
We sincerely thank the reviewers for their positive feedback. We appreciate they find our contribution “interesting”1

(R1, R3) and “novel” (R1, R2); the approach “gives a new perspective” (R1) and is “novel theoretically-guided”2

(R2, R3); the empirical results are “interesting” (R1). We also appreciate they find the paper is “well-written” and3

“clear” (R1). We address the main concerns raised by the reviewers in the rebuttal, and will incorporate all suggestions4

for changes in the camera-ready version. We sincerely hope this will help the reviewers to finalize their judgments.5

Table 1: Results of accuracy (%).
Variants of K3 Cora Citeseer Pubmed

Default 88.40 80.28 89.42

1-hop 85.56 77.73 88.98
3-hop 88.25 80.13 89.53
1-layer 82.60 77.63 85.80
3-layer 86.33 78.53 89.46

c = 0.25 69.33 74.48 84.68
c = 0.50 76.98 77.47 86.45
c = 0.75 84.25 77.99 87.45
c = 1.00 87.31 78.57 88.68

Q1. Ablation study on node feature aggregation schema. (R1)6

In Table 1, we implement three variants of K3 (2-hop and 2-layer7

with ωh by default) to answer the following three questions. We8

report the mean accuracy following the setting of FastGCN.9

(1) How does performance change with fewer (or more) hops?10

We change the number of hops from 1 to 3, and the performance11

improves if it is larger, which shows capturing long-range structures12

of nodes is important. (2) How many layers of MLP do you need?13

We show results with different layers ranging from 1 to 3. The best14

performance is obtained with 2 layers, while networks overfit the15

data when more layers are employed. (3) Is it necessary to have16

a trainable parameter ωh? We replace ωh with a fixed constant ch,17

where c ∈ (0, 1]. We can see larger c improves the performance.18

However, all results are worse than learning a weighting parameter19

ωh, which shows the importance of it.20

Q2. Time and space complexity of the proposed approach compared with GCNs. (R2, R3)21

We assume the number of features F is fixed for all layers and each method has L ≥ 2 layers. (1) Time complexity. We22

count matrix multiplications as in [1]. GCN’s time complexity is O(L‖Ā‖0F + L|V |F 2), where ‖Ā‖0 is the number23

of nonzeros of Ā and |V | is the number of nodes in the graph. While ours is O(‖Āh‖0F + L|V |F 2), since we do not24

aggregate features recursively. Obviously, ‖Āh‖0 is constant but L‖Ā‖0 is linear to L. (2) Space complexity. GCNs25

have to store all the feature matrices for recursive aggregation which needs O(L|V |F + LF 2) space, and thus the26

first term is linear to L. Instead, ours is O(|V |F + LF 2) where the first term is again constant to L. Our experiments27

indicate that we save 20% (0.3 ms) time and 15% space on Cora dataset than GCNs.28

Q3. Justification on the necessity and clarity of the theorems. (R1, R2)29

(1) Why Theorems 1 & 2 are necessary? Theorem 1 demonstrates the validity while Theorem 2 shows the power of our30

approach. They theoretically identify the upper bound of our expressive power, which is crucial in guaranteeing the31

general property when applying our approach to different tasks. (2) Is our formulation powerful enough to express any32

p.s.d. kernels? We do not require every Φ of kbase to be invertible. Theorem 2 says given a base kernel kbase (with33

invertible Φ), we can express any valid p.s.d kernel K with a powerful gθ. Thus Theorem 2 is correct given we can find34

at least one invertible base kernel: one choice is kbase(zi, zj) = 〈zi, zj〉, where Φ is the identity function. But we agree35

that, in practise, MLP may not express such a powerful gθ. We have discussed this fact in the main paper (line 178-185)36

and we will make it more clear in the final version.37

Q4. Clarification on datasets and empirical results. (R1, R2, R3)38

(1) Clarification on datasets. We have provided detailed description of the datasets in the supplementary materials39

which can be moved to the main paper as suggested by R2 to make it more clear. Following the standard protocols40

in the literature, we evaluated our approach on three different tasks under two settings (following FastGCN and JK,41

respectively). Tables 1 and 2 show the means and standard deviations of totally ten runs. We believe the current42

results are sufficient to demonstrate our superior performance. We also plan to apply our method to other real-world43

problems in the future work. (2) Significance of empirical results. We perform t-test on Table 2 and obtain p-values44

less than 0.01 with all other methods except the one with JK on Cora (0.77). This proves the statistical significance of45

our improvements compared with the state of the art. For the one with 0.77, we argue that it uses more training data on46

a relatively small graph, which narrows the performance gap.47

At last, we will reformulate the corresponding parts and cite related references as suggested (R2). The remaining48

questions about writing will be carefully addressed. We thank the reviewers for their careful feedback and consideration.49
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