.7 86.4±1.6

baselineDropout 88.0±1.8 88.4±1.6 82.7±1.8 84.7±2.3 87.4±1.9 85.9±1.8

baselineBN 90.8±0.8 91.7±1.6 86.8±2.0 89.0±1.6 85.8±0.8 87.3±1.1

SM-CNN 92.3±1.1 93.0±0.8 89.4±1.1 91.7±0.9 87.1±1.3 90.1±1.1

unfamiliar

baseline 57.4±1.5 56.1±2.4 35.1±2.1 55.0±1.6 46.8±2.1 41.3±2.0

baselineL2
59.8±1.7 56.7±1.8 35.5±1.4 56.0±2.0 46.9±1.6 42.5±1.5

baselineDropout 66.8±1.8 67.4±2.4 36.8±1.6 62.2±2.7 49.1±1.1 48.9±3.6

baselineBN 65.1±2.8 57.2±2.7 31.6±3.7 64.8±2.2 43.1±5.1 50.8±1.6

SM-CNN 80.8±1.2 73.0±2.5 61.4±2.5 82.2±0.8 65.8±1.3 80.3±1.0

Occlusion A potential advantage of employing surround modulation by the biological visual system
is increasing robustness to the presence of occlusion and clutter. Handling these conditions in the
brain may be additionally facilitated by attention mechanisms through top-down feedback connections
[47]. In our analysis, we investigate the robustness of the proposed surround modulation method in
the presence of small clutter on the MNIST dataset [34].

We augmented the test images by adding from 8 to 15 random patches with different shapes and
intensities to each image (one example is shown in Figure 3b). The length of each patch varied from
3 to 6 pixels. To estimate the generalization ability of the networks in challenging situations more
accurately, we restricted the size of the training set to 1000 by randomly sampling 100 samples from
each class. Networks were trained on the standard images with no additional augmentation but tested
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Figure 4: The accuracy of the familiar and unfamiliar test sets with training performed on the lighting
condition 3 of the small NORB dataset.

on the standard and occluded images. As shown in Table 3, in the occluded scenario, the accuracy of
the baseline method dropped by 37.8% while the accuracy of the SM-CNN dropped by 26.2%.

Table 3: Classification accuracy on the standard and occluded test images of the smaller version of
the MNIST dataset.

standard occluded

baseline 92.6±0.3 54.8±1.1

SM-CNN 93.2±0.2 67.0±1.1

3.3 Neural Activity Characteristics

As stated in the introductory section, a particular effect of surround modulation is to increase the
sparsity of the neural activities. This effect bodes well with the requirements of biological visual
systems which need to operate under maximum information and energy efficiency constraints during
natural vision. To assess whether our implementation of surround modulation is capable of inducing
sparsity to artificial neural networks, we set up a task-driven approach. We optimized networks for
object recognition on natural images and then analyzed the neural activities of the final networks
and compared the results with observations reported in studies of the biological visual system. To
this end, we deployed the networks which were trained on the baseline-ImageNet dataset and fed
them with 5000 images from the test set. Then, we recorded the neural activity of the first and third
convolution layers. In addition to the baseline network and the SM-CNN, we also analyzed the effect
of the presence of Batch Normalization in the first convolution layer on neural activities. For each
model, we trained six different networks from scratch to ensure that the statistics do not change in
different trials.

We report sparsity of the neural responses in two different ways: lifetime sparsity, which characterizes
the sparsity of the response of each unit to the entire set of stimuli, and population sparsity, which
characterizes the sparsity of the activity of the neural population in response to a stimulus [60]. We
compute the population and lifetime sparsities with kurtosis 1 and the selectivity index, both of which
are well-studied metrics in neuroscience [57, 58, 60, 45]. Figures 5a and 5b show the distributions
of the selectivity index for the lifetime sparsity and the kurtosis index for the population sparsity of
the third convolutional layer, respectively. We also estimated the sparsity of the overall activities by
the Gini metric, which is a suitable sparsity measure especially for one-sided distributions [23] (see

1The distribution of the amplitudes of neural responses is one-sided, while kurtosis is suitable for two-sided
distributions. So, similar to [57], we add to each distribution its mirrored version around the origin and estimate
the kurtosis metric for the resulting two-sided zero-mean distribution.
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Table 4: Average sparsity scores of neural activities from the first and third convolutional layers
across six trials. In all of the sparsity measures, SM-CNN and baselineBN1 have higher scores than
the baseline network, indicating higher sparsity in their neural coding.

First convolutional layer Third convolutional layer

baseline baselineBN1 SM-CNN baseline baselineBN1 SM-CNN

kurtosis 5.8±0.7 22.0±1.2 22.6±1.7 11.6±1.1 17.2±2.7 28.2±3.3

selectivity 0.50±0.02 0.77±0.01 0.72±0.02 0.66±0.03 0.71±0.07 0.78±0.01

Gini 0.51±0.02 0.74±0.01 0.64±0.01 0.65±0.03 0.67±0.09 0.76±0.01

Supplementary Materials for definitions). In all of the metrics, a higher value indicates higher sparsity.
Table 4 shows the sparsity measures of the first and third layers of each model across the population
and stimuli. As the results indicate, surround modulation, as well as CNN with Batch Normalization
in its first layer (baselineBN1), significantly increase the sparsity of the neural activities.

(a) (b) (c)

Figure 5: Distributions of sparsity and decorrelation for the third convolutional layer. (a) Distribution
of lifetime sparsity based on selectivity index. (b) Distribution of population sparsity based on
kurtosis index. (c) Distribution of decorrelation based on separation angles between random pairs of
neurons.

To evaluate whether surround modulation increases independence between the units of a specific layer,
we followed the same strategy employed in [57]. We randomly selected 1M pairs of neurons in each
layer and computed the separation angles between their responses to 5000 stimuli (see Supplementary
Materials). Neuron pairs that carry similar information would have low separation angles. Figure 5c
shows the distribution of separation angles in the third convolutional layer of the models mentioned
above. Surround modulation, as well as Batch Normalization, decrease the correlation between neural
activities among the neural population, and this property also propagates to higher layers.

Together, these results indicate that our simple implementation of surround modulation in CNNs
offers considerable efficiencies in neural coding of the early and intermediate layers. Surround
modulation increases sparseness and decreases statistical redundancies, analogous to similar effects
reported in studies of the biological visual system [57, 58, 17]. Our results also provide more insight
about efficient neural coding in CNNs and suggest that sparse coding in these networks may offer
similar properties as those considered for sensory cortices, such as improvement in the learning rate
and prediction accuracy [4, 62].

4 Discussion

In the present study, we introduce a biologically plausible modification of CNNs by leveraging a
well-known phenomenon in the biological visual system, the so-called surround modulation. The
DoG function is a well-studied operator in computer vision, which is mainly used for low-level
feature extraction like edge and blob detection [40, 39]. Inspired by the role of this function in
modeling surround modulation, we implemented a simplified version of surround modulation by a
linear operation that can be easily incorporated into the convolutional layers of CNNs. We found
that the proposed method can significantly improve the performance of CNNs in standard image
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classification tasks. While the resulting improvement is not trivial, it is also somewhat surprising,
because the proposed method merely introduces some linear operations with no additional training
parameters, and the increment in computations is also limited.

We investigated the impact of this simple form of surround modulation on improving the robustness of
CNNs under difficult visual conditions. We also analyzed the potential implications of the proposed
surround modulation structure in increasing sparsity and decorrelation in the neural activities of the
CNNs. In most of the cases, the surround modulated CNN reaches the performance of the baseline in
fewer optimization steps or with a smaller size of training data. Based on these experiments, it seems
that surround modulation is capable of facilitating learning, an observation that is consistent with
the neurophysiological studies of the brain [62]. A possible justification is that surround modulation
increases feature saliency and decreases redundancies which may slow down training. We also
analyzed neural activities in the presence of Batch Normalization which is also considered to improve
the accuracy of the network and its training speed. Batch Normalization increases sparsity and
decorrelation analogous to surround modulation. Thus, the success behind Batch Normalization
presumably can be explained by efficient neural coding.

The potential gain offered by surround modulation on the training speed is interesting as it alleviates
the need for numerous training steps on large datasets, which is a major drawback of traditional
CNNs in comparison with the biological visual system. However, more meticulous studies are needed
to explore the role of surround modulation in facilitating few-shot learning.

Our implementation of surround modulation is straightforward. It can be easily utilized in different
CNN architectures and for different visual tasks. Semantic segmentation is one type of challenging
tasks in which surround modulation may perform well. Surround modulation reduces sensitivity to
constant textures and also gets involved in various functions associated with image segmentation such
as border ownership, perceptual grouping, and contour integration [12, 50, 15, 31, 46]. However, in
occlusion scenarios, one may need to employ top-down feedback links in order to incorporate more
abstract features in the segmentation task [47].

In summary, this work introduces a new biologically-motivated connectivity structure for the CNNs
resembling the structure of the visual cortex. As a result, more biologically plausible neural coding,
better generalization performance, and more biologically plausible behavior in training speed are
also achieved, even though the method was not explicitly designed for these gains. More work is
needed to explore and compare various setups for implementing surround modulation. Here, we
implemented surround modulation as near-surround lateral connections, but physiological studies
have frequently reported the presence of extensive top-down feedback links [42], especially involved
in far-surround modulation, which is not covered in the present study and is worth exploring.
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