
We thank the reviewers for their insightful comments and detailed analysis of our work. We provide clarifications below1

to address their comments.2

Reviewer 1 We thank this reviewer for a thoughtful discussion of our work, and we hope that our comments to other3

reviewers below will be helpful in clarifying our contributions.4

Reviewer 25

– Comparison to signed DPPs: There are several important differences between our work and the work on learning6

signed DPPs [1]: (1) Signed DPPs require Kij = ±Kji, where K is the marginal DPP kernel (described in Sec. 2.1 of7

our paper). In contrast, our nonsymmetric DPP model is much more general, since it does not require that |Kij | = |Kji|.8

Since the off-diagonal elements of K determine the correlations between pairs of items, cov(1i∈Y ,1j∈Y ) = −KijKji,9

this gives our model more flexibility. (2) The learning algorithm for signed DPPs presented in [1] assumes that the10

unknown kernel K is dense, i.e., all its entries are nonzero. In practice, this may not be a realistic assumption, because11

it implies that all pairs of items are correlated. (3) Moreover, our approach allows us to leverage a low-rank assumption12

on L (or, equivalently, K), whereas the approach in [1] is not compatible with a low-rank assumption. (4) The learning13

algorithm in [1] has computational complexity of O(M6), where M is the size of the ground set (e.g., item catalog),14

making it computationally infeasible for most scenarios. In contrast, our learning algorithm has substantially lower15

time complexity, which allows our approach to be used on many real-world datasets. It is true that [1] inspired and16

informed our work. We will add some text to the camera-ready version of our paper to provide a comparison with this17

work.18

– Comparison to other baselines: Since the focus of our work is on improving DPP modeling power and comparing19

nonsymmetric and symmetric DPPs, to keep the message of our paper clear we use the standard symmetric low-rank20

DPP as the baseline model for our experiments. We plan to perform an experimental comparison to other competing21

models for subset selection as part of future work. Regarding the comparison with the theory presented in [2], we22

emphasize, in our work, that the problem becomes significantly harder when we deal with nonsymmetric kernels,23

which shows that going from symmetric to nonsymmetric kernels is not a straightforward extension of previous work.24

Reviewer 325

– Low-rank representation of nonsymmetric DPP kernel: The first term on the right side of Eq. 12 will be singular26

whenever |Yi| > D, where Yi is an observed subset. Therefore, to address this in practice we set D to the size of the27

largest subset observed in the data, as explained in [3]. Furthermore, the first term on the right side of Eq. 12 may be28

singular even when |Yi| ≤ D. In this case, we know that we are not at a maximum, since the value of the function29

becomes −∞. Numerically, to prevent such singularities, in our implementation we add a small εI correction to each30

LYi
when optimizing Eq. 12 (we set ε = 10−5 in our experiments).31

Regarding the significance of our low-rank decomposition of L for nonsymmetric DPPs (described in lines 17732

- 181 of our paper), this is indeed an extension of an idea developed in the symmetric case, and we do use well33

known decompositions for symmetric and skew symmetric matrices. We do not claim that we prove new matrix34

decompositions, but we rather propose a simple low-rank representation of a subclass of P0-matrices. Please note that35

the claim, in the review, that a P0-matrix can be decomposed as the sum of a PSD matrix and a skew-symmetric matrix36

is incorrect, and is not a consequence of Lemma 1 in our paper. Lemma 1 only states that if the symmetric component37

of a matrix is PSD, then that matrix is P0, but the converse is not true (e.g., take the P0-matrix L = ((1,−1), (5, 1)),38

whose symmetric component, (L+LT )/2, is the non-PSD matrix ((1, 2), (2, 1))). Therefore, dealing with the class39

of all P0-matrices seems very challenging, but leaves an exciting research topic open.40

Regarding the time complexity of the low-rank representation, we see from Eq. 12 that the time complexity required to41

compute the matrix multiplications associated with the gradient of the first and second terms of the log-likelihood42

will be O(nκ2D + nκ2D′ +DM2 +D′M2), where n is the number of observed subsets, κ is the size of the largest43

observed subset in the training data, and M is the size of the ground set (item catalog). We typically set D � M44

and D′ � M in the low-rank representation; the associated matrix multiplications become much more expensive45

if we set D = M (and presumably D′ = M). In particular, the matrix multiplications for the second term of the46

log-likelihood will become O(M3) operations, instead of O(DM2 + D′M2) operations. Therefore, we see that47

our low-rank representation still affords improvements in time complexity compared to the full-rank representation.48

We will add some text to the camera-ready version of our paper to make this point clear. We are confident that it is49

possible to approximate the DPP normalization constant, log det(L+ I), using contrastive estimation for DPPs [4],50

and therefore address the remaining O(M3) bottleneck, but we leave this for future work.51
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