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Abstract

Convolutional neural networks (CNNs) contain local pooling to effectively down-
size feature maps for increasing computation efficiency as well as robustness to
input variations. The local pooling methods are generally formulated in a form of
convex combination of local neuron activations for retaining the characteristics of
an input feature map in a manner similar to image downscaling. In this paper, to
improve performance of CNNs, we propose a novel local pooling method based on
the Gaussian-based probabilistic model over local neuron activations for flexibly
pooling (extracting) features, in contrast to the previous model restricting the output
within the convex hull of local neurons. In the proposed method, the local neuron
activations are aggregated into the statistics of mean and standard deviation in a
Gaussian distribution, and then on the basis of those statistics, we construct the
probabilistic model suitable for the pooling in accordance with the knowledge about
local pooling in CNNs. Through the probabilistic model equipped with trainable
parameters, the proposed method naturally integrates two schemes of adaptively
training the pooling form based on input feature maps and stochastically perform-
ing the pooling throughout the end-to-end learning. The experimental results on
image classification demonstrate that the proposed method favorably improves
performance of various CNNs in comparison with the other pooling methods. The
code is available at https://github.com/tk1980/GaussianPooling.

1 Introduction

In recent years, convolutional neural networks (CNNs) are applied to various visual recognition
tasks with great success [7, 8, 14]. Much research effort has been made in improving the CNN
architecture [7, 8] as well as the building blocks of CNNs [6, 11, 24, 29]. Local pooling is also a key
component of CNNs to downsize feature maps for increasing computational efficiency and robustness
to input variations.

From a biological viewpoint, the local pooling originates from the neuroscientific study on visual
cortex [10]. While some works biologically suggest the importance of max-pooling [20, 21, 23],
average-pooling also works for some CNNs in practice, and thus we can say that the optimal pooling
form is dependent on the type of CNN, dataset and task. To improve performance of CNNs, those
simple pooling methods are sophisticated by introducing some prior models related to pooling.
Based on the pooling functionality which is akin to image downsizing, some image processing
techniques are applied to the pooling operation such as Wavelet [18] for Wavelet pooling [28] and
image downscaling method [27] for detailed-preserving pooling (DPP) [22]. On the other hand, by
focusing on the pooling formulation, the mixed-pooling and gated-pooling are proposed in [15, 32]
by linearly combining the average- and max-pooling. Recently, in [1], the local pooling is formulated
based on the maximum entropy principle. Those methods [1, 15, 22] also provide trainable pooling
forms equipped with pooling parameters which are optimized throughout the end-to-end learning;
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especially, the scheme of global feature guided pooling (GFGP) [1] harnesses the input feature map
for adaptively estimating the pooling parameters. Besides those deterministic methods, the stochastic
pooling is also proposed in [33] to introduce randomness into the local pooling process with similar
motivation to DropOut [24] toward improving generalization performance. Such a stochastic scheme
can be applied to the mixed-pooling by stochastically mixing the average- and max-pooling with a
random weight [15, 32].

The above-mentioned pooling methods are generally described by a convex-hull model which pro-
duces the output activation as a convex combination of the input neuron activations (Section 2.1).
This model is basically derived from image downscaling to reduce the spatial image size while
approximating an input image to maintain image content or quality [22]. However, the convex-hull
model is not crucial for extracting features in CNNs, and practically speaking, high-performance
recognition does not strictly demand to well approximate the input feature map at the process of local
pooling. Therefore, the local pooling operation would be formulated more flexibly for improving
performance of CNNs.

In this paper, we propose a novel local pooling method by considering the probabilistic model over
the local neuron activations, beyond the sample-wise representation in the previous convex-hull
formulation. In the proposed method, to summarize the local neuron activations, we first assume
a Gaussian distribution for the local activations and thereby aggregate the activations into the two
simple statistics of mean and standard deviation. This is just a process to fit the Gaussian model
to the input neuron activations, and then we modify the Gaussian model into the probabilistic
model suitable for pooling such that the pooling output can be described more flexibly based on the
local statistics with trainable parameters. In accordance with the knowledge about local pooling in
CNNs [1, 15, 22], we propose the model of the inverse softplus-Gaussian distribution to formulate the
trainable local pooling. Thus, the proposed pooling method naturally unifies the stochastic training in
local pooling [33] and the adaptive parameter estimation [1] through the parameterized probabilistic
model; these two schemes are complementary since the stochastic training boosts the effectiveness
of the trainable pooling model which renders discriminative power to CNNs with a slight risk of
over-fitting.

2 Gaussian-based pooling

We first briefly review the basic pooling formulation on which most of the previous methods [1, 15,
22, 32, 33] are built. Then, the proposed pooling methods are formulated by means of probabilistic
models to represent the output (pooled) activation more flexibly.

2.1 Convex-hull model for pooling

Most of the local pooling methods, including average- and max-pooling, can be reduced to a linear
convex combination of local neuron activations, which is regarded as a natural model from the
viewpoint of minimizing the information loss caused by downsizing feature maps as in image
downscaling. The convex-combination model is formulated as follows. The local pooling operates on
the c-th channel map of an input feature tensor X ∈ RH×W×C (Fig. 1a) by

Y cq =
∑
p∈Rq

wcpX
c
p, s.t.

∑
p∈Rq

wcp = 1, wcp ≥ 0,∀p ∈ Rq, (1)

where p and q indicate the 2-D positions on the input and output feature map, respectively, and
the receptive field of the output Y cq is denoted by Rq; these notations are also depicted in Fig. 1a.
The local neuron activations {Xc

p}p∈Rq are aggregated into the output Y cq by using the convex
weights {wcp}p∈Rq ; in other words, Y cq is restricted to the convex hull of {Xc

p}p∈Rq (Fig. 1b). In
this model, the convex weight characterizes pooling functionality. For instance, average-pooling
employs wcp = 1

|Rq| while max-pooling only activates the single weight of the most prominent
neuron, and those two types of weights can be mixed [15, 32]. The convex weights can be defined in
a sophisticated way such as by introducing the image processing technique [22] and the maximum
entropy principle [1] to provide a trainable pooling form. The Gaussian model is also introduced
to construct the convex weights in [25] similarly to softmax. In the stochastic pooling [33], the
multinomial probabilistic model is applied to the weights by setting wcp =

Xc
p∑

p′ Xc
p′

and the method
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Figure 1: Local pooling operation in CNN. The pooling downsizes an input feature map through
locally aggregating activations (a). The previous pooling methods aggregate input neuron activations
X with convex weights w, thus restricting the output Y to the convex hull of X (b). On the other
hand, the proposed Gaussian-based pooling outputs Y according to the half-Gaussian distribution
(c) or inverse softplus (iSP)-Gaussian (d) which utilize the two statistics of mean µX and standard
deviation σX of the input local activations X .

stochastically outputs Y cq = Xc
p according to the probability wcp in the training. As to the stochastic

scheme in local pooling, S3 pooling [34] embeds randomness into the selection of the receptive field
Rq for the output Y cq .

2.2 Half-Gaussian pooling

The form of convex combination in Eq. 1 is effective for image downscaling while keeping image
quality, but is not necessarily a crucial factor for pooling to downsize feature maps in CNNs; for
better recognition by CNNs, we can freely produce Y cq beyond the convex hull of inputs {Xc

p}p∈Rq .
Thus, we formulate Gaussian-based Pooling to describe the output by means of probabilistic models
beyond the sample-wise representation in Eq. 1. We hereafter omit the superscript c (channel) and
subscript q (output position) for simplicity; Table 1 summarizes the detailed forms of the methods.

First, the local neuron activations {Xp}p∈R are modeled by a Gaussian distribution with the mean
µX and standard deviation σX ;

X̃ ∼ N (µX , σX)⇔ X̃ = µX + εσX , (2)

where µX =
1

|R|
∑
p∈R

Xp, σ
2
X =

1

|R|
∑
p∈R

(Xp − µX)
2, ε ∼ N (0, 1), ε ∈ (−∞,+∞). (3)

This, however, provides just a model to probabilistically reproduce the local neuron activations.
We thus modify the Gaussian model in Eq. 2 into the ones suitable for local pooling in CNNs. As
empirically shown in [1] and suggested in [15, 22, 32], the pooling whose functionality is biased
toward min below average is less effective in providing discriminative feature representation since it
suppresses neuron activations, degrading performance. Based on the knowledge about local pooling,
we can modify Eq. 2 into, by prohibiting the output from falling below the mean µX ,

Y = µX + |ε|σX , ε ∼ N (0, 1) ⇔ Y = µX + ησX , η ∼ Nh(1), η ∈ [0,+∞), (4)

where the half-Gaussian distribution Nh(σ0) [19] (Fig. 1c) with σ0 = 1 is naturally introduced as a
prior probabilistic model; note that E[η] = σ0

√
2√
π

and Var[η] = σ2
0(1− 2

π ) for η ∼ Nh(σ0). Thereby,
the fixed half-Gaussian pooling is formulated in Eq. 4 to stochastically produce Y without using any
pooling parameter, and at an inference phase the pooling works in a deterministic way by utilizing
the mean of Nh(1) as Y = µX +

√
2√
π
σX .

Parametric pooling We then extend the fixed half-Gaussian pooling in Eq. 4 by introducing a
variable parameter σ0, the standard deviation of the half-Gaussian, to flexibly describe the output;

Y = µX + ησX , where η ∼ Nh(σ0), η ∈ [0,+∞), σ0 = softplus ◦ f(X ) (5)
⇔ Y = µX + |ε|σ0σX , where ε ∼ N (0, 1), ε ∈ (−∞,+∞), σ0 = softplus ◦ f(X ), (6)

where the parameter σ0 is estimated from the input feature map X by the GFGP method [1];

σ0 = softplus ◦ f(X ) = softplus(b+ v>ReLU(a+U>GAP(X ))), (7)
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where GAP(X ) = 1
HW

∑(W,H)
p=(1,1) xp ∈ RC is the global average pooling (GAP) [17], {U ,a} ∈

{RC×C
2 ,RC

2 } and {v, b} ∈ {RC
2 ,R} are the parameters of the two-layered MLP in the GFGP [1],

and the softplus function softplus(x) = log{1 + exp(x)} is applied to ensure the non-negative σ0.
The deterministic pooling for inference is accordingly given by

Y = µX +

√
2√
π
σ0σX , where σ0 = softplus ◦ f(X ). (8)

The flexible half-Gaussian pooling (Fig. 1c) in Eq. 6 allows the output to be far from the mean µX

possibly beyond maxp∈R(Xp), and the deviation from the mean is controlled by the parameter σ0
which is estimated in Eq. 7 exploiting the global features X ; the effectiveness of estimating local
pooling parameters from global features is shown in [1]. It is noteworthy that in the proposed method,
the parametric half-Gaussian model naturally incorporates the parameter estimation by GFGP [1]
with the stochastic pooling scheme.

2.3 Inverse softplus-Gaussian pooling

Though the half-Gaussian model is derived from the Gaussian distribution of neuron activations as
described in Section 2.2, the model is slightly less flexible in that the single parameter σ0 tightly
couples the mean and variance of the half-Gaussian distribution by Var[η] = σ2

0(1− 2
π ) = E[η]2(π2−1)

for η ∼ Nh(σ0); it inevitably enlarges the variance for the larger mean (Fig. 1c). To endow the pooling
model with more flexibility, we propose inverse softplus-Gaussian (iSP-Gaussian) distribution1 in

η ∼ Nisp(µ0, σ0)⇔ η = softplus(ε̃) = log{1 + exp(ε̃)}, where ε̃ ∼ N (µ0, σ0), (9)

where the probability density function of the iSP-Gaussian distribution Nisp (Fig. 1d) is defined as

Nisp(x;µ0, σ0) =
1√
2πσ0

exp(x)

exp(x)− 1
exp

{
− 1

2σ2
0

(log[exp(x)− 1]− µ0)
2

}
, (10)

which is parameterized by µ0 and σ0; the details to derive Eq. 10 are described in Appendix. As shown
in Eq. 9, the iSP-Gaussian produces η on a positive domain (0,+∞) as in the half-Gaussian Nh. In
the iSP-Gaussian model, the mean and variance are roughly decoupled due to the two parameters of
µ0 and σ0; the standard deviation of the iSP-Gaussian is upper-bounded by the parameter σ0 even on
the larger mean (Fig. 1d) in contrast to the half-Gaussian model.

The iSP-Gaussian pooling is thus formulated by applying the iSP-Gaussian distribution in Eq. 9 to
the stochastic pooling scheme in Eq. 5 as,

Y = µX + softplus(µ0 + εσ0)σX , (11)

where ε ∼ N (0, 1) and the two variable parameters µ0 and σ0 are estimated by GFGP [1];

µ0 = fµ(X ) = bµ + v>µ ReLU(a+U>GAP(X )), (12)

σ0 = sigmoid ◦ fσ(X ) = sigmoid(bσ + v>σ ReLU(a+U>GAP(X ))). (13)

We employ the same structure of MLP as in Eq. 7 and the first layer (U and a) is shared for estimating
µ0 and σ0. While the parameter µ0 can take any value, µ0 ∈ (−∞,+∞), the parameter σ0 is subject
to the non-negativity constraint since those two parameters indicate the mean and standard deviation
of the underlying Gaussian distribution in Eq. 9. And, according to the fundamental model in Eq. 2,
we further impose the constraint of σ0 ∈ (0, 1) which also contributes to stable training. It should be
noted that even though σ0 is so upper-bounded, the variation of the output Y in the stochastic training
is proportional to σX as shown in Eq. 11. Based on these ranges of the parameters, the GFGP model
is formulated in Eq. 12 for µ0 and in Eq. 13 for σ0 by applying sigmoid(x) = 1

1+exp(−x) .

The deterministic pooling form at inference is defined by

Y = µX + softplus(µ0)σX , (14)

1As in log-Gaussian distribution [4], inverse softplus-Gaussian is a distribution of random variable which is
transformed via an inverse softplus function into the variable that obeys a Gaussian distribution.
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Table 1: Gaussian-based pooling methods. For comparison, the special cases (the deterministic
pooling by σ0 = 0) of the half-Gaussian and iSP-Gaussian models are shown in the last two rows.

Pooling form: Y cq = µcX,q + ηcqσ
c
X,q , Random number: εcq ∼ N (0, 1)

Pooling method ηcq at training ηcq at inference Parameter

Gaussian εcq 0 -
Half-Gaussian (fixed) |εcq|

√
2√
π

-

Half-Gaussian |εcq|σc0
√
2√
π
σc0 σc0 = softplus ◦ f(X )

iSP-Gaussian softplus(µc0 + εcqσ
c
0) softplus(µc0) µc0 = fµ(X ), σc0 = sigmoid ◦ fσ(X )

Average 0 -
iSP-Gaussian (σ0=0) softplus(µc0) µc0 = fµ(X )

where µ0 = fµ(X ) in Eq. 12 and we approximate the mean of the iSP-Gaussian distribution as

E[η] =
∫

log[1 + exp(ε̃)]N (ε̃;µ0, σ0)dε̃ ≈ softplus(µ0) + 0.115σ2
0

4 exp(0.9µ0)

(1 + exp(0.9µ0))2
(15)

≈ softplus(µ0). (16)

The first approximation in Eq. 15 is given in a heuristic manner2 for σ0 ≤ 1 and the second one
in Eq. 16 is obtained by ignoring the residual error which is at most 0.115. In the preliminary
experiments, we confirmed that the approximation hardly degrades classification performance (at
most only 0.01% drop), and it is practically important that the approximation halves the GFGP
computation only for µ0 = fµ(X ) by omitting σ0 in Eq. 16.

2.4 Discussion
Training The proposed Gaussian-based pooling methods are summarized in Table 1. These
methods leverage a random number ε simply drawn from a normal distribution N (0, 1) to the
stochastic training which is based on the following derivatives,

∂Y cq
∂Xc

p

=
1

|Rq|

(
1 + ηcq

Xc
p − µcX,q

σcX,q

)
,

∂Y cq
∂ηcq

= σcX,q. (17)

While the pooling parameters {µc0, σc0} are estimated by GFGP for channels c ∈ {1, · · · , C}, the
random number εcq is generated at each position q and channel c, i.e., for each output Y cq . To reduce
the memory consumption in the stochastic training process, it is possible to utilize random numbers
εc which are generated only along the channel c and shared among spatial positions q; this approach
is empirically evaluated in Section 3.1.

iSP-Gaussian model As an alternative to the iSP-Gaussian, the log-Gaussian model [4] is ap-
plicable in Eq. 11 with the analytic form of mean, exp(µ0 +

σ2
0

2 ). Nonetheless, the iSP-Gaussian
model is preferable for pooling in the following two points. First, the mean of iSP-Gaussian can
be approximated by using the single variable µ0 in Eq. 16 in order to effectively reduce computa-
tion cost at inference by omitting the estimation of σ0 in the GFGP method. Second, the variance
of iSP-Gaussian is upper-bounded by σ2

0 for any µ0, while the log-Gaussian model exponentially
enlarges the variance as µ0 increases, leading to unstable training; in the preliminary experiment, we
confirmed that the log-Gaussian model fails to properly reduce the training loss.

Pooling model The proposed pooling forms in Table 1 are based on a linear combination of the
average and standard deviation pooling both of which have been practically applied to extract visual
characteristics [3, 31]. In the proposed method, those two statistics are fused through the probabilistic
model of which parameter(s) is estimated by GFGP [1] from an input feature map. Estimating
parameters of a probabilistic model by neural networks is found in the mixture density network
(MDN) [2] and partly in variational auto-encoder (VAE) [12]. The proposed method effectively
applies the approach to stochastic training of CNN in the framework of stochastic pooling.

2We manually tune the parametric form in Eq. 15 toward minimizing the residual error between
softplus(µ0) and

∫
log[1 + exp(ε̃)]N (ε̃;µ0, σ0)dε̃ which is empirically computed by means of sampling.
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Computation complexity In the iSP-Gaussian pooling, the computation overhead is mainly caused
by the GFGP module. The GFGP method estimates 2C parameters, {µc0, σc0}Cc=1, by means of two-
layered MLP in Eqs. 12 13 equipped with 3

2C
2+ 5

2C parameters which efficiently performs in O(C2)
due to GAP; the efficiency of GFGP compared to the other methods is shown in [1]. The pooling
operation itself in the proposed method is more efficient than [1] since it is composed of two simple
statistics, local mean µX and standard deviation σX .

3 Experimental Results

We apply the proposed pooling methods (Table 1) to various CNNs on image classification tasks; local
pooling layers embedded in original CNNs are replaced with our proposed ones. The classification
performance is evaluated by error rates (%) on a validation set provided by datasets. The CNNs are
implemented by using MatConvNet [26] and trained on NVIDIA Tesla P40 GPU.

3.1 Ablation study

To analyze the proposed Gaussian-based pooling methods (Table 1) from various aspects, we embed
them in the pool1&2 layers of the 13-layer network (Table 2a) on the Cifar100 dataset [13] which
contains 50,000 training images of 32 × 32 pixels and 10,000 validation images of 100 object
categories; the network is optimized by SGD with a batch size of 100, weight decay of 0.0005,
momentum of 0.9 and the learning rate which is initially set to 0.1 and then divided by 10 at the
80th and 120th epochs over 160 training epochs, and all images are pre-processed by standardization
(0-mean and 1-std) and for data augmentation, training images are subject to random horizontal
flipping and cropping through 4-pixel padding. We repeat the evaluation three times with different
initial random seeds in training the CNN to report the averaged error rate with the standard deviation.

Probabilistic model In Section 2, we start with the simple Gaussian model in Eq. 2 and then derive
various probabilistic models for pooling, as summarized in Table 1. The performance comparison
of those methods are shown in Table 2b where the former four methods are stochastic while the
latter two are deterministic. By embedding stochasticity into the local pooling, the performance is
improved, and the half-Gaussian model is superior to the simple Gaussian model since it excludes
the effect of min-pooling (Fig. 1c) by favorably activating inputs due to non-negative η in Eq. 4.
Then, the performance is further improved by extending the fixed half-Gaussian model to the more
flexible ones through introducing variable pooling parameters to be estimated by GFGP [1]; in this
case, the half-Gaussian (Eq. 6) and the iSP-Gaussian (Eq. 11) work comparably. The comparison
to the deterministic iSP-Gaussian model (σ0 = 0) clarifies that it is quite effective to incorporate
stochasticity into GFGP via the prior probabilistic models. The trainable pooling by GFGP could
slightly bring an over-fitting issue especially in such a small-scale case, and the proposed stochastic
method mitigates the issue to favorably exploit the discriminative power of the GFGP model for
improving performance.

Parametric model From the viewpoint of the increased number of parameters, we show the
effectiveness of the proposed method in comparison with the other types of modules that adds the
same number of parameters; NiN [17] using 1× 1 conv, ResNiN which adds an identity path to the
NiN module as in ResNet [7], and squeeze-and-excitation (SE) module [9]. For fair comparison, they
are implemented by using the same 2-layer MLP as ours (Eq. 12) of C2 parameters with appropriate
activation functions and are embedded before pool1&2 layers in the 13-layer Net (Table 2a) so as
to work on the feature map fed into the max pooling layer. The performance results are shown in
Table 2c, demonstrating that our method most effectively leverages the additional parameters to
improve performance.

Stochastic method There are several methods which introduce stochasticity into the convex pooling
(Eq. 1); Stochastic Pooling [33] constructs a multinomial model on the weights wp by directly using
input activation Xp, and Mixed Pooling [15] mixes average- and max-pooling in a stochastic manner.
Those methods are compared with the proposed methods of the half-Gaussian and iSP-Gaussian
models in Table 2d, demonstrating the superiority of the proposed methods to the previous stochastic
methods. On the other hand, S3 pooling [34] endows local pooling with stochasticity in a different
way from ours and the methods [15, 33]; S3 pooling stochastically selects the receptive field Rq

of the output Yq, and thus can be combined with the above-mentioned methods that consider the
stochasticity in producing Yq based on Rq. As shown in Table 2d, the combination methods with
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Table 2: Performance results by 13-layer network (a) on Cifar100 dataset [13].

(a) 13-layer network
input 32× 32 RGB image

conv 1a 96 filters, 3× 3, pad = 1, BatchNorm, ReLU
conv 1b 96 filters, 3× 3, pad = 1, BatchNorm, ReLU
conv 1c 96 filters, 3× 3, pad = 1, BatchNorm, ReLU
pool1 Pooling, 2× 2, pad = 0

conv 2a 192 filters, 3× 3, pad = 1, BatchNorm, ReLU
conv 2b 192 filters, 3× 3, pad = 1, BatchNorm, ReLU
conv 2c 192 filters, 3× 3, pad = 1, BatchNorm, ReLU
pool2 Pooling, 2× 2, pad = 0

conv 3a 192 filters, 3× 3, pad = 1, BatchNorm, ReLU
conv 3b 192 filters, 3× 3, pad = 1, BatchNorm, ReLU
conv 3c 192 filters, 3× 3, pad = 1, BatchNorm, ReLU

GAP Global average-pooling (GAP), 8× 8→ 1× 1
dense Fully connected, 192→ 100

output Softmax

(b) Probabilistic model

Method Error (%)

Gaussian 24.51±0.36
Half-Gauss (fixed) 24.25±0.25
Half-Gauss 23.48±0.22
iSP-Gauss 23.52±0.37

Average 24.78±0.18
iSP-Gauss (σ0=0) 24.12±0.17

(c) Parametric model

Method Error (%)

NiN [17] 24.49±0.13
ResNiN [7, 17] 24.33±0.16
SE [9] 23.99±0.07

iSP-Gauss 23.52±0.37

(d) Stochastic method
Method Error (%)

Stochastic [33] 24.52±0.18
Mixed [15] 24.33±0.23
Half-Gauss 23.48±0.22
iSP-Gauss 23.52±0.37

S3 [34] + Stochastic [33] 24.01±0.20
S3 [34] + Mixed [15] 23.31±0.12
S3 [34] + Half-Gauss 23.12±0.17
S3 [34] + iSP-Gauss 22.98±0.02

(e) Global pooling
Method Error (%)

GAP 24.78±0.18
GAP + DropOut [16] 24.58±0.27
Half-Gauss 24.54±0.14
iSP-Gauss 23.83±0.18

(f) Stochasticity
Method Full (εcq) Partial (εc)

Half-Gauss 23.48±0.22 23.60±0.07
iSP-Gauss 23.52±0.37 23.68±0.06

the S3 pooling [34] favorably improve performance. The half-Gaussian model, however, enjoys the
smaller amount of improvement, compared to the iSP-Gaussian model. The half-Gaussian model
provides higher stochasticity by nature due to the large variance (Fig. 1c), which might make the
additional stochasticity by S3 less effective.

Global pooling While in this paper we focus on the operation of local pooling in CNNs, it is
possible to apply the proposed method to globally aggregate features after the last convolution layer
as the global average pooling (GAP) does. To evaluate the feasibility to global pooling, we replace
the GAP with the proposed pooling methods in the 13-layer network (Table 2a) which is equipped
with local average pooling. For comparison in terms of stochasticity, we also apply DropOut [24] to
GAP; as suggested in [16], the DropOut layer with the dropping ratio 0.2 is embedded just after the
GAP so as to achieve performance improvement for the batch-normalized CNNs. The performance
comparison is shown in Table 2e, and we can see that the iSP-Gaussian pooling effectively works
in the global pooling. On the other hand, the half-Gaussian model is less effective, maybe due to
its higher stochasticity as pointed out above; the global pooling would require small amount of
stochasticity as implied by the result that the DropOut with the ratio 0.2 works [16]. And, we can
note that the DropOut operating on the last layer [16] is compatible with the local pooling methods.

Stochasticity Full stochastic training is realized by performing stochastic sampling at each output
neuron Y cq individually, i.e., by drawing the random number εcq for each {q, c} (Table 1). Such a full
stochastic approach, however, requires considerable amount of memory and computation cost for εcq
especially on the larger-sized input images, as mentioned in Section 2.4. To increase computation
efficiency in training, we can apply partially stochastic training only along the channels c; that is, all
the neurons {Y cq }q on the c-th channel map share the identical εc which is sampled from a normal
distribution in a channel-wise manner. It is noteworthy that even in this partially stochastic scheme
the output Y cq is differently distributed based on µcX,q and σcX,q computed at each q. These two types
of stochastic schemes are compared in Table 2f. The partially stochastic approach produces favorable
performance, though slightly degrading performance. Thus, we apply this computationally efficient
stochastic approach to the larger CNN models on ImageNet dataset in Section 3.2.

3.2 Comparison to the other pooling methods

Next, the proposed pooling methods of the half-Gaussian and iSP-Gaussian models are compared
to the other local pooling methods on various CNNs. For comparison, in addition to the stochastic
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Table 3: Performance comparison on various CNNs.

Cifar100 [13]
(a) 13-layer Net (Table 2a)
Method Error (%)

skip 24.83±0.15
avg 24.78±0.18
max 24.74±0.08

Stochastic [33] 24.52±0.18
Mixed [15] 24.33±0.23

DPP [22] 24.59±0.15
Gated [15] 24.42±0.45
GFGP [1] 24.41±0.22

Half-Gauss 23.48±0.22
iSP-Gauss 23.52±0.37

(b) MobileNet [8]
Method Top-1 Top-5

skip 29.84 10.35
avg 28.94 10.00
max 29.23 10.02

Stochastic 30.26 10.64
Mixed 29.49 10.14

DPP 28.92 9.92
Gated 28.62 9.86
GFGP 27.68 9.27

Half-Gauss 27.96 9.38
iSP-Gauss 27.33 9.00

ImageNet [5]
(c) ResNet-50 [7]

Method Top-1 Top-5

skip 23.53 7.00
avg 22.61 6.52
max 22.99 6.71

stochastic 25.47 7.87
Mixed 22.81 6.53

DPP 22.52 6.63
Gated 22.27 6.33
GFGP 21.79 5.95

Half-Gauss 21.66 5.88
iSP-Gauss 21.37 5.68

(d) ResNeXt-50 [30]
Method Top-1 Top-5

skip 22.69 6.65
avg 22.14 6.35
max 22.20 6.24

stochastic 25.02 7.73
Mixed 21.83 6.09

DPP 21.84 5.98
Gated 21.63 5.99
GFGP 21.35 5.74

Half-Gauss 20.89 5.72
iSP-Gauss 20.66 5.60

pooling methods [33, 15], we apply the deterministic pooling methods including the simple average-
and max-pooling as well as the sophisticated ones [1, 15, 22] which are trainable in the end-to-end
learning. As to CNNs, besides the simple 13-layer network (Table 2a) on the Cifar100 dataset, we
train the deeper CNNs of MobileNet [8], ResNet-50 [7] and ResNeXt-50 [30] on the ImageNet
dataset [5]; for ResNet-based models, we apply the batch size of 256 to SGD with momentum of
0.9, weight decay of 0.0001 and the learning rate which starts from 0.1 and is divided by 10 every 30
epochs throughout 100 training epochs, while we apply the similar procedure to train the MobileNet
over 120 training epochs with the data augmentation of slightly less variation as suggested in [8].
Those deep CNNs contain five local pooling layers in total, including skip one implemented by strided
convolution, and they are replaced by the other local pooling methods as in [1]. The performance is
measured by top-1 and top-5 error rates via single crop testing [14] on the validation set.

The performance comparison in Table 3 shows that the proposed methods favorably improve perfor-
mance, being superior both to the stochastic pooling methods and to the sophisticated deterministic
methods. Thus, we can say that it is effective to fuse the effective deterministic approach via
GFGP [1] and the stochastic scheme through the probabilistic model on the local pooling. While
the half-Gaussian and iSP-Gaussian models are comparable in the smaller-scale case (Table 3a), the
iSP-Gaussian pooling produces superior performance on the larger-scale cases (Table 3b-d). The
iSP-Gaussian model that renders appropriate stochasticity through flexibly controlling σ0 in Eq. 13
contributes effectively to improving performance of various CNNs.

3.3 Qualitative analysis

Finally, we show how the pooling parameters of the iSP-Gaussian model are estimated by GFGP. The
model contains two parameters of µc0 and σc0 at each channel c which are estimated for each input
image sample. Fig. 2 visualizes as 2-D histograms the distributions of the parameter pairs {µ0, σ0}
estimated on training samples. At the beginning of the training, the parameters are estimated less
informatively, being distributed broadly especially in σ0. As the training proceeds, the probabilistic
model in the pooling is optimized, and the parameter σ0 that controls the stochasticity in training is
adaptively tuned at respective layers; we can find some modes in the first two layers of ResNet-50
while in the third and fourth layers σ0 slightly exhibits negative correlation with µ0, suppressing
stochasticity on the significant output of high µ0. By flexibly tuning the model parameters throughout
the training, the proposed iSP-Gaussian pooling effectively contributes to improving performance on
various CNNs.

4 Conclusion

In this paper, we have proposed a novel pooling method based on the Gaussian-based probabilistic
model over the local neuron activations. In contrast to the previous pooling model based on the convex
hull of local samples (activations), the proposed method is formulated by means of the probabilistic
model suitable for pooling functionality in CNNs; we propose the inverse softplus-Gaussian model for
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Figure 2: Distribution of the estimated parameters µ0 and σ0 in the iSP-Gaussian model. To construct
the 2-D histograms of which frequencies are depicted by pseudo colors, all the training samples of
Cifar100 dataset are fed into the 13-layer Net, while in the ResNet-50 we randomly draw 200,000
training samples from ImageNet. This figure is best viewed in color.

that purpose. The local neuron activations are aggregated into the local statistics of mean and standard
deviation of the Gaussian model which are then fed into the probabilistic model for performing
local pooling stochastically. For controlling the pooling form as well as the stochastic training, the
model contains variable parameters to be adaptively estimated by the GFGP method [1]. Thus the
proposed method naturally unifies the two schemes of stochastic pooling and trainable pooling. In
the experiments on image classification, the proposed method is applied to various CNNs, producing
favorable performance in comparison with the other pooling methods.

Appendix: Derivation of Inverse softplus-Gaussian Distribution Nisp

The probability distribution Nisp(x;µ0, σ0) in Eq. 10 is derived through the following variable
transformation. Suppose y is a random variable whose probability density function is Gaussian,

q(y) =
1√
2πσ0

exp

{
− 1

2σ2
0

(y − µ0)
2

}
. (18)

The target random variable x is obtained via softplus transformation by

x = softplus(y)⇔ y = softplus−1(x) = log[exp(x)− 1]. (19)

Then, we apply the relationship of

q(y)dy = p(x)dx,
dy

dx
=

exp(x)

exp(x)− 1
(20)

to provide p(x) = Nisp(x;µ0, σ0) in Eq. 10.
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